JPH02219816A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPH02219816A
JPH02219816A JP3939189A JP3939189A JPH02219816A JP H02219816 A JPH02219816 A JP H02219816A JP 3939189 A JP3939189 A JP 3939189A JP 3939189 A JP3939189 A JP 3939189A JP H02219816 A JPH02219816 A JP H02219816A
Authority
JP
Japan
Prior art keywords
epoxy resin
curing agent
phenolic resin
resin
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3939189A
Other languages
Japanese (ja)
Inventor
Hironori Osuga
浩規 大須賀
Naoki Mogi
直樹 茂木
Hiroshi Shimawaki
嶋脇 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP3939189A priority Critical patent/JPH02219816A/en
Priority to US07/444,919 priority patent/US5001174A/en
Priority to MYPI89001694A priority patent/MY104894A/en
Priority to KR1019890018189A priority patent/KR0144007B1/en
Priority to EP89312807A priority patent/EP0372983B1/en
Priority to DE68928583T priority patent/DE68928583T2/en
Priority to SG1996000866A priority patent/SG43788A1/en
Publication of JPH02219816A publication Critical patent/JPH02219816A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor sealing epoxy resin composition of excellent soldering stress resistance by using a polyepoxy resin as an epoxy resin and a flexible dicyclopentadiene-modified phenolic resin curing agent as a phenolic resin curing agent. CONSTITUTION:A semiconductor sealing epoxy resin composition is formed by mixing an epoxy resin containing 50-100wt.%, based on the total epoxy resin, polyfunctional epoxy resin having a structure of formula I (wherein X is a phenol glycidyl ether group of formula II or III, the ratio of groups II to groups III is 2:0-1, and n is 0-10), a phenolic resin curing agent containing 50-100wt.%, based on the total phenol resin, cyclopentadiene-modified phenolic resin of formula IV (wherein R is H, a halogen atom or a 1-4C alkyl), an inorganic filler (e.g. fused silica powder) and a cure accelerator (e.g. triphenylphosphine) as essential components.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐半田ストレス性に優れた半導体封止用エポ
キシ樹脂組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an epoxy resin composition for semiconductor encapsulation that has excellent solder stress resistance.

〔従来の技術〕[Conventional technology]

従来、ダイオード、トランジスタ、集積回路等の電子部
品を熱硬化性樹脂で封止しているが、特に集積回路では
耐熱性、耐湿性に優れた0−クレゾールノボラックエポ
キシ樹脂をノボラック型フェノール樹脂で硬化させたエ
ポキシ樹脂が用いられている。
Conventionally, electronic components such as diodes, transistors, and integrated circuits are sealed with thermosetting resins, but especially for integrated circuits, 0-cresol novolac epoxy resin, which has excellent heat resistance and moisture resistance, is cured with novolac type phenolic resin. epoxy resin is used.

ところが近年、集積回路の高集積化に伴いチップがだん
だん大型化し、かつパッケージは従来のDIPタイプか
ら表面実装化された小型、薄型のフラットパッケージ、
5OPSSOJ、PLCCに変わってきている。
However, in recent years, as integrated circuits have become more highly integrated, chips have become larger and larger, and packages have changed from the conventional DIP type to surface-mounted small, thin flat packages.
5OPSSOJ is changing to PLCC.

即ち大型チップを小型で薄いパッケージに封入すること
になり、応力によるクランク発生、これらのクラックに
よる耐湿性の低下等の問題が大きくクローズアップされ
てきている。
That is, a large chip is enclosed in a small and thin package, and problems such as the occurrence of cranks due to stress and a decrease in moisture resistance due to these cracks have been brought into focus.

特に半田っけの工程において急激に200℃以上の高温
にさらされることによりパッケージの割れや樹脂とチッ
プの剥離により耐湿性が劣化してしまう七いった問題点
がでてきている。
In particular, during the soldering process, rapid exposure to high temperatures of 200° C. or higher has caused problems such as cracking of the package and deterioration of moisture resistance due to peeling of the resin and chip.

これらの大型チップを封止するのに適した、信頼性の高
い刺止用樹脂組成物の開発が望まれてきている。
It has been desired to develop a highly reliable resin composition for puncture that is suitable for sealing these large chips.

これらの問題を解決するために半田付は時の熱衝撃を緩
和する目的で、熱可塑性オリゴマーの添加(特開昭62
−115849号公報)や各種シリコーン化合物の添加
(特開昭62−11585号公報、62−116654
号公報62−128162号公報)、更にはシリコーン
変性(特開昭62−136860号公報)などの手法で
対処しているがいずれも半田付は時にパッケージにクラ
ックが生じてしまい信頼性の優れた半導体封止用エポキ
シ樹脂組成物を得るまでには至らなかった。
To solve these problems, soldering requires the addition of thermoplastic oligomers (Japanese Unexamined Patent Application Publication No. 62-2011) for the purpose of mitigating the thermal shock caused by soldering.
-115849) and addition of various silicone compounds (JP-A-62-11585, 62-116654)
62-128162) and silicone modification (Japanese Unexamined Patent Publication No. 62-136860), but in both cases, soldering sometimes causes cracks in the package and is not reliable. However, it has not been possible to obtain an epoxy resin composition for encapsulating semiconductors.

一方、耐半田ストレス性に優れた耐熱性エポキシ樹脂組
成物を得る為に、樹脂系としては多官能エポキシ樹脂の
使用(特開昭61−168620号公報)等、が検討さ
れてきたが、多官能エポキシ樹脂の使用により架橋密度
が上がり耐熱性が同上するが、特に200℃〜300″
Cのような高温にさらされた場合においては耐半田スト
レス性が不充分であった。
On the other hand, in order to obtain heat-resistant epoxy resin compositions with excellent solder stress resistance, the use of polyfunctional epoxy resins as the resin system (Japanese Patent Application Laid-Open No. 168620/1983) has been considered. The use of functional epoxy resin increases crosslinking density and improves heat resistance, especially from 200℃ to 300''
When exposed to high temperatures such as C, the solder stress resistance was insufficient.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、このような問題に対してエポキシ樹脂として
多官能エポキシ樹脂を、フェノール樹脂硬化剤として可
撓性を有するジシクロペンタジェン変性フェノール樹脂
硬化剤を用いることにより、耐半田ストレス性が著しく
優れた半導体封止用エポキシ樹脂を提供するところにあ
る。
The present invention solves these problems by using a multifunctional epoxy resin as the epoxy resin and a flexible dicyclopentadiene-modified phenolic resin curing agent as the phenolic resin curing agent, thereby significantly improving solder stress resistance. Our goal is to provide excellent epoxy resins for encapsulating semiconductors.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のエポキシ樹脂組成物は、エポキシ樹脂として、
下記式(1)で示される構造の多官能エポキシ樹脂。
The epoxy resin composition of the present invention includes, as an epoxy resin,
A polyfunctional epoxy resin having a structure represented by the following formula (1).

(nは整数でありn=o〜10、化学構造式中における
Xは[A]が2に対して(B)が0〜lの割合で存在す
るランダム共重合物の混合IFりを総エポキシ樹脂に対
して50〜100重量%を含むエポキシ樹脂と、フェノ
ール樹脂硬化剤として下記式〔■〕で示される構造のジ
シクロペンタジェン変性フェノール樹脂硬化剤。
(n is an integer and n=o~10, X in the chemical structural formula represents the total epoxy An epoxy resin containing 50 to 100% by weight based on the resin, and a dicyclopentadiene-modified phenol resin curing agent having a structure represented by the following formula [■] as a phenol resin curing agent.

(nは整数でありn−0〜5、式中のRは水素原子、ハ
ロゲン原子、炭素数1〜4のアルキル基の中から選択さ
れる原子または基)を総フェノール樹脂硬化剤量に対し
て50〜100重憧%含むフェノール樹脂硬化剤を併用
することを特徴とし、従来のエポキシ樹脂組成物に比べ
て、非常に優れた耐半田ストレス性を有したものである
(n is an integer from n-0 to 5, R in the formula is an atom or group selected from a hydrogen atom, a halogen atom, and an alkyl group having 1 to 4 carbon atoms) to the total amount of phenolic resin curing agent. It is characterized by the combined use of a phenolic resin curing agent containing 50 to 100% by weight, and has extremely superior solder stress resistance compared to conventional epoxy resin compositions.

(作 用〕 式(1)で示される構造のエポキシ樹脂は、1分子中に
3個以上のエポキシ基を有する多官能工ポキシ樹脂であ
る。このようなエポキシ樹脂の使用量は、これをl1M
することにより耐半田ストレス性を最大限に引き出すこ
とができる。耐半田ストレス性の効果を出す為には、式
(1)で示される多官能エポキシ樹脂を総エポキシ樹脂
量の50重量%以上、好ましくは70重量%以上の使用
が望ましい、50重量%未満だと架橋密度が、上がらず
耐半田ストレス性が不充分である。
(Function) The epoxy resin having the structure represented by formula (1) is a polyfunctional epoxy resin having three or more epoxy groups in one molecule.The amount of such epoxy resin used is 1M
By doing so, the solder stress resistance can be maximized. In order to achieve the effect of solder stress resistance, it is desirable to use the multifunctional epoxy resin represented by formula (1) in an amount of 50% by weight or more, preferably 70% by weight or more of the total amount of epoxy resin, but less than 50% by weight. The crosslinking density does not increase and the solder stress resistance is insufficient.

更に式中のXは(A)が2に対して(B)が0〜lの割
合で存在するランダム共重合物を用いるのが好ましい、
この場合、(A)を2としたときの(B)の比率が1よ
り大きいと吸水性が上がり、半田浸漬時の熱衝撃が増加
し、耐半田ストレス性が低下し、好ましくない。
Furthermore, for X in the formula, it is preferable to use a random copolymer in which (A) is present in a ratio of 2 to (B) in a ratio of 0 to 1.
In this case, if the ratio of (B) to (A) is 2 is greater than 1, water absorption increases, thermal shock during solder immersion increases, and solder stress resistance decreases, which is not preferable.

nの値は、0〜10の範囲のものを用いる必要がある。The value of n must be in the range of 0 to 10.

nの値が10より大きい場合流動性が低下し成形性が悪
くなる。
When the value of n is greater than 10, fluidity decreases and moldability deteriorates.

また、2官能以下のエポキシ樹脂では架橋密度が上がら
ず、耐熱性が劣り、耐半田ストレス性の効果が得られな
い。
In addition, if the epoxy resin is difunctional or less, the crosslinking density will not increase, the heat resistance will be poor, and the effect of solder stress resistance will not be obtained.

式〔I〕で示される多官能エポキシ樹脂と併用するエポ
キシ樹脂とは、エポキシ基を有するもの全般をいう、た
とえばビスフェノール型エポキシ樹脂、ノボラック型エ
ポキシ樹脂、トリアジン核含有エポキシ樹脂等のことを
いう。
The epoxy resin used in combination with the polyfunctional epoxy resin represented by formula [I] refers to all those having an epoxy group, such as bisphenol-type epoxy resins, novolac-type epoxy resins, and triazine nucleus-containing epoxy resins.

式(n)で示される構造のジシクロペンタジェン変性フ
ェノール樹脂硬化剤は、分子中に可撓性を有するジシク
ロペンタジェン構造を有することを特徴とするものであ
り、これを用いることにより可撓性に冨み、耐半田スト
レス性に良好なエポキシ樹脂組成物を得ることができる
The dicyclopentadiene-modified phenolic resin curing agent having the structure represented by formula (n) is characterized by having a flexible dicyclopentadiene structure in the molecule, and by using this, it is possible to It is possible to obtain an epoxy resin composition that is rich in flexibility and has good solder stress resistance.

ジシクロペンタジェン変性フェノール樹脂硬化剤の使用
量は、これを調節することにより耐半田ストレス性を最
大限に引き出すことができる。耐半田ストレス性の効果
を出す為にはジシクロペンタジェン変性フェノール樹脂
硬化剤を全硬化剤に対して50重量%以上、好ましくは
70重量%以上の使用が望ましい、50重量%以下だと
可撓性が上がらず耐半田ストレス性が不充分である。
By adjusting the amount of dicyclopentadiene-modified phenolic resin curing agent used, solder stress resistance can be maximized. In order to achieve the effect of solder stress resistance, it is desirable to use the dicyclopentadiene-modified phenolic resin curing agent in an amount of 50% by weight or more, preferably 70% by weight or more, based on the total curing agent, but it is possible to use less than 50% by weight. The flexibility is not improved and the solder stress resistance is insufficient.

弐〇〇で示される構造のジシクロペンタジェン変性フェ
ノール樹脂硬化剤と併用する硬化剤としては、エポキシ
樹脂と反応する硬化剤全般をいい例えば、フェノールノ
ボラック樹脂、タレゾールノボラック樹脂、トリス(ヒ
ドロキシアルキルフェニル)メタン型フェノール樹脂、
バラキシレン変性フェノール樹脂、酸無水物等を用いる
ことができる。
The curing agent used in combination with the dicyclopentadiene-modified phenolic resin curing agent having the structure shown by 2〇〇 is any curing agent that reacts with epoxy resins, such as phenol novolac resin, talesol novolac resin, tris (hydroxyalkyl phenyl)methane type phenolic resin,
Paraxylene-modified phenolic resin, acid anhydride, etc. can be used.

エポキシ樹脂とフェノール樹脂硬化剤の配合比は、硬化
剤の水酸基数1に対し、エポキシ樹脂のエポキシ基数を
0.5〜2の範囲内になるように配合を調製する必要が
ある。0.5未満または2を超えたものは耐湿性、成形
作業性および硬化物の電気”特性が悪くなる。好ましく
は、硬化剤の水酸基数1に対し、エポキシ樹脂のエポキ
シ基数が1.1〜1.3の範囲内とする配合が好適であ
る。1.1未満または1.3を超えたものは、吸水性が
上がり半田浸漬時の熱aiiiが増加し、耐半田ストレ
ス性が悪くなる傾向がある。
The blending ratio of the epoxy resin and the phenolic resin curing agent must be adjusted so that the number of epoxy groups in the epoxy resin is within the range of 0.5 to 2 to 1 hydroxyl group in the curing agent. If it is less than 0.5 or more than 2, the moisture resistance, molding workability, and electrical characteristics of the cured product will deteriorate. Preferably, the number of epoxy groups in the epoxy resin is 1.1 to 1 for the number of hydroxyl groups in the curing agent. A blend within the range of 1.3 is preferable.If it is less than 1.1 or exceeds 1.3, water absorption increases, heat aiii during solder immersion increases, and solder stress resistance tends to deteriorate. There is.

本発明で用いる無機充填材としては、溶融シリカ粉末、
球状シリカ粉末、結晶シリカ粉末、2次凝集シリカ粉末
、多孔質シリカ粉末、2次凝集シリカ粉末または多孔質
シリカ粉末を粉砕したシリカ粉末、アルミナ等が挙げら
れ、特に溶融シリカ粉末が好ましい。
Inorganic fillers used in the present invention include fused silica powder,
Examples include spherical silica powder, crystalline silica powder, secondary agglomerated silica powder, porous silica powder, silica powder obtained by pulverizing secondary agglomerated silica powder or porous silica powder, alumina, etc., and fused silica powder is particularly preferred.

本発明に使用される硬化促進剤はエポキシ基とフェノー
ル性水酸基との反応を促進するものであればよく、一般
に封止用材料に使用されているものを広く使用すること
ができ、例え!iジアザビシクロウンデセン(DBU)
、)リフェニルホスフィン(TPP)、ジメチルベンジ
ルアミン(BDMA)や2メチルイミダゾール(2MZ
)等が単独もしくは2種類以上混合して用いられる。
The curing accelerator used in the present invention may be one that promotes the reaction between the epoxy group and the phenolic hydroxyl group, and a wide variety of those commonly used in sealing materials can be used. iDiazabicycloundecene (DBU)
) Riphenylphosphine (TPP), dimethylbenzylamine (BDMA) and 2methylimidazole (2MZ
) etc. may be used alone or in combination of two or more.

本発明の封止用エポキシ樹脂組成物はエポキシ樹脂、硬
化剤、無機充填材及び硬化促進剤を必須成分とするが、
これ以外に必要に応じてシランカシプリング剤、ブロム
化エポキシ樹脂、三酸化アンチモン、ヘキサブロムベン
ゼン等の難燃剤、カーボンブラック、ベンガラ等の着色
剤、天然ワックス、合成ワックス等の離型剤及びシリコ
ーンオイル、ゴム等の低応力添加剤等の種々の添加剤を
適宜配合しても差し支えがない。
The epoxy resin composition for sealing of the present invention contains an epoxy resin, a curing agent, an inorganic filler, and a curing accelerator as essential components,
In addition, if necessary, silane cassette pulling agents, brominated epoxy resins, antimony trioxide, flame retardants such as hexabromobenzene, coloring agents such as carbon black and red iron, mold release agents such as natural waxes and synthetic waxes, and silicone There is no problem in appropriately blending various additives such as low stress additives such as oil and rubber.

又、本発明の封止用エポキシ樹脂組成物を成形材料とし
て製造するには、エポキシ樹脂、硬化剤、硬化促進剤、
充填剤、その他の添加剤をミキサー等によって十分に均
一に混合した後、さらに熱ロールまたはニーグー等で溶
融混線し、冷却後粉砕して成形材料とすることができる
。これらの成形材料は電子部品あるいは電気部品の封止
、被覆、絶縁等に適用することができる。
In addition, in order to produce the epoxy resin composition for sealing of the present invention as a molding material, an epoxy resin, a curing agent, a curing accelerator,
After the filler and other additives are thoroughly and uniformly mixed using a mixer or the like, the mixture is further melted and blended using a hot roll or a niegoo, and after cooling, the mixture is pulverized to obtain a molding material. These molding materials can be applied to sealing, covering, insulating, etc. electronic or electrical components.

本発明のエポキシ樹脂組成物は、多官能エポキシ111
とジシクロペンタジェン変性フェノール樹脂硬化剤を用
いることを特徴とするものである。
The epoxy resin composition of the present invention comprises polyfunctional epoxy 111
This is characterized by using a dicyclopentadiene-modified phenolic resin curing agent.

エポキシ樹脂として多官能エポキシ樹脂を使用すると、
架橋密度が上がり耐熱性が向上するが、200℃〜30
0℃のような高温にさらされた場合においては半田スト
レス性が不充分である。また、フェノール樹脂硬化剤と
してジシクロペンタジェン変性フェノール樹脂硬化剤を
使用すると、可撓性が向上するが高温での半田ストレス
性が不充分である。
When a multifunctional epoxy resin is used as an epoxy resin,
Although the crosslinking density increases and the heat resistance improves,
When exposed to high temperatures such as 0°C, solder stress resistance is insufficient. Further, when a dicyclopentadiene-modified phenolic resin curing agent is used as the phenolic resin curing agent, flexibility is improved, but solder stress resistance at high temperatures is insufficient.

そこで本発明者らは、多官能エポキシ樹脂とジシクロペ
ンタジェン変性フェノール樹脂硬化剤を併用することに
より、それぞれ単独に用いた場合の特性から予想される
併用系の半田ストレス性よりも、非常に優れた半田スト
レス性を有することを見い出した。即ち、本発明のエポ
キシ樹脂組成物は、耐熱性が向上し、且つ可撓性を有す
ることにより、非常に優れた半田ストレス性を有したも
のである。
Therefore, the present inventors have found that by using a polyfunctional epoxy resin and a dicyclopentadiene-modified phenolic resin curing agent in combination, the solder stress resistance of the combined system is much higher than that expected from the characteristics when each is used alone. It has been found that it has excellent solder stress properties. That is, the epoxy resin composition of the present invention has improved heat resistance and flexibility, and thus has extremely excellent solder stress resistance.

〔実施例〕〔Example〕

実施例1 下記組成物 式(I「〕で示されるトリス(ヒドロキシアルキルフェ
ニル)メタントリグリシジルエーテル12重量部 (n−2のときm−1の化合物が8、n=1のときm=
00化合物が2の割合で混合なされているもの) オルトクレゾールノボラックエポキシ樹脂8重量部 式(IV)で示される、ジシクロペンタジェン変性フェ
ノール樹脂        6重量部(n=1.3.4
の化合物が2!6:2の割合で混合なされているもの) フェノールノボラック樹脂     4重量部熔融シリ
カ粉末        6a、8重量部トリフェニルホ
スフィン     0.2116Bカーボンブラツク 
       0.5重量部カルナバワックス    
    0.5重量部(エポキシ樹脂とフェノール樹脂
の配合比は、フェノール樹脂の水酸基数1に対し、エポ
キシ樹脂のエポキシ基数が1.2になるように配合を調
整した。) を、ミキサーで常温で混合し、70〜100℃で2輪ロ
ールにより混練し、冷却後粉砕して成形材料とした。
Example 1 12 parts by weight of tris(hydroxyalkylphenyl)methane triglycidyl ether represented by the following composition formula (I") (when n-2, the compound of m-1 is 8; when n=1, m=
00 compound in a ratio of 2) 8 parts by weight of ortho-cresol novolac epoxy resin 6 parts by weight of dicyclopentadiene-modified phenol resin represented by formula (IV) (n = 1.3.4
Phenol novolac resin 4 parts by weight Fused silica powder 6a, 8 parts by weight Triphenylphosphine 0.2116B carbon black
0.5 parts by weight carnauba wax
0.5 parts by weight (the blending ratio of epoxy resin and phenolic resin was adjusted so that the number of epoxy groups in the epoxy resin was 1.2 to 1 in the phenol resin) at room temperature in a mixer. The mixture was mixed, kneaded using two rolls at 70 to 100°C, cooled, and then pulverized to obtain a molding material.

得られた成形材料をタブレット化し、低圧トランスファ
ー成形機にて175℃、70kg/cd、120秒の条
件で半田クランク試験用として6×6−のチップを52
pパツケージに封止し、又半田耐湿性試験用として3×
6−のチップをtspsOPパッケージに封止した。
The obtained molding material was made into tablets, and 52 6×6-chips were molded for solder crank test using a low-pressure transfer molding machine at 175°C, 70 kg/cd, and 120 seconds.
It is sealed in a p-package, and also 3x for solder moisture resistance test.
A 6-chip was sealed in a tspsOP package.

封止したテスト用素子について下記の半田タラツク試験
及び半田耐湿性試験をおこなった。半田クランク試験:
封止したテスト用素子を85℃、85%RHの環境下で
48Hrおよび72Hr処理し、その後250℃の半田
槽に10秒間浸漬後、顕微鏡で外部クラックを観察した
。半田耐湿性試験:封止したテスト用素子を85℃で、
85%RHの環境下で72H「処理し、その後250°
Cの半田槽に10秒間浸漬後、プレッシャークツカー試
験(125’C,100%RH)を行い回路のオーブン
不良を測定した。
The sealed test device was subjected to the following solder tack test and solder moisture resistance test. Solder crank test:
The sealed test element was treated for 48 hours and 72 hours in an environment of 85° C. and 85% RH, and then immersed in a solder bath at 250° C. for 10 seconds, and external cracks were observed using a microscope. Solder moisture resistance test: The sealed test element was heated to 85°C.
Processed for 72 hours in an environment of 85% RH, then 250°
After being immersed in a solder bath of C for 10 seconds, a pressure cooker test (125'C, 100% RH) was conducted to measure oven failure of the circuit.

試験結果を第1表に示す。The test results are shown in Table 1.

実施例2〜5 第1表の処方に従って配合し、実施例1と同様にして成
形材料を得た。この成形材料で試験用の封止した成形品
を得、この成形品を用いて実施例1と同様に半田クラン
ク試験及び半田耐湿性試験を行なった。試験結果を第1
表に示す。
Examples 2 to 5 Molding materials were obtained in the same manner as in Example 1 by blending according to the formulations in Table 1. A sealed molded product for testing was obtained using this molding material, and a solder crank test and a solder moisture resistance test were conducted in the same manner as in Example 1 using this molded product. Test results first
Shown in the table.

比較例1〜5 第1表の処方に従うて配合し、実施例1と同様にして成
形材料を得た。この成形材料で試験用の封止した成形品
を得、この成形品を用いて実施例1と同様に半田クラン
ク試験及び半田耐湿性試験を行った。試験結果を第1表
に示す。
Comparative Examples 1 to 5 Molding materials were obtained in the same manner as in Example 1 by blending according to the prescriptions in Table 1. A sealed molded product for testing was obtained using this molding material, and a solder crank test and a solder moisture resistance test were conducted in the same manner as in Example 1 using this molded product. The test results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明に従うと従来技術では得ることのできなかった耐
熱性可撓性及び、低吸水性を有するエポキシ樹脂組成物
を得ることができるので、半田付は工程による急激な温
度変化による熱ストレスを受けたときの耐クラツク性に
非常に優れ、更に耐湿性が良好なことから電子、電気部
品の封止用、被覆用、絶縁用等に用いた場合、特に表面
実装パッケージに搭載された高集積大型チップICにお
いて信鎖性が非常に必要とする製品について好適である
According to the present invention, it is possible to obtain an epoxy resin composition that has heat resistance, flexibility, and low water absorption, which could not be obtained using conventional techniques. It has excellent crack resistance when exposed to heat, and has good moisture resistance, so it is suitable for use in sealing, covering, and insulating electronic and electrical components, especially in large, highly integrated packages mounted on surface mount packages. It is suitable for products that require high reliability in chip ICs.

Claims (1)

【特許請求の範囲】[Claims] (1)(A)下記式〔I〕で示される構造の多官能エポ
キシ樹脂 ▲数式、化学式、表等があります▼……〔I〕 ▲数式、化学式、表等があります▼……〔A〕▲数式、
化学式、表等があります▼……〔B〕 (nは整数でありn=0〜10、化学構造式中における
Xは〔A〕が2に対して〔B〕が0〜1の割合で存在す
るランダム共重合物の混合物)を総エポキシ樹脂量に対
して50〜100重量%含むエポキシ樹脂。 (B)下記式(II)で示されるフェノール樹脂硬化剤 ▲数式、化学式、表等があります▼……〔II〕 (nは整数でありn=0〜5、式中のRは水素原子、ハ
ロゲン原子、炭素数1〜4のアルキル基の中から選択さ
れる原子または基)を総フェノール樹脂硬化剤量に対し
て50〜100重量%含むフェノール樹脂硬化剤。 (C)無機充填材 (D)硬化促進剤を必須成分とする半導体封止用エポキ
シ樹脂組成物。
(1) (A) Multifunctional epoxy resin with the structure shown by the following formula [I]▲There are mathematical formulas, chemical formulas, tables, etc.▼……[I] ▲There are mathematical formulas, chemical formulas, tables, etc.▼……[A] ▲Math,
There are chemical formulas, tables, etc. An epoxy resin containing 50 to 100% by weight of a mixture of random copolymers) based on the total amount of epoxy resin. (B) Phenolic resin curing agent represented by the following formula (II) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ ... [II] (n is an integer and n = 0 to 5, R in the formula is a hydrogen atom, A phenolic resin curing agent containing 50 to 100% by weight of a halogen atom, an atom or group selected from an alkyl group having 1 to 4 carbon atoms, based on the total amount of the phenolic resin curing agent. (C) An inorganic filler (D) An epoxy resin composition for semiconductor encapsulation containing a curing accelerator as an essential component.
JP3939189A 1988-12-08 1989-02-21 Epoxy resin composition Pending JPH02219816A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP3939189A JPH02219816A (en) 1989-02-21 1989-02-21 Epoxy resin composition
US07/444,919 US5001174A (en) 1988-12-08 1989-12-04 Epoxy resin composition for semiconductor sealing employing triphenylmethane based novolac epoxy resin
MYPI89001694A MY104894A (en) 1988-12-08 1989-12-04 Epoxy resin composition for semiconductor sealing.
KR1019890018189A KR0144007B1 (en) 1988-12-08 1989-12-08 Epoxy resin composition for simiconductor sealing
EP89312807A EP0372983B1 (en) 1988-12-08 1989-12-08 Epoxy resin composition for semiconductor sealing
DE68928583T DE68928583T2 (en) 1988-12-08 1989-12-08 Epoxy resin composition for the sealing of semiconductors
SG1996000866A SG43788A1 (en) 1988-12-08 1989-12-08 Epoxy resin composition for semiconductor sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3939189A JPH02219816A (en) 1989-02-21 1989-02-21 Epoxy resin composition

Publications (1)

Publication Number Publication Date
JPH02219816A true JPH02219816A (en) 1990-09-03

Family

ID=12551704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3939189A Pending JPH02219816A (en) 1988-12-08 1989-02-21 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPH02219816A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320310A (en) * 1992-05-20 1993-12-03 Shin Kobe Electric Mach Co Ltd Resin composition for laminated board
JPH0710962A (en) * 1993-06-25 1995-01-13 Matsushita Electric Works Ltd Epoxy resin composition, prepreg produced from this epoxy resin composition, and insulated substrate produced from this prepreg

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275619A (en) * 1988-09-12 1990-03-15 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275619A (en) * 1988-09-12 1990-03-15 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320310A (en) * 1992-05-20 1993-12-03 Shin Kobe Electric Mach Co Ltd Resin composition for laminated board
JPH0710962A (en) * 1993-06-25 1995-01-13 Matsushita Electric Works Ltd Epoxy resin composition, prepreg produced from this epoxy resin composition, and insulated substrate produced from this prepreg

Similar Documents

Publication Publication Date Title
JP2991849B2 (en) Epoxy resin composition
JPH02219816A (en) Epoxy resin composition
JP3008981B2 (en) Epoxy resin composition
JP3011807B2 (en) Epoxy resin composition
JP2823633B2 (en) Epoxy resin composition
JP3023023B2 (en) Resin composition for semiconductor encapsulation
JPH02219814A (en) Epoxy resin composition
JPH05175366A (en) Epoxy resin composition
JP3093051B2 (en) Epoxy resin composition
JPH03195722A (en) Epoxy resin composition
JPH05166974A (en) Epoxy resin composition
JPH06184272A (en) Epoxy resin composition
JP2680389B2 (en) Epoxy resin composition
JP2690992B2 (en) Epoxy resin composition
JPH03128920A (en) Epoxy resin composition
JP3093050B2 (en) Epoxy resin composition
JPH02155914A (en) Epoxy resin composition
JPH0559149A (en) Epoxy resin composition
JPH0275620A (en) Epoxy resin composition for sealing semiconductor
JPH03195723A (en) Epoxy resin composition
JPH06107772A (en) Epoxy resin composition
JPH0326717A (en) Epoxy resin composition
JPH0232116A (en) Epoxy resin composition for sealing semiconductor
JPH03195721A (en) Epoxy resin composition
JPH01268713A (en) Epoxy resin composition for sealing semiconductor