JPH07169709A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH07169709A
JPH07169709A JP5313174A JP31317493A JPH07169709A JP H07169709 A JPH07169709 A JP H07169709A JP 5313174 A JP5313174 A JP 5313174A JP 31317493 A JP31317493 A JP 31317493A JP H07169709 A JPH07169709 A JP H07169709A
Authority
JP
Japan
Prior art keywords
insulating film
substrate
film
conductive layer
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5313174A
Other languages
Japanese (ja)
Other versions
JP3205150B2 (en
Inventor
Toshiharu Tanpo
敏治 反保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP31317493A priority Critical patent/JP3205150B2/en
Publication of JPH07169709A publication Critical patent/JPH07169709A/en
Application granted granted Critical
Publication of JP3205150B2 publication Critical patent/JP3205150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form a conductive layer containing an impurity at a high concentration at an extremely shallow depth in a semiconductor substrate at the time of forming a conductive layer containing an impurity having an extremely large diffusion coefficient against the substrate on the surface of the substrate. CONSTITUTION:A first insulating film composed of a silicon nitride film 12 having a thickness of 400Angstrom is formed on the surface of a GaAs substrate 11 by using the plasma CVD method. The ion of zinc which is a P-type impurity having a large diffusion coefficient against the substrate 11 is implanted into the substrate 11 through the film 12. The thickness of the film 12 is decided so that the concentration peak of the injected impurity can come to the boundary between the substrate 11 and film 12. Then a second insulating film composed of a silicon nitride film 13 is formed on the film 12 by the plasma CVD method. Thereafter, a P-type conductive layer 14 is formed by heat-treating the substrate 11 for 5 minutes at 700 deg.C in a nitrogen atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体基板に対し拡
散係数の大きい不純物層を形成する工程を含む半導体装
置の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device including a step of forming an impurity layer having a large diffusion coefficient on a semiconductor substrate.

【0002】[0002]

【従来の技術】従来、半導体装置の性能を向上するため
には浅い導電層を実現することが重要である。拡散係数
の大きい不純物は容易に高濃度の導電層が得られるが、
浅く導電層を形成することが困難である。従来の技術に
おいて、半導体基板の表面に拡散係数の大きい不純物層
を形成する場合、熱拡散またはコヒーレント光を利用し
たランプ熱処理を採用している。
2. Description of the Related Art Conventionally, it is important to realize a shallow conductive layer in order to improve the performance of a semiconductor device. Impurities with a large diffusion coefficient can easily obtain a high-concentration conductive layer,
It is difficult to form a shallow conductive layer. In the related art, when an impurity layer having a large diffusion coefficient is formed on the surface of a semiconductor substrate, thermal diffusion or lamp heat treatment using coherent light is adopted.

【0003】以下に従来の半導体装置の製造方法につい
て、図5ないし図8を参照しながら説明する。図5は従
来の半導体装置の製造方法における熱拡散の方法を示す
図である。この方法は、石英アンプル1の中に固形不純
物3および半導体基板2を設置し、ヒータ4の温度を上
げることにより固形不純物3を蒸発させ、半導体基板2
の表面に不純物を拡散させる方法である。この熱拡散の
方法による場合の拡散時間に対する不純物濃度プロファ
イルの変化を図6に示す。図6に示されるように、拡散
時間を長くすると基板表面の不純物濃度が高くなり、比
較的濃度の低いプルファイルの傾きが鈍化している。
A conventional method of manufacturing a semiconductor device will be described below with reference to FIGS. FIG. 5 is a diagram showing a heat diffusion method in a conventional semiconductor device manufacturing method. According to this method, the solid impurities 3 and the semiconductor substrate 2 are placed in a quartz ampoule 1, and the temperature of the heater 4 is raised to evaporate the solid impurities 3 and the semiconductor substrate 2
This is a method of diffusing impurities on the surface of. FIG. 6 shows a change in the impurity concentration profile with respect to the diffusion time when this thermal diffusion method is used. As shown in FIG. 6, when the diffusion time is lengthened, the impurity concentration on the substrate surface is increased, and the inclination of the pull file having a relatively low concentration is slowed down.

【0004】図7は従来の半導体装置の製造方法におけ
るコヒーレント光のランプ熱処理の方法を示す図であ
る。この方法は、不純物をイオン注入した半導体基板6
を石英チューブ5内に設置し、コヒーレント光のランプ
7により熱処理する方法である。このランプ熱処理の方
法による場合の拡散時間に対する不純物濃度プロファイ
ルの変化を図8に示す。図8に示されるように、拡散時
間を長くすると基板表面の不純物濃度が低下し、比較的
濃度の低いプルファイルの傾きが鈍化している。なお、
図8における破線は熱処理前の不純物濃度プロファイル
である。
FIG. 7 is a diagram showing a method of lamp heat treatment of coherent light in a conventional method of manufacturing a semiconductor device. In this method, the semiconductor substrate 6 in which impurities are ion-implanted is used.
Is installed in the quartz tube 5 and heat-treated by the coherent light lamp 7. FIG. 8 shows the change in the impurity concentration profile with respect to the diffusion time in the case of this lamp heat treatment method. As shown in FIG. 8, when the diffusion time is lengthened, the impurity concentration on the substrate surface is lowered, and the inclination of the pull file having a relatively low concentration is slowed down. In addition,
The broken line in FIG. 8 is the impurity concentration profile before the heat treatment.

【0005】[0005]

【発明が解決しようとする課題】上記の従来の方法で
は、熱拡散の場合、基板表面付近の濃度は高いが低濃度
のプロファイルの制御が困難である。また、基板表面の
状態により基板表面付近の濃度も制御が難しい。一方、
ランプ熱処理の場合、熱拡散の場合よりも低濃度プロフ
ァイルの急峻性はよいが、表面濃度の低下が現れ、後に
形成される電極金属との接触に問題を引き起こす。
In the above conventional method, in the case of thermal diffusion, it is difficult to control a low concentration profile although the concentration near the substrate surface is high. Further, it is difficult to control the concentration near the substrate surface depending on the state of the substrate surface. on the other hand,
In the case of lamp heat treatment, the steepness of the low-concentration profile is better than in the case of thermal diffusion, but a decrease in surface concentration appears and causes a problem in contact with an electrode metal that is formed later.

【0006】この発明の目的は、上記従来の問題点を解
決するもので、半導体基板に対し拡散係数の大きい不純
物の導電層を半導体基板表面に形成する際、半導体基板
表面から極めて浅い位置に、不純物濃度の高い導電層を
形成することのできる半導体装置の製造方法を提供する
ことである。
An object of the present invention is to solve the above-mentioned conventional problems. When forming a conductive layer of impurities having a large diffusion coefficient with respect to a semiconductor substrate on the surface of the semiconductor substrate, the semiconductor layer is formed at a position extremely shallow from the surface of the semiconductor substrate. It is an object of the present invention to provide a method for manufacturing a semiconductor device capable of forming a conductive layer having a high impurity concentration.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
にこの発明の半導体装置の製造方法は、半導体基板上に
第1の絶縁膜を形成した後、第1の絶縁膜と半導体基板
表面との界面に不純物の濃度が最も高くなるように第1
の絶縁膜を介して不純物をイオン注入する工程と、第1
の絶縁膜の上に第2の絶縁膜を形成した後、高温熱処理
して第1の絶縁膜の下に導電層を形成する工程とを含む
ことを特徴とする。
In order to achieve this object, a method of manufacturing a semiconductor device according to the present invention comprises forming a first insulating film on a semiconductor substrate and then forming a first insulating film and a surface of the semiconductor substrate. The highest concentration of impurities at the interface of the first
Ion implantation of impurities through the insulating film of
Forming a second insulating film on the insulating film, and then performing a high temperature heat treatment to form a conductive layer under the first insulating film.

【0008】[0008]

【作用】この発明によれば、半導体基板に対し拡散係数
の大きい不純物の導電層を半導体基板表面に形成する
際、半導体基板上に形成した第1の絶縁膜を介して、第
1の絶縁膜と半導体基板表面との界面に不純物の濃度が
最も高くなるように不純物をイオン注入する。その後、
第1の絶縁膜の上に第2の絶縁膜を形成した後、高温熱
処理して第1の絶縁膜の下に導電層を形成する。これに
より、高温熱処理による基板表面付近の濃度低下および
低濃度領域の急峻性劣化を引き起こすことなく、半導体
基板表面から極めて浅い位置に、不純物濃度の高い導電
層を形成することができる。
According to the present invention, when the conductive layer of impurities having a large diffusion coefficient with respect to the semiconductor substrate is formed on the surface of the semiconductor substrate, the first insulating film is formed via the first insulating film formed on the semiconductor substrate. Impurities are ion-implanted so that the concentration of impurities becomes the highest at the interface between the semiconductor substrate surface and the semiconductor substrate. afterwards,
After forming the second insulating film on the first insulating film, high temperature heat treatment is performed to form a conductive layer under the first insulating film. As a result, a conductive layer having a high impurity concentration can be formed at an extremely shallow position from the surface of the semiconductor substrate without causing a decrease in concentration near the surface of the substrate and deterioration of steepness in a low concentration region due to high temperature heat treatment.

【0009】[0009]

【実施例】以下この発明の実施例について、図面を参照
しながら説明する。図1は第1の実施例であるこの発明
による半導体装置の製造方法を示す工程断面模式図であ
る。図1において、11はGaAs基板(半導体基
板)、12はイオン注入スルー膜として使用する第1の
絶縁膜であるシリコン窒化膜、13は熱処理保護膜とし
て使用する第2の絶縁膜であるシリコン窒化膜、14は
P型導電層である。
Embodiments of the present invention will be described below with reference to the drawings. 1A to 1D are schematic sectional views showing a method of manufacturing a semiconductor device according to a first embodiment of the present invention. In FIG. 1, 11 is a GaAs substrate (semiconductor substrate), 12 is a silicon nitride film that is a first insulating film used as an ion implantation through film, and 13 is a silicon nitride film that is a second insulating film used as a heat treatment protection film. The film, 14 is a P-type conductive layer.

【0010】以下、この実施例の半導体装置の製造方法
について説明する。まず、図1(a)に示すように、G
aAs基板11上に、プラズマCVD法により第1の絶
縁膜であるシリコン窒化膜12を400 Å形成する。その
後、GaAs基板11に対し拡散係数の大きいP型不純
物である亜鉛を、シリコン窒化膜12を通してイオン注
入(図中の矢印)する。つぎに、図1(b)に示すよう
に、プラズマCVD法により第2の絶縁膜であるシリコ
ン窒化膜13を、第1の絶縁膜であるシリコン窒化膜1
2の上に形成する。その後、窒素雰囲気中で700 ℃,5
分間の熱処理を行ない、P型導電層14を形成する。
The method of manufacturing the semiconductor device of this embodiment will be described below. First, as shown in FIG.
On the aAs substrate 11, a silicon nitride film 12, which is a first insulating film, is formed in a thickness of 400 Å by a plasma CVD method. After that, zinc, which is a P-type impurity having a large diffusion coefficient, is ion-implanted into the GaAs substrate 11 through the silicon nitride film 12 (arrow in the figure). Next, as shown in FIG. 1B, the silicon nitride film 13 which is the second insulating film is replaced with the silicon nitride film 1 which is the first insulating film by the plasma CVD method.
Form on top of 2. Then, in a nitrogen atmosphere, 700 ℃, 5
Heat treatment is performed for a minute to form the P-type conductive layer 14.

【0011】図2(a)はイオン注入後の注入プロファ
イルを示す。この実施例では、シリコン窒化膜12とG
aAs基板11との界面に不純物である亜鉛の濃度ピー
クをもたせるため、注入条件を80keV 、8.0 ×1014cm
-2としている。なお、注入された不純物の濃度ピークが
シリコン窒化膜12とGaAs基板11との界面に位置
するように、シリコン窒化膜12の膜厚を決定してい
る。図2(a)に示すように、シリコン窒化膜12内の
亜鉛の濃度分布はGaAs基板11との界面で1.9 ×10
20cm-3であり、GaAs基板11表面で5.4 ×1019
-3であり、この界面の濃度差が次工程の熱処理で重要
となる。
FIG. 2A shows an implantation profile after ion implantation. In this embodiment, the silicon nitride film 12 and G
The implantation conditions are 80 keV, 8.0 × 10 14 cm in order to have a concentration peak of zinc as an impurity at the interface with the aAs substrate 11.
-2 . The thickness of the silicon nitride film 12 is determined so that the concentration peak of the implanted impurities is located at the interface between the silicon nitride film 12 and the GaAs substrate 11. As shown in FIG. 2A, the zinc concentration distribution in the silicon nitride film 12 is 1.9 × 10 at the interface with the GaAs substrate 11.
20 cm -3 , 5.4 × 10 19 c on the surface of GaAs substrate 11
m −3 , and the concentration difference at this interface becomes important in the heat treatment in the next step.

【0012】図2(b)は熱処理後のキャリアプロファ
イルを示し、Aは第1および第2の絶縁膜を形成したこ
の実施例の場合であり、比較例として、Bは第2の絶縁
膜を形成しないで第1の絶縁膜のみを形成した場合、C
は第1および第2の絶縁膜のどちらも形成しなかった場
合である。図2(b)に示すように、熱処理後の亜鉛の
P型キャリアプロファイルは、この実施例の場合Aに比
べ、第1の絶縁膜のみ形成した場合Bと第1および第2
の絶縁膜を形成しなかった場合Cは、GaAs基板11
表面付近のキャリア濃度が急激に低下し、低濃度付近の
急峻性が劣化している。
FIG. 2B shows the carrier profile after the heat treatment, A is the case of this embodiment in which the first and second insulating films are formed, and B is the second insulating film as a comparative example. If only the first insulating film is formed without forming, C
Indicates the case where neither the first nor the second insulating film is formed. As shown in FIG. 2B, the P-type carrier profile of zinc after the heat treatment is different from that in the case A of this example in the case B in which only the first insulating film is formed and in the first and second cases.
If the insulating film is not formed, C is GaAs substrate 11
The carrier concentration near the surface is drastically reduced, and the steepness near the low concentration is deteriorated.

【0013】この実施例では、第1の絶縁膜(シリコン
窒化膜12)の上に第2の絶縁膜(シリコン窒化膜1
3)を形成しているため、第1の絶縁膜(シリコン窒化
膜12)中の亜鉛の外部拡散が抑制され、半導体基板
(GaAs基板11)側への拡散が促進される。このた
め基板表面付近の濃度低下が抑制されている。また、第
2の絶縁膜(シリコン窒化膜13)は第1の絶縁膜(シ
リコン窒化膜12)のように外部ダメージを受けていな
いため、GaAs基板11からのAs解離を防止し、こ
のため低濃度付近の急峻性も損なわれない。
In this embodiment, a second insulating film (silicon nitride film 1) is formed on the first insulating film (silicon nitride film 12).
3) is formed, the outdiffusion of zinc in the first insulating film (silicon nitride film 12) is suppressed, and the diffusion to the semiconductor substrate (GaAs substrate 11) side is promoted. For this reason, a decrease in concentration near the substrate surface is suppressed. Further, unlike the first insulating film (silicon nitride film 12), the second insulating film (silicon nitride film 13) is not externally damaged, and therefore As dissociation from the GaAs substrate 11 is prevented, so that the The steepness near the concentration is not impaired.

【0014】以上のようにこの実施例によれば、第1の
絶縁膜(シリコン窒化膜12)をスルー注入膜として用
い、第1の絶縁膜の上に第2の絶縁膜(シリコン窒化膜
13)を形成して高温熱処理することにより、半導体基
板(GaAs基板11)に対し拡散係数の大きい不純物
の導電層を半導体基板表面に形成する際、半導体基板表
面から極めて浅い位置に、不純物濃度の高い導電層(P
型導電層14)を形成することができる。その結果、P
N接合ダイオードやPN接合電界効果トランジスタなど
浅い接合や導電層を有する半導体装置の性能を向上する
ことができる。
As described above, according to this embodiment, the first insulating film (silicon nitride film 12) is used as the through injection film, and the second insulating film (silicon nitride film 13) is formed on the first insulating film. ) Is formed and a high temperature heat treatment is performed, a conductive layer of impurities having a large diffusion coefficient with respect to the semiconductor substrate (GaAs substrate 11) is formed on the surface of the semiconductor substrate. Conductive layer (P
A type conductive layer 14) can be formed. As a result, P
The performance of a semiconductor device having a shallow junction or a conductive layer such as an N-junction diode or a PN junction field effect transistor can be improved.

【0015】つぎに、第2の実施例としてPN接合形ダ
イオードの製造方法を図面を参照しながら説明する。図
3はこの発明による半導体装置の製造方法を適用したP
N接合形ダイオードの製造工程を示す断面模式図であ
る。図3において、21はシリコンを選択イオン注入さ
れたGaAs基板、22は第1の絶縁膜であるシリコン
窒化膜、23はN型導電層、24はホトレジスト、25
は第2の絶縁膜であるシリコン窒化膜、26はP型導電
層、27はAu/AuGeNi のN型オーミック電極、28はPt
/Ti のP型オーミック電極である。
Next, as a second embodiment, a method for manufacturing a PN junction type diode will be described with reference to the drawings. FIG. 3 shows a P to which the method for manufacturing a semiconductor device according to the present invention is applied.
It is a cross-sectional schematic diagram which shows the manufacturing process of an N junction diode. In FIG. 3, 21 is a GaAs substrate into which silicon is selectively ion-implanted, 22 is a silicon nitride film that is a first insulating film, 23 is an N-type conductive layer, 24 is photoresist, and 25
Is a silicon nitride film as a second insulating film, 26 is a P-type conductive layer, 27 is an Au / AuGeNi N-type ohmic electrode, and 28 is Pt.
/ Ti is a P-type ohmic electrode.

【0016】以下、この実施例の半導体装置の製造方法
について説明する。まず、図3(a)に示すように、N
型不純物であるシリコンを選択イオン注入したGaAs
基板21に、第1の絶縁膜であるシリコン窒化膜22を
プラズマCVD法により400 Å堆積し、窒素雰囲気中で
820 ℃,15分間の熱処理を行ないN型導電層23を形成
する。
The method of manufacturing the semiconductor device of this embodiment will be described below. First, as shown in FIG.
Ion-implanted GaAs with selective ion implantation
A silicon nitride film 22, which is a first insulating film, is deposited on the substrate 21 by plasma CVD at a rate of 400 Å and is placed in a nitrogen atmosphere.
A heat treatment is performed at 820 ° C. for 15 minutes to form the N-type conductive layer 23.

【0017】つぎに、図3(b)に示すように、ホトレ
ジスト24を注入マスクとしてP型不純物である亜鉛を
選択イオン注入(図中の矢印)する。この際、第1の実
施例同様、シリコン窒化膜22とGaAs基板21に形
成したN型導電層23との界面に不純物である亜鉛の濃
度ピークをもたせるため、注入条件を80keV 、8.0 ×10
14cm-2とする。
Next, as shown in FIG. 3B, selective ion implantation (arrow in the figure) of zinc, which is a P-type impurity, is performed using the photoresist 24 as an implantation mask. At this time, as in the case of the first embodiment, in order to have a concentration peak of zinc as an impurity at the interface between the silicon nitride film 22 and the N-type conductive layer 23 formed on the GaAs substrate 21, the implantation conditions are 80 keV, 8.0 × 10.
14 cm -2 .

【0018】つぎに、図3(c)に示すように、ホトレ
ジスト24を除去し、第2の絶縁膜であるシリコン窒化
膜25をプラズマCVD法により600 Å堆積し、窒素雰
囲気中で700 ℃,5分間の熱処理を行ないP型導電層2
6を形成する。つぎに、図3(d)に示すように、第
1,第2の絶縁膜のシリコン窒化膜22,25を除去
し、通常のリフトオフ法によりAu/AuGeNi のN型オーミ
ック電極27をN型導電層23の表面に形成するととも
に、Pt/Ti のP型オーミック電極28をP型導電層26
の表面に形成して、PN接合形ダイオードを完成させ
る。
Next, as shown in FIG. 3C, the photoresist 24 is removed, and a silicon nitride film 25 which is a second insulating film is deposited by plasma CVD at 600 Å. P-type conductive layer 2 after heat treatment for 5 minutes
6 is formed. Next, as shown in FIG. 3D, the silicon nitride films 22 and 25 of the first and second insulating films are removed, and the Au / AuGeNi N-type ohmic electrode 27 is made to have an N-type conductivity by a normal lift-off method. A Pt / Ti P-type ohmic electrode 28 is formed on the surface of the layer 23 and a P-type conductive layer 26 is formed.
To form a pn junction diode.

【0019】図4はこのPN接合形ダイオードの接合容
量(CD )のバイアス電圧(VR )依存性を示すもので
ある。図4において、Dはこの実施例を示し、比較のた
め従来の技術によるものをCに示す。図4から明らかな
ように、バイアス電圧に対するPN接合容量の変化は、
この実施例(D)の方が従来の技術(E)で得られる変
化より急峻である。一般的に接合容量の変化はP型とN
型の濃度差が大きく、かつ接合部のP型およびN型のキ
ャリアプロファイルが急峻な程大きい。
FIG. 4 shows the dependence of the junction capacitance (C D ) of this PN junction diode on the bias voltage (V R ). In FIG. 4, D shows this embodiment, and C is the one according to the conventional technique for comparison. As is clear from FIG. 4, the change in the PN junction capacitance with respect to the bias voltage is
This embodiment (D) is steeper than the change obtained by the conventional technique (E). Generally, the change of junction capacitance is P type and N
The larger the concentration difference between the molds and the steeper the P-type and N-type carrier profiles at the junction, the larger the difference.

【0020】以上のようにこの実施例によれば、GaA
s基板21に対し拡散係数の大きい亜鉛でP型導電層2
6を形成する際、シリコン窒化膜22,25からなる二
層の絶縁膜を用いたことにより、PN接合形ダイオード
においても接合容量が大きく、容量変化比の高い良好な
特性を得ることができる。なお、上記実施例では、半導
体基板をGaAs基板11,21とし、半導体基板に対
し拡散係数の大きな不純物を亜鉛としたが、GaAs基
板11,21の場合、不純物はP型、N型に関係なく例
えばN型の硫黄であってもよい。また、半導体基板はシ
リコンの単元素半導体や他の化合物半導体でもよい。さ
らに、第1の絶縁膜はシリコン窒化膜12,22に限ら
ず、シリコン酸化膜やアルミ酸化膜などであってもよ
い。第2の絶縁膜もシリコン窒化膜13,25に限ら
ず、第1の絶縁膜同様、他の絶縁膜でもよく、またWS
iのような高融点金属膜であってもよい。
As described above, according to this embodiment, GaA
The P-type conductive layer 2 is made of zinc having a large diffusion coefficient with respect to the substrate 21.
By using the double-layered insulating film composed of the silicon nitride films 22 and 25 when forming 6, the junction capacitance is large even in the PN junction diode, and good characteristics with a high capacitance change ratio can be obtained. In the above-mentioned embodiment, the semiconductor substrate is the GaAs substrate 11 and 21, and the impurity having a large diffusion coefficient with respect to the semiconductor substrate is zinc. However, in the case of the GaAs substrate 11 and 21, the impurity is irrespective of P type and N type. For example, it may be N-type sulfur. Further, the semiconductor substrate may be a single element semiconductor of silicon or another compound semiconductor. Furthermore, the first insulating film is not limited to the silicon nitride films 12 and 22, and may be a silicon oxide film, an aluminum oxide film, or the like. The second insulating film is not limited to the silicon nitride films 13 and 25, and may be another insulating film like the first insulating film.
It may be a refractory metal film such as i.

【0021】[0021]

【発明の効果】この発明の半導体装置の製造方法は、半
導体基板に対し拡散係数の大きい不純物の導電層を半導
体基板表面に形成する際、半導体基板上に形成した第1
の絶縁膜を介して、第1の絶縁膜と半導体基板表面との
界面に不純物の濃度が最も高くなるように不純物をイオ
ン注入する。その後、第1の絶縁膜の上に第2の絶縁膜
を形成した後、高温熱処理して第1の絶縁膜の下に導電
層を形成する。これにより、半導体基板表面から極めて
浅い位置に、不純物濃度の高い導電層を形成することが
できる。その結果、PN接合ダイオードやPN接合電界
効果トランジスタなど浅い接合や導電層を有する半導体
装置の性能を向上することができる。
According to the method of manufacturing a semiconductor device of the present invention, when the conductive layer of an impurity having a large diffusion coefficient with respect to the semiconductor substrate is formed on the surface of the semiconductor substrate, it is formed on the semiconductor substrate.
Impurities are ion-implanted into the interface between the first insulating film and the surface of the semiconductor substrate through the insulating film so as to have the highest impurity concentration. After that, a second insulating film is formed over the first insulating film, and then high temperature heat treatment is performed, so that a conductive layer is formed under the first insulating film. As a result, a conductive layer having a high impurity concentration can be formed at a position extremely shallow from the surface of the semiconductor substrate. As a result, the performance of a semiconductor device having a shallow junction or a conductive layer such as a PN junction diode or a PN junction field effect transistor can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による半導体装置の製造方法を示す工
程断面模式図である。
FIG. 1 is a schematic sectional view of a step showing the method for manufacturing a semiconductor device according to the present invention.

【図2】この発明の第1の実施例における不純物の注入
プロファイルおよびキャリアプロファイルの図である。
FIG. 2 is a diagram of an impurity injection profile and a carrier profile in the first embodiment of the present invention.

【図3】この発明の第2の実施例におけるPN接合形ダ
イオードの製造工程を示す断面模式図である。
FIG. 3 is a schematic cross-sectional view showing the manufacturing process of the PN junction diode in the second embodiment of the present invention.

【図4】この発明の第2の実施例におけるPN接合形ダ
イオードの接合容量のバイアス電圧依存性を示す図であ
る。
FIG. 4 is a diagram showing the bias voltage dependence of the junction capacitance of the PN junction diode in the second embodiment of the present invention.

【図5】従来の半導体装置の製造方法における熱拡散の
方法を示す図である。
FIG. 5 is a diagram showing a method of thermal diffusion in a conventional method of manufacturing a semiconductor device.

【図6】従来の熱拡散の方法による場合のキャリアプロ
ファイルの拡散時間依存性を示す図である。
FIG. 6 is a diagram showing a diffusion time dependency of a carrier profile in the case of a conventional thermal diffusion method.

【図7】従来の半導体装置の製造方法におけるコヒーレ
ント光のランプ熱処理の方法を示す図である。
FIG. 7 is a diagram showing a lamp heat treatment method of coherent light in a conventional semiconductor device manufacturing method.

【図8】従来のランプ熱処理の方法による場合のキャリ
アプロファイルの拡散時間依存性を示す図である。
FIG. 8 is a diagram showing a diffusion time dependence of a carrier profile in the case of a conventional lamp heat treatment method.

【符号の説明】[Explanation of symbols]

11,21 GaAs基板(半導体基板) 12,22 シリコン窒化膜(第1の絶縁膜) 13,25 シリコン窒化膜(第2の絶縁膜) 14,26 P型導電層 11, 21 GaAs substrate (semiconductor substrate) 12, 22 Silicon nitride film (first insulating film) 13, 25 Silicon nitride film (second insulating film) 14, 26 P-type conductive layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に第1の絶縁膜を形成した
後、前記第1の絶縁膜と前記半導体基板表面との界面に
不純物の濃度が最も高くなるように前記第1の絶縁膜を
介して前記不純物をイオン注入する工程と、 前記第1の絶縁膜の上に第2の絶縁膜を形成した後、高
温熱処理して前記第1の絶縁膜の下に導電層を形成する
工程とを含むことを特徴とする半導体装置の製造方法。
1. After forming a first insulating film on a semiconductor substrate, the first insulating film is formed on the interface between the first insulating film and the surface of the semiconductor substrate so that the concentration of impurities becomes highest. Ion-implanting the impurity via the step of forming a second insulating film on the first insulating film, and then performing high-temperature heat treatment to form a conductive layer under the first insulating film. A method of manufacturing a semiconductor device, comprising:
JP31317493A 1993-12-14 1993-12-14 Method for manufacturing semiconductor device Expired - Lifetime JP3205150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31317493A JP3205150B2 (en) 1993-12-14 1993-12-14 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31317493A JP3205150B2 (en) 1993-12-14 1993-12-14 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH07169709A true JPH07169709A (en) 1995-07-04
JP3205150B2 JP3205150B2 (en) 2001-09-04

Family

ID=18038002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31317493A Expired - Lifetime JP3205150B2 (en) 1993-12-14 1993-12-14 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3205150B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100249828B1 (en) * 1997-09-18 2000-04-01 정선종 The coating method for preventing diffusion
JP2017054852A (en) * 2015-09-07 2017-03-16 富士電機株式会社 Manufacturing method of gallium nitride semiconductor device
JP2021090021A (en) * 2019-12-05 2021-06-10 豊田合成株式会社 Manufacturing method for p-type group-iii nitride semiconductor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102382182B1 (en) * 2020-06-17 2022-04-05 주식회사 해광 Leveling post for access floor and access floor installation structure including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100249828B1 (en) * 1997-09-18 2000-04-01 정선종 The coating method for preventing diffusion
JP2017054852A (en) * 2015-09-07 2017-03-16 富士電機株式会社 Manufacturing method of gallium nitride semiconductor device
JP2021090021A (en) * 2019-12-05 2021-06-10 豊田合成株式会社 Manufacturing method for p-type group-iii nitride semiconductor

Also Published As

Publication number Publication date
JP3205150B2 (en) 2001-09-04

Similar Documents

Publication Publication Date Title
US7704841B2 (en) Transistor structure and method for making same
KR910005401B1 (en) Self align tr manufacturing method using amorphous silicon
US4179311A (en) Method of stabilizing semiconductor device by converting doped poly-Si to polyoxides
US4691435A (en) Method for making Schottky diode having limited area self-aligned guard ring
JPH04225529A (en) Improved method for manufacture of integrated-circuit structure body provided with lightly doped drain (ldd)
US4219379A (en) Method for making a semiconductor device
JPH09172173A (en) Semiconductor device and its manufacture
US5877057A (en) Method of forming ultra-thin oxides with low temperature oxidation
KR940007668B1 (en) Manufacturing method of gaas mesfet
US5747371A (en) Method of manufacturing vertical MOSFET
JPH07169709A (en) Manufacture of semiconductor device
JPH0245935A (en) Manufacture of field effect transistor
GB1593694A (en) Method for making a semiconductor device
JPH0653492A (en) Semiconductor device and fabrication thereof
US5413947A (en) Method for manufacturing a semiconductor device with an epitaxial void
JPH05243262A (en) Manufacture of semiconductor device
US5496742A (en) Method for manufacturing semiconductor device enabling gettering effect
US5406112A (en) Semiconductor device having a buried well and a crystal layer with similar impurity concentration
JP2708492B2 (en) Method for manufacturing semiconductor device
JP2808945B2 (en) Method of manufacturing vertical MOS field effect transistor
JPH0547797A (en) Fabrication of field effect transistor
JPH0883814A (en) Compound semiconductor field effect transistor and its manufacture
JP3300645B2 (en) Semiconductor device and manufacturing method thereof
JP3224432B2 (en) Method for manufacturing semiconductor device
JP2722829B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080629

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090629

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 9