JPH0575776B2 - - Google Patents

Info

Publication number
JPH0575776B2
JPH0575776B2 JP1005966A JP596689A JPH0575776B2 JP H0575776 B2 JPH0575776 B2 JP H0575776B2 JP 1005966 A JP1005966 A JP 1005966A JP 596689 A JP596689 A JP 596689A JP H0575776 B2 JPH0575776 B2 JP H0575776B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
solder
phenolic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1005966A
Other languages
Japanese (ja)
Other versions
JPH02187422A (en
Inventor
Naoki Mogi
Wataru Kosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP596689A priority Critical patent/JPH02187422A/en
Publication of JPH02187422A publication Critical patent/JPH02187422A/en
Publication of JPH0575776B2 publication Critical patent/JPH0575776B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は耐熱衝撃性に優れた半導体封止用エポ
キシ樹脂組成物に関するものであり、更に詳しく
は急激な温度変化を受けても耐クラツク性に非常
に優れた半導体封止用エポキシ樹脂組成物に関す
るものである。 〔従来の技術〕 最近の電機製品における軽薄短小化傾向から半
導体装置の実装密度を向上させるために半導体セ
ツトメーカーでは従来のスルーホール実装から表
面実装への移行が進んでいる。 表面実装での自動化ラインではリードの半田付
け時に半導体パツケージは急激な温度変化を受
け、このために樹脂成形部にクラツクが生じた
り、リード樹脂間の界面が劣化し、この結果とし
て耐湿性が低下するなどの問題が生じてしまう。 これらの問題を解決するために半田浸漬時の熱
衝撃を緩和する目的で熱可塑性オリゴマーの添加
(特開昭62−115849号公報)や、各種シリコーン
化合物の添加(特開昭62−115850号公報、62−
116654号公報、62−128162号公報)更にはシリコ
ーン変性(特開昭62−136860号公報)などの手法
で対処しているが、いずれも半田浸漬後成形部に
クラツクが生じてしまい信頼性の優れた樹脂封止
型半導体装置が得られるまでには至らなかつた。
特にこれらの添加剤の添加については成形時の作
業性が悪化する問題が生じてしまい、樹脂自体の
構造を変えて特製を改善する方法が考えられてき
た。 これらの樹脂自体の構造を変える方法も、反応
工程の複雑化等といろいろの欠点があり、未だ満
足するものが得られていない。 〔発明が解決しようとする課題〕 本発明はこのような問題に対してフエノール樹
脂硬化剤として式()〜()の化学構造式で
示されるフエノール樹脂
[Industrial Application Field] The present invention relates to an epoxy resin composition for semiconductor encapsulation that has excellent thermal shock resistance, and more specifically relates to an epoxy resin composition for semiconductor encapsulation that has excellent crack resistance even when subjected to rapid temperature changes. The present invention relates to a stopper epoxy resin composition. [Prior Art] In response to the recent trend toward lighter, thinner, and smaller electronic products, semiconductor assembly manufacturers are shifting from conventional through-hole mounting to surface mounting in order to improve the packaging density of semiconductor devices. On automated surface mounting lines, semiconductor packages are subject to rapid temperature changes when soldering leads, which can cause cracks in the resin molding, deteriorate the interface between lead resins, and reduce moisture resistance as a result. Problems such as doing this may occur. To solve these problems, thermoplastic oligomers are added (Japanese Patent Laid-Open No. 62-115849) and various silicone compounds are added (Japanese Patent Laid-Open No. 62-115850) to alleviate the thermal shock during solder immersion. , 62−
116654, 62-128162) and silicone modification (Japanese Unexamined Patent Publication No. 116654, 62-128162), but all of these techniques cause cracks in the molded part after being dipped in solder, resulting in poor reliability. However, it has not been possible to obtain an excellent resin-sealed semiconductor device.
In particular, the addition of these additives poses the problem of deteriorating workability during molding, and methods have been considered to improve the special production by changing the structure of the resin itself. These methods of changing the structure of the resin itself have various drawbacks, such as complicating the reaction process, and so far no satisfactory product has been obtained. [Problems to be Solved by the Invention] The present invention solves these problems by using phenolic resins represented by the chemical structural formulas of formulas () to () as a phenolic resin curing agent.

【化】[ka]

【化】[ka]

〔課題を解決するための手段〕[Means to solve the problem]

本発明のエポキシ樹脂組成物は従来の封止用樹
脂組成物に比べて非常に優れた耐熱衝撃性を有す
るものである。
The epoxy resin composition of the present invention has extremely superior thermal shock resistance compared to conventional sealing resin compositions.

【化】[ka]

【化】[ka]

【化】 (式中のk、l、mは0〜10の整数を表す。) 上記式()〜()で示されるフエノール樹
脂は分子中の主鎖にそれぞれ可撓性及び耐水性を
有するビシクロヘプタン、シクロペンタン及びシ
クロヘキサンを有する可撓性硬化剤であり、この
可撓性硬化剤を用いることにより、従来の方法で
は得ることの出来なかつた耐熱衝撃性に非常に優
れたエポキシ樹脂組成物を得ることができる。 このようなフエノール樹脂及びその混合物の使
用量はこれを調節することにより耐熱衝撃性を最
大限に引き出すことができる。耐熱衝撃性の効果
を出す為には式()〜()で示されるフエノ
ール樹脂の中から選ばれる少なくとも1種あるい
は1種以上の混合物を全フエノール樹脂の30重量
%以上、更に好ましくは50重量%以上の使用が望
ましい。 この場合30重量%未満だと、可撓性及び耐水性
が上がらず耐熱衝撃性が不充分である。 更に式()〜()で示される3種のフエノ
ール樹脂の混合物の比率は、エポキシ樹脂組成物
の硬化性及び耐熱衝撃性バランスより等モル量で
混合するのが望ましい。 また式中のk、l、mの値は0から10までの範
囲のものを用いる必要がある。k、l、mの値が
10より大きい場合、流動性が低下し、成形性が悪
くなる。 ここで併用する他のフエノール樹脂硬化剤と
は、エポキシ樹脂と硬化反応するポリマー全般の
ことを言い、例えばフエノールノボラツク樹脂、
クレゾールノボラツク樹脂、ジシクロペンタジエ
ン変性フエノール樹脂、パラキシレン変性フエノ
ール樹脂酸無水物といつた一般名を挙げることが
出来る。 本発明で用いるエポキシ樹脂とはエポキシ基を
有するもの全般をいう。たとえばビスフエノール
型エポキシ樹脂、フエノールノボラツク型エポキ
シ樹脂、クレゾールノボラツク型エポキシ樹脂、
トリアジン核含有エポキシ樹脂等のことをいい、
これらは単独で用いてもよいが併用しても良い。 本発明に使用される無機充填材としては通常の
シリカ粉末として溶融シリカ、結晶シリカ、多孔
質シリカ、2次凝集シリカの他、アルミナ、炭酸
カルシウム、炭素繊維等の充填材全般を指し、特
に溶融シリカ、多孔質シリカ、2次凝集シリカの
使用が好ましい。 本発明に使用される硬化促進材はエポキシ基と
フエノール性水酸基との反応を促進するものであ
ればよく、一般に封止用材料に使用されているも
のを広く使用することができ、例えばジアザビシ
クロウンデセン(DBU)、トリフエニルホスフイ
ン(TPP)、ジメチルベンジルアミン(BDMA)
や2メチルイミダゾール(2MZ)等が単独もし
くは2種類以上混合して用いられる。 本発明の封止用エポキシ樹脂組成物はエポキシ
樹脂、硬化剤、無機充填剤及び硬化促進剤を必須
成分とするが、これ以外に必要に応じてシランカ
ツプリング剤、ブロム化エポキシ樹脂、三酸化ア
ンチモン、ヘキサブロムベンゼン等の難燃剤、カ
ーボンブラツク、ベンガラ等の着色剤、天然ワツ
クス、合成ワツクス等の離型剤及びシリコーンオ
イル、ゴム等の低応力添加剤等の種々の添加剤を
適宜配合しても差し支えがない。 又、本発明の封止用エポキシ樹脂組成物を成形
材料として製造するには、エポキシ樹脂、硬化
剤、硬化促進剤、充填剤、その他の添加剤をミキ
サー等によつて十分に均一に混合した後、さらに
熱ロールまたはニーダー等で溶融混練し、冷却後
粉砕して成形材料とすることができる。これらの
成形材料は電子部品あるいは電気部品の封止、被
覆、絶縁等に適用することができる。 〔実施例〕 実施例 1 下記組成物 式()〜()で示されるフエノール樹脂
[C] (In the formula, k, l, and m represent integers from 0 to 10.) The phenolic resins represented by the above formulas () to () have flexibility and water resistance in the main chain of the molecule, respectively. A flexible curing agent containing bicycloheptane, cyclopentane, and cyclohexane. By using this flexible curing agent, an epoxy resin composition with extremely excellent thermal shock resistance that could not be obtained by conventional methods. can be obtained. Thermal shock resistance can be maximized by adjusting the amount of the phenol resin and mixture thereof used. In order to achieve the effect of thermal shock resistance, at least one type or a mixture of one or more types selected from the phenolic resins represented by formulas () to () should be used in an amount of 30% by weight or more, more preferably 50% by weight of the total phenolic resin. It is desirable to use % or more. In this case, if it is less than 30% by weight, flexibility and water resistance will not improve and thermal shock resistance will be insufficient. Furthermore, the ratio of the mixture of the three types of phenolic resins represented by formulas () to () is preferably equimolar in view of the balance of curability and thermal shock resistance of the epoxy resin composition. Further, the values of k, l, and m in the formula must be in the range of 0 to 10. The values of k, l, m are
When it is larger than 10, fluidity decreases and moldability deteriorates. Other phenolic resin curing agents used here refer to polymers in general that cure and react with epoxy resins, such as phenol novolac resins,
Common names include cresol novolak resin, dicyclopentadiene-modified phenolic resin, and paraxylene-modified phenolic resin acid anhydride. The epoxy resin used in the present invention refers to any resin having an epoxy group. For example, bisphenol type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin,
Refers to epoxy resins containing triazine nuclei, etc.
These may be used alone or in combination. Inorganic fillers used in the present invention include ordinary silica powder such as fused silica, crystalline silica, porous silica, and secondary agglomerated silica, as well as fillers in general such as alumina, calcium carbonate, and carbon fiber. Preference is given to using silica, porous silica, and secondary agglomerated silica. The curing accelerator used in the present invention may be one that promotes the reaction between an epoxy group and a phenolic hydroxyl group, and a wide range of materials commonly used in sealing materials can be used, such as diaza. Bicycloundecene (DBU), triphenylphosphine (TPP), dimethylbenzylamine (BDMA)
and 2-methylimidazole (2MZ) are used alone or in combination of two or more. The epoxy resin composition for sealing of the present invention contains an epoxy resin, a curing agent, an inorganic filler, and a curing accelerator as essential components, but in addition to these, if necessary, a silane coupling agent, a brominated epoxy resin, and a trioxide Various additives such as flame retardants such as antimony and hexabromobenzene, colorants such as carbon black and red iron, mold release agents such as natural wax and synthetic wax, and low stress additives such as silicone oil and rubber are appropriately blended. There is no problem. In addition, in order to produce the epoxy resin composition for sealing of the present invention as a molding material, the epoxy resin, curing agent, curing accelerator, filler, and other additives are sufficiently and uniformly mixed using a mixer or the like. After that, the mixture is further melt-kneaded using a heated roll or a kneader, cooled, and then pulverized to obtain a molding material. These molding materials can be applied to sealing, covering, insulating, etc. electronic or electrical components. [Example] Example 1 The following composition Phenol resin represented by formulas () to ()

【化】[ka]

【化】[ka]

【化】 ただし式()〜()のそれぞれのフエノー
ル樹脂は互いに等モル量で、式中のk、l、mは
各々が0、1、2の値を示し、その割合が2:
5:3の混合物。 6重量部 フエノールノボラツク樹脂 4重量部 オルトクレゾールノボラツクエポキシ樹脂
20重量部 溶融シリカ粉末 68.8重量部 トルフエニルホスフイン 0.2重量部 カーボンブラツク 0.5重量部 カルナバワツクス 0.5重量部 を、ミキサーで常温で混合し、70〜100℃で2軸
ロールにより混練し、冷却後粉砕し成形材料とし
た。 得られた成形材料をタブレツト化し、低圧トラ
ンスフアー成形機にて175℃、70Kg/cm2、120秒の
条件で半田クラツク試験用として6×6mmのチツ
プを52pパツケージに封止し、又半田耐湿性試験
用として3×6mmのチツプを16pSOPパツケージ
に封止した。 封止したテスト用素子について下記の半田クラ
ツク試験及び半田耐湿性試験をおこなつた。 半田クラツク試験:封止したテスト用素子を85
℃、85%RHの環環境下で48Hrおよび75Hr処理
し、その後240℃の半田槽に10秒間浸漬後顕微鏡
で外部クラツクを観察した。 半田耐湿性試験:封止したテスト用素子を85℃
で、85%RHの環環境下で75Hr処理し、その後
240℃の半田槽に10秒間浸漬後プレツシヤーク
ツカー試験(125℃、100%RH)を行い回路の
オープン不良を測定した。 実施例 2、3 第1表の処方に従つて配合し、実施例1と同様
にして成形材料を得た。この成形材料で試験用の
封止した成形品を得、この成形品を用いて実施例
1と同様に半田クラツク試験及び半田耐湿性試験
を行つた。試験結果を第1表に示す。 比較例 1、2 第1表の処方に従つて配合し、実施例1と同様
にして成形材料を得た。この成形材料で試験用の
封止した成形品を得、この形成品を用して実施例
1と同様に半田クラツク試験及び半田耐湿性試験
を行つた。試験結果を第1表に示す。
[Chemical formula] However, the phenolic resins of formulas () to () are in equimolar amounts, and k, l, and m in the formula each have a value of 0, 1, or 2, and the ratio is 2:
5:3 mixture. 6 parts by weight phenol novolak resin 4 parts by weight orthocresol novolak epoxy resin
20 parts by weight Fused silica powder 68.8 parts by weight Torphenylphosphine 0.2 parts by weight Carbon black 0.5 parts by weight Carnauba wax 0.5 parts by weight were mixed in a mixer at room temperature, kneaded at 70 to 100°C with a twin-screw roll, and after cooling. It was crushed and used as a molding material. The obtained molding material was made into a tablet, and a 6 x 6 mm chip was sealed in a 52p package for a solder crack test using a low-pressure transfer molding machine at 175°C, 70 kg/cm 2 and 120 seconds, and solder moisture resistant. A 3 x 6 mm chip was sealed in a 16 pSOP package for performance testing. The following solder crack test and solder moisture resistance test were conducted on the sealed test device. Solder crack test: 85 times the sealed test element
It was processed for 48 hours and 75 hours in an ambient environment of 85% RH at ℃, and then immersed in a solder bath at 240℃ for 10 seconds, and external cracks were observed with a microscope. Solder moisture resistance test: sealed test element at 85℃
Then, it was treated for 75 hours in an environment of 85% RH, and then
After being immersed in a solder bath at 240°C for 10 seconds, a pressure vacuum test (125°C, 100% RH) was performed to measure open defects in the circuit. Examples 2 and 3 A molding material was obtained in the same manner as in Example 1 by blending according to the recipe in Table 1. A sealed molded article for testing was obtained using this molding material, and a solder crack test and a solder moisture resistance test were conducted in the same manner as in Example 1 using this molded article. The test results are shown in Table 1. Comparative Examples 1 and 2 A molding material was obtained in the same manner as in Example 1 by blending according to the recipe in Table 1. A sealed molded article for testing was obtained using this molding material, and a solder crack test and a solder moisture resistance test were conducted in the same manner as in Example 1 using this molded article. The test results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明に従うと従来技術では得ることのできな
かつた耐熱性耐水性及び、可撓性を有するエポキ
シ樹脂組成物を得ることができるので、半田付け
工程による急激な温度変化による熱ストレスを受
けたときの耐クラツク性に非常に優れ、更に耐湿
性が良好なことから電子、電気部品の封止用、被
覆用絶縁用等に用いた場合、特に表面実装パツケ
ージに搭載された高集積大型チツプICにおいて
信頼性が非常に必要とする製品について好適であ
る。
According to the present invention, it is possible to obtain an epoxy resin composition that has heat resistance, water resistance, and flexibility that could not be obtained using conventional techniques. Because of its excellent crack resistance and good moisture resistance, it is used for sealing electronic and electrical components, coating insulation, etc., especially in highly integrated large chip ICs mounted on surface mount packages. Suitable for products where reliability is very important.

Claims (1)

【特許請求の範囲】 1 (A) エポキシ樹脂 (B) 式()〜()の化学構造式で示されるフ
エノール樹脂の中から選ばれる少なくとも1種
以上のフエノール樹脂を総フエノール樹脂に対
して30〜100重量%含むフエノール樹脂硬化剤。 【化】 【化】 【化】 (式中のk、l、mは0〜10の整数を表す。) (C) 無機重填材 (D) 硬化促進剤 を必須成分とすることを特徴とする半導体封止用
エポキシ樹脂組成物。
[Claims] 1 (A) Epoxy resin (B) At least one phenolic resin selected from the phenolic resins represented by the chemical structural formulas () to () in an amount of 30% of the total phenolic resin. ~100% by weight phenolic resin curing agent. [C] [C] [C] (In the formula, k, l, and m represent integers from 0 to 10.) (C) Inorganic heavy filler (D) A curing accelerator is an essential component. An epoxy resin composition for semiconductor encapsulation.
JP596689A 1989-01-17 1989-01-17 Epoxy resin composition Granted JPH02187422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP596689A JPH02187422A (en) 1989-01-17 1989-01-17 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP596689A JPH02187422A (en) 1989-01-17 1989-01-17 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH02187422A JPH02187422A (en) 1990-07-23
JPH0575776B2 true JPH0575776B2 (en) 1993-10-21

Family

ID=11625616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP596689A Granted JPH02187422A (en) 1989-01-17 1989-01-17 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPH02187422A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783165B (en) * 2016-12-07 2019-02-22 江苏聚冠新材料科技有限公司 A kind of thin film capacitor sealing wax and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210647A (en) * 1982-05-08 1982-12-24 Nitto Electric Ind Co Ltd Semiconductor device
US4394497A (en) * 1982-03-29 1983-07-19 The Dow Chemical Company Solid materials prepared from epoxy resins and phenolic hydroxyl-containing materials
JPS6399224A (en) * 1986-10-16 1988-04-30 Sanyo Kokusaku Pulp Co Ltd Production of phenolic resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394497A (en) * 1982-03-29 1983-07-19 The Dow Chemical Company Solid materials prepared from epoxy resins and phenolic hydroxyl-containing materials
JPS57210647A (en) * 1982-05-08 1982-12-24 Nitto Electric Ind Co Ltd Semiconductor device
JPS6399224A (en) * 1986-10-16 1988-04-30 Sanyo Kokusaku Pulp Co Ltd Production of phenolic resin

Also Published As

Publication number Publication date
JPH02187422A (en) 1990-07-23

Similar Documents

Publication Publication Date Title
EP0589143B1 (en) Epoxy resin composition based on diglycidylether of biphenyldiol
JPH01105562A (en) Resin-sealed semiconductor device
JP2963260B2 (en) Epoxy resin composition
JPH0733429B2 (en) Epoxy resin composition
JPH0575776B2 (en)
JP2675108B2 (en) Epoxy resin composition
JPH01152151A (en) Epoxy resin composition
JP2823633B2 (en) Epoxy resin composition
JP3008981B2 (en) Epoxy resin composition
JP3011807B2 (en) Epoxy resin composition
JP2938080B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH01275620A (en) Epoxy resin composition for semiconductor sealing
JP3093051B2 (en) Epoxy resin composition
JP2680389B2 (en) Epoxy resin composition
JPH0232115A (en) Epoxy resin composition for sealing semiconductor
JP2690992B2 (en) Epoxy resin composition
JPH0275620A (en) Epoxy resin composition for sealing semiconductor
JP3302259B2 (en) Epoxy resin composition
JPH05175373A (en) Epoxy resin composition
JP3568654B2 (en) Epoxy resin composition
JP2951091B2 (en) Epoxy resin composition
JP3093050B2 (en) Epoxy resin composition
JPH02219816A (en) Epoxy resin composition
JPH09316176A (en) Epoxy resin composition for semiconductor sealing
JPH062800B2 (en) Epoxy resin composition for semiconductor encapsulation