JPS6351677A - Semiconductor device provided with junction-type effect transistor - Google Patents

Semiconductor device provided with junction-type effect transistor

Info

Publication number
JPS6351677A
JPS6351677A JP19482086A JP19482086A JPS6351677A JP S6351677 A JPS6351677 A JP S6351677A JP 19482086 A JP19482086 A JP 19482086A JP 19482086 A JP19482086 A JP 19482086A JP S6351677 A JPS6351677 A JP S6351677A
Authority
JP
Japan
Prior art keywords
region
type
semiconductor
substrate
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19482086A
Other languages
Japanese (ja)
Inventor
Koujirou Wakayoshi
若吉 功士郎
Yoshizo Hagimoto
萩本 佳三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19482086A priority Critical patent/JPS6351677A/en
Publication of JPS6351677A publication Critical patent/JPS6351677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To stabilize a device in its electrical characteristics and enlarge the diameter of a wafer through decreasing variations in thickness and resistance of a semiconductor region to serve as a channel region by a method wherein a semiconductor region lower in concentration than and same in conductivity type as a semiconductor substrate is formed on said semiconductor substrate, ions are implanted into said region for the construction of a semiconductor region of the reverse conductivity type, and this semiconductor region is used as a channel region. CONSTITUTION:On a substrate, a P-type region 2 of an impurity concentration N2 which is lower than an impurity concentration N3 is formed by ion implantation. On the P<+>-type region 2, an N-type region 3 is formed of an impurity concentration N3, by ion implantation. An insulating film 7 is next formed selectively on the substrate by photolithography. The planar diffusion method is then used for the formation of a P-type gate region 5 within the N-type region 3. There is connection between the region 5 and region 1. A process follow wherein an N<+>-type substrate 6 is formed and the insulating film 7 is then subjected to selective removal for the creation of contact windows. A metal wiring 8 is selectively formed through the contact windows for the construction of a junction-type field effect transistor. The ion-implanted N-type semiconductor region 3 serves as a channel layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は接合型電界効果トランジスタ(以下J−FET
と言う)を有した半導体’AMに関し、特に、チャネル
領域をイオン注入技術によって形成することにより特性
ノ\ラツキの低減を図った接合型電界効果トランジスタ
を有した半導体装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a junction field effect transistor (hereinafter referred to as J-FET).
The present invention relates to a semiconductor device having a semiconductor AM (hereinafter referred to as "AM"), and particularly to a semiconductor device having a junction field effect transistor whose channel region is formed by ion implantation technology to reduce characteristic fluctuations.

〔従来の技術〕[Conventional technology]

従来のNチャネル型J−FETに使用される半導体基板
として、例えば、第5図(イ)に示すものがある。この
半導体基板は、ゲート電極とオーミックコンタクトをと
るために、また電気的抵抗が小さくなるように?農度の
高いP゛型基板1を使用し、この基板1上にN型不純物
をエピタキシャル成長させたN型半導体領域9を有する
ものである。第5図(ロ)は第5図(イ)の半導体基板
の深さXにおける不純物濃度を示している。
An example of a semiconductor substrate used in a conventional N-channel type J-FET is shown in FIG. 5(a). Is this semiconductor substrate designed to make ohmic contact with the gate electrode and to reduce electrical resistance? A P' type substrate 1 of high yield is used, and an N type semiconductor region 9 is formed on this substrate 1 by epitaxially growing an N type impurity. FIG. 5(B) shows the impurity concentration at the depth X of the semiconductor substrate in FIG. 5(A).

第6図は第5図(イ〉の基板を用いたNチャネル型J−
FETの一例を示すもので、P。
Figure 6 shows an N-channel J-type using the substrate shown in Figure 5 (a).
This shows an example of an FET.

型半導体領域1とN型半導体領域9から成るシリコン基
板上に、フォトリソグラフィ技術を用いて選択的に絶縁
膜を形成し、ブレーナ拡散技術によりP型頭域4を形成
し、P型頭域4に囲まれたN型領域9内にP型ゲート領
域5を形成し、領域5は領域1と電気的に接続している
。さらに、領域9内にゲート領域5をはさんで電極との
オーミックコンタクトをとるためにN9型領域6 (ソ
ース・ドレイン領域)を形成し、絶縁膜7を選択的に形
成することによってコンタクト窓を開ける。そして、コ
ンタクト窓を介して金属配線8を選択的に形成すること
により接合型電界効果トランジスタを形成している。
An insulating film is selectively formed on a silicon substrate consisting of a type semiconductor region 1 and an N-type semiconductor region 9 using a photolithography technique, and a P-type head region 4 is formed using a Brenna diffusion technique. A P-type gate region 5 is formed in an N-type region 9 surrounded by , and the region 5 is electrically connected to the region 1 . Further, an N9 type region 6 (source/drain region) is formed in the region 9 to make ohmic contact with the electrode across the gate region 5, and a contact window is formed by selectively forming an insulating film 7. Open. A junction field effect transistor is formed by selectively forming metal wiring 8 through the contact window.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の接合型電界効果トランジスタを存した半
導体装置によれば、エピタキシャル成長により形成され
たN型半導体領域9の厚さおよび抵抗に±10%程度の
バラツキが生じるのを避けることは難しい。その厚さの
バラツキはチャネル幅のバラツキとなり、また、抵抗の
バラツキは不純物濃度のバラツキによって生じるもので
あり、このバラツキのため電気的特性が不安定になると
いう不都合がある。この傾向はウェハースを大きくする
と強まるため、J−FETの大口径化を困難にしている
However, in a semiconductor device including a conventional junction field effect transistor, it is difficult to avoid variations of about ±10% in the thickness and resistance of the N-type semiconductor region 9 formed by epitaxial growth. Variations in the thickness result in variations in channel width, and variations in resistance are caused by variations in impurity concentration, and this variation causes the disadvantage that electrical characteristics become unstable. This tendency becomes stronger as the wafer becomes larger, making it difficult to increase the diameter of the J-FET.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記に鑑みてなされたものであり、チャネル領
域となる半導体領域の厚さおよび抵抗のバラツキを抑え
て電気的特性の安定化を図り、かつ、それによりウェハ
ースの大口径化によってコストダウンを図るため、半導
体基板上にこれと同導電型でそれよりも濃度の低い半導
体領域を形成し、この半導体領域にイオン注入によって
逆導電型の半導体領域を形成してこれをチャネル領域に
するようにした接合型電界効果トランジスタを有した半
導体装置を提供するものである。
The present invention has been made in view of the above, and aims to stabilize the electrical characteristics by suppressing variations in the thickness and resistance of the semiconductor region that becomes the channel region, and thereby reduce costs by increasing the diameter of the wafer. In order to achieve this, a semiconductor region of the same conductivity type but with a lower concentration is formed on the semiconductor substrate, and a semiconductor region of the opposite conductivity type is formed by ion implantation into this semiconductor region, and this becomes a channel region. The present invention provides a semiconductor device having a junction field effect transistor.

以下、本発明の接合型電界効果トランジスタを有した半
導体装置を詳細に説明する。
Hereinafter, a semiconductor device having a junction field effect transistor of the present invention will be explained in detail.

〔実施例〕〔Example〕

第1図(イ) 、 (o) 、 (71)は本発明の半
導体基板の断面構造を示し、(ニ)、(ネ)、(へ)は
順次(イ)、(U) 、 (/l)に対応した不純物濃
度を示している。
FIG. 1 (a), (o), and (71) show the cross-sectional structure of the semiconductor substrate of the present invention, and (d), (ne), and (f) are sequentially (a), (u), and (/l). ) shows the impurity concentration corresponding to

第1図(0)に示すように後述するイオン注入不純物濃
度N、よりも低濃度N2のP壁領域2を形成し、第1図
(ハ)に示すように、P。
As shown in FIG. 1(0), a P wall region 2 having a lower concentration N2 than the ion implantation impurity concentration N2 described later is formed, and as shown in FIG. 1(c), a P wall region 2 is formed.

型領域2上にイオン注入技術により不純物濃度N3のN
型領域3を形成する。
The impurity concentration N3 is deposited on the mold region 2 by ion implantation technology.
A mold region 3 is formed.

第2図は本発明によるこの基板を用いたNチャネル型J
−FETを示す。P゛型半導体領域l01P型半導体領
域2、および不純物濃度N3になるようにイオン注入し
たN型半導体領域3から成るシリコン基板上に、フォト
リソグラフィ技術を用いて選択的に絶縁膜7を形成し、
プレーナ拡散技術によりP壁領域2に囲まれたN型領域
3内にP型ゲート領域5を形成しており、領域5は領域
1と接続し−ている。更に、領域3内にゲート領域5を
はさんで電極とのオーミックコンタクトをとるために、
N′″型領域6(ソース・ドレイン領域)を形成し、絶
縁膜7を選択的に形成することによってコンタクト窓を
開ける。このコンタクト窓を介して金属配線8を選択的
に形成することにより接合型電界効果トランジスタを形
成している。ここで、イオン注入によるN型半導体領域
3がチャネル層となる。
Figure 2 shows an N-channel type J using this substrate according to the present invention.
- indicates a FET. An insulating film 7 is selectively formed using a photolithography technique on a silicon substrate consisting of a P type semiconductor region 101, a P type semiconductor region 2, and an N type semiconductor region 3 ion-implanted to have an impurity concentration of N3,
A P-type gate region 5 is formed in an N-type region 3 surrounded by a P-wall region 2 by a planar diffusion technique, and the region 5 is connected to the region 1. Furthermore, in order to make ohmic contact with the electrode by sandwiching the gate region 5 within the region 3,
A contact window is opened by forming an N''' type region 6 (source/drain region) and selectively forming an insulating film 7. A contact window is opened by selectively forming a metal wiring 8 through this contact window. A type field effect transistor is formed. Here, the N type semiconductor region 3 formed by ion implantation becomes a channel layer.

前述したように、エピタキシャル成長による半導体領域
の厚さおよび抵抗のバラツキは±10%程度であるのに
対し、本発明のようにイオン注入技術を用いると±5%
以内に低減できる。
As mentioned above, the variation in the thickness and resistance of the semiconductor region due to epitaxial growth is about ±10%, whereas when using ion implantation technology as in the present invention, the variation is ±5%.
It can be reduced within

イオン注入によるイオン濃度は次式で与えられる。The ion concentration due to ion implantation is given by the following equation.

ここで、 N (Z)はイオン濃度 N1は単位面積当りの注入量 Zは基板深さ くR1)>はイオンの投影飛程 くΔRp>  は標準偏差 上式によって、イオン濃度は従来のエピタキシャル成長
に比べてはるかに高い精度でコントロールすることがで
き、前述のバラツキを低減することができる。
Here, N (Z) is the ion concentration N1 is the implantation amount per unit area Z is the substrate depth R1)> is the projected range of ions ΔRp> is the standard deviation According to the above formula, the ion concentration is compared to conventional epitaxial growth. can be controlled with much higher precision and the aforementioned variations can be reduced.

更に、具体的に説明すると、次の通りである。More specifically, it is as follows.

第1図(イ)〜(へ)に示したように、高濃度基板l上
に同導電型の低濃度不純物濃度N2(例えば、−5X 
工Q”cm−’)の半導体領域2を設け、これに逆導電
型の不純物濃度Nをイオン注入し、形成された表面不純
物濃度をN。
As shown in FIGS. 1(a) to (f), a low concentration impurity concentration N2 (for example, -5X
A semiconductor region 2 with a thickness of 1.5 cm is formed, and ions of an opposite conductivity type impurity N are implanted into the semiconductor region 2, so that the formed surface impurity concentration is N.

(例えば、l ×l Q I S cIo−3)とする
と、コノ時のイオン注入の不純物濃度Nは次式で与えら
れる。
(For example, l×l Q I S cIo-3), the impurity concentration N of ion implantation at the time of conversion is given by the following equation.

N”’Nz  N3 = I XIO”+ 5 XIO” = 6 XIO”  (cm−’) しかし、サブストレートウェハースのような不純物濃度
の高い基板上に直接低濃度の不純物をイオン注入してそ
の濃度および深さをコントロールすることは、濃度差が
大きくなって非常に困難である。
N"'Nz N3 = I XIO" + 5 XIO" = 6 Controlling the depth is very difficult due to large concentration differences.

例えば、不純物濃度の高い一導電型基扱の不純物濃度を
N、(例えば、I XIO”cm−3)、これにイオン
注入する逆、11型の不純物濃度をNo、イオン注入に
よって形成された表面不純物濃度をNl  (例えば、
−5X10”cm−’)とすると、イオン注入の不純物
濃度N°は次式で与えられる。
For example, if the impurity concentration of one conductivity type base with a high impurity concentration is N (for example, I The impurity concentration is Nl (for example,
−5×10”cm−′), the impurity concentration N° of ion implantation is given by the following equation.

N’  =N、−N。N' = N, -N.

= I XIO”+ 5 X’IO” =1.005 xlQI6 (cm−’)NとNoを比
較した場合、N3の濃度を得るためににNoの濃度は極
めて高精度が要求される。例えば、N’  =1.00
5 xlQIIl (cm−3)である場合、これが1
%ずれてN’  =1.015xlQ18 (cm−3
)となったとき、表面不純物濃度はN、 =1.5 X
IO” (cm−’)となってしまい、所要の値5 ×
1QI5 (cm−’)と比べ3倍もの違いが生じる。
= I For example, N' = 1.00
5 xlQIIl (cm-3), then this is 1
% deviation N' = 1.015xlQ18 (cm-3
), the surface impurity concentration is N, = 1.5
IO"(cm-'), and the required value is 5 ×
There is a difference of three times compared to 1QI5 (cm-').

これに対し、例えば、N= 6 XIO” (cm−’
)である場合、これが1%ずれてN=6.06xlOI
5(am −’ )となったとしても、所要の値5X1
0”(cm−”)とのずれは小さく、イオン注入の精度
によるバラツキは少ない。
On the other hand, for example, N= 6 XIO"(cm-'
), this shifts by 1% and becomes N=6.06xlOI
5(am -'), the required value 5X1
The deviation from 0''(cm-'') is small, and there is little variation due to the precision of ion implantation.

上記より、本発明のように濃度の高い基板上に同導電型
の濃度の低い半導体領域を形成することは、イオン注入
による濃度および深さのコントロールにおいて極めて有
効である。
From the above, forming a low concentration semiconductor region of the same conductivity type on a high concentration substrate as in the present invention is extremely effective in controlling the concentration and depth by ion implantation.

第3図(イ) 、 (t+) 、 (11)は本発明の
第2の実施例の断面構造を示し、(=) 、 (+) 
、 (へ)は順次(イ)、([1)、(ハ)に対応した
不純物濃度を示している。
FIG. 3(a), (t+), (11) shows the cross-sectional structure of the second embodiment of the present invention, (=), (+)
, (f) indicates impurity concentrations corresponding to (a), ([1), and (c) in sequence.

第3図(イ)に示す濃度N1のN゛型基板11上に、第
3図(0)に示すように、イオン注入不純物濃度よりも
低濃度N2のN型不純物領域12を形成し、第3図(ハ
)に示すように、領域12上にP型不純物をイオン注入
し、拡散させることによってP型のチャネル層13を形
成する。
As shown in FIG. 3(0), an N-type impurity region 12 with a concentration N2 lower than the ion-implanted impurity concentration is formed on an N-type substrate 11 with a concentration N1 shown in FIG. 3(a). As shown in FIG. 3C, a P-type channel layer 13 is formed by ion-implanting a P-type impurity onto the region 12 and diffusing it.

第4図は本発明によるこの基板を用いて、プレーナ拡散
技術により製造したPチャネル型J−FETを示したも
のである。ここで、15はN型のゲート領域、16はP
′″型のオーミックコンタクト領域、17はコンタクト
窓を有する絶縁膜、1日は金属配線であり、イオン注入
によるP型半導体領域13がチャネル領域となる。
FIG. 4 shows a P-channel type J-FET manufactured by planar diffusion technology using this substrate according to the present invention. Here, 15 is an N-type gate region, and 16 is a P-type gate region.
''-type ohmic contact region, 17 is an insulating film having a contact window, 1 is a metal wiring, and a P-type semiconductor region 13 formed by ion implantation becomes a channel region.

(発明の効果〕 以上説明した通り、本発明の接合型電界効果トランジス
タを有した半導体装置によれば、半導体基板上にこれと
同導電型でそれよりも濃度の低い半導体領域を形成し、
この半導体領域にイオン注入によって逆導電型の半導体
領域を形成してこれをチャネル領域にするようにしたた
め、チャネル領域となる半導体θ■域の厚さおよび砥抗
のバラツキを抑えて電気的特性の安定化を図り、かつ、
それによってウェハースの大口径化によりコストダウン
を図ることができる。
(Effects of the Invention) As explained above, according to the semiconductor device having the junction field effect transistor of the present invention, a semiconductor region of the same conductivity type and lower concentration than that of the semiconductor substrate is formed on the semiconductor substrate,
By forming a semiconductor region of the opposite conductivity type in this semiconductor region by ion implantation and using this as a channel region, variations in the thickness and abrasive resistance of the semiconductor θ■ region that will become the channel region are suppressed, and the electrical characteristics are improved. Stabilize, and
This makes it possible to reduce costs by increasing the diameter of the wafer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)、(Tl)、(ハ)は本発明のJ−FET
用ウェハースの製造工程を示す断面図であり、第1図(
,1,) 、 (*) 、 (へ)は不純物濃度を示す
説明図、第2図は本発明の一実施例を示す説明図、第3
図(イ)、(Ill)、(ハ)は本発明の他のJ−FE
T用ウェハースの製造工程を示す断面図であり、第3図
(ニ) 、 (*) 、(へ)は不純物濃度を示す説明
図、第4図は本発明の他の実施例を示す断面図、第5図
(イ)、(El)は従来のJ−FET用ウェハースの断
面構造および不純物を示す説明図、第6図は従来のJ−
FETを示す断面図。 符号の説明 1−・−−−−−P ”型半導体領域 2−・−・・P型半導体領域 3・・・−・イオン注入によるN型半導体領域4−・−
P型半導体領域 5−・・−・・−ゲート(P型)領域 6・−・−N゛型オーミックコンタクト領域7−・−・
〜絶縁膜 8−・・・・・金属配線 9・−・・・・・エビクキシャル成長によるN型半導体
領域11・・・・・−・N゛型半導体領域 12−・−・−N型半導体領域 13−・・−・・イオン注入によるP型半導体領域14
−・−・・N型半導体領域
Figure 1 (A), (Tl), and (C) are J-FETs of the present invention.
FIG.
, 1, ), (*), (f) are explanatory diagrams showing impurity concentrations, FIG. 2 is an explanatory diagram showing one embodiment of the present invention, and FIG.
Figures (A), (Ill), and (C) are other J-FEs of the present invention.
FIG. 3 is a cross-sectional view showing the manufacturing process of a T wafer; FIGS. 3(d), (*), and (f) are explanatory views showing impurity concentrations; FIG. , Fig. 5(A) and (El) are explanatory diagrams showing the cross-sectional structure and impurities of a conventional J-FET wafer, and Fig. 6 is an explanatory diagram showing a conventional J-FET wafer.
A sectional view showing an FET. Explanation of symbols 1-----P" type semiconductor region 2--P-type semiconductor region 3--N-type semiconductor region 4 by ion implantation
P-type semiconductor region 5--Gate (P-type) region 6--N'' type ohmic contact region 7--
-Insulating film 8--Metal wiring 9--N-type semiconductor region 11 by evixaxial growth N-type semiconductor region 12--N-type semiconductor region 13-...P-type semiconductor region 14 by ion implantation
−・−・N type semiconductor region

Claims (1)

【特許請求の範囲】 一導電型半導体基板に形成された該基板よ りも不純物濃度が低い前記一導電型の第1の半導体領域
と、前記第1の半導体領域にイオン注入技術によって形
成された該領域よりも不純物濃度が高い前記一導電型と
は逆導電型の第2の半導体領域と、前記第2の半導体領
域に設けられたゲート、ソースおよびドレインより構成
される接合型電界効果トランジスタを含み、前記第2の
半導体領域をチャネル領域とすることを特徴とする接合
型電界効果トランジスタを有した半導体装置。
Claims: A first semiconductor region of one conductivity type formed on a semiconductor substrate of one conductivity type and having an impurity concentration lower than that of the substrate; a junction field effect transistor including a second semiconductor region of a conductivity type opposite to the one conductivity type and having an impurity concentration higher than that of the semiconductor region; and a gate, a source, and a drain provided in the second semiconductor region. . A semiconductor device having a junction field effect transistor, wherein the second semiconductor region is a channel region.
JP19482086A 1986-08-20 1986-08-20 Semiconductor device provided with junction-type effect transistor Pending JPS6351677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19482086A JPS6351677A (en) 1986-08-20 1986-08-20 Semiconductor device provided with junction-type effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19482086A JPS6351677A (en) 1986-08-20 1986-08-20 Semiconductor device provided with junction-type effect transistor

Publications (1)

Publication Number Publication Date
JPS6351677A true JPS6351677A (en) 1988-03-04

Family

ID=16330797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19482086A Pending JPS6351677A (en) 1986-08-20 1986-08-20 Semiconductor device provided with junction-type effect transistor

Country Status (1)

Country Link
JP (1) JPS6351677A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213712A (en) * 1996-01-30 1997-08-15 Nec Corp Junction-type field effect transistor and method of the same
JP2007531670A (en) * 2004-03-31 2007-11-08 シーエイチ、アンド、アイ、テクノロジーズ、インコーポレイテッド Refillable material transfer system
US10221059B2 (en) 2004-03-31 2019-03-05 Ch&I Technologies, Inc. Refillable material transfer system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213712A (en) * 1996-01-30 1997-08-15 Nec Corp Junction-type field effect transistor and method of the same
JP2007531670A (en) * 2004-03-31 2007-11-08 シーエイチ、アンド、アイ、テクノロジーズ、インコーポレイテッド Refillable material transfer system
US7997445B2 (en) 2004-03-31 2011-08-16 Ch&I Technologies, Inc. Refillable material transfer system
US10221059B2 (en) 2004-03-31 2019-03-05 Ch&I Technologies, Inc. Refillable material transfer system

Similar Documents

Publication Publication Date Title
JPS6038877B2 (en) Manufacturing method for semiconductor devices
JPH03501670A (en) Silicon carbide MOSFET
JPS6351677A (en) Semiconductor device provided with junction-type effect transistor
JPH0350771A (en) Semiconductor device
JP2515524B2 (en) Method for manufacturing insulating gate field effect transistor
JPH01103878A (en) Manufacture of semiconductor device
JPS6173380A (en) Manufacture of semiconductor device
JPS5825265A (en) Manufacture of mosfet
JPS6313378A (en) Semiconductor device and manufacture thereof
JPS6157714B2 (en)
JPS6034073A (en) Manufacture of schottky gate type field-effect transistor
JPS61100975A (en) Junction type field-effect transistor
JPS5931074A (en) Manufacture of electrostatic induction transistor
JPS6097662A (en) Manufacture of semiconductor device
JPH04162420A (en) Manufacture of semiconductor device
JPS60198863A (en) Mis transistor and manufacture thereof
KR100258850B1 (en) A structure of cascade and manufacturing method thereof
JPS6225462A (en) Junction type field effect transistor
JPS583391B2 (en) The power of transistors is high.
JPS6177373A (en) Manufacture of semiconductor device
JPS63262874A (en) Manufacture of insulated-gate field-effect transistor
JPH04129274A (en) Semiconductor device
JPS5910591B2 (en) Method of manufacturing field effect transistor
JPH0484440A (en) Manufacture of junction type field effect transistor
JPH01296669A (en) Manufacture of mos field-effect transistor