JPH03128920A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPH03128920A
JPH03128920A JP15828289A JP15828289A JPH03128920A JP H03128920 A JPH03128920 A JP H03128920A JP 15828289 A JP15828289 A JP 15828289A JP 15828289 A JP15828289 A JP 15828289A JP H03128920 A JPH03128920 A JP H03128920A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin
formula
curing agent
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15828289A
Other languages
Japanese (ja)
Other versions
JPH0577687B2 (en
Inventor
Naoki Mogi
直樹 茂木
Hiroyuki Suzuki
博之 鈴木
Hiroshi Shimawaki
嶋脇 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP15828289A priority Critical patent/JPH03128920A/en
Publication of JPH03128920A publication Critical patent/JPH03128920A/en
Publication of JPH0577687B2 publication Critical patent/JPH0577687B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To prepare a semiconductor-sealing epoxy resin compsn. excellent in the resistance to soldering stress by compounding a specific epoxy resin with a specific curing agent. CONSTITUTION:An epoxy resin compsn. is prepd. by compounding the following as the essential components: an epoxy resin contg. 50-100wt.% (based on the total epoxy resin) trifunctional epoxy resin of formula I (wherein R1 to R11 are each H, halogen, or alkyl) (e.g. an epoxy resin of formula II); a curing agent contg. 40-100wt.% (based on the total curing agent) dicyclopentadiene- modified phenol resin of formula III (wherein R1 and R2 are each H, halogen, or alkyl) [e.g. a resin of formula IV (wherein (n) is 1 or 2; and the phenol resin comprises a mixture of 20% resin with n=1 and 80% resin with n=2)]; an inorg; filler; and a curing accelerator. The compsn. is excellent in the resistance to soldering stress and suitably used for semiconductor sealing.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐半田ストレス性に優れた、半導体封止用エポ
キシ樹脂組戊物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an epoxy resin composite for semiconductor encapsulation that has excellent solder stress resistance.

(従来の技術) 従来、ダイオード、トランジスタ、集積回路等の電子部
品を熱硬化性樹脂で封止しているが、特に集積回路では
耐熱性、耐湿性に優れた0−クレゾールノボラックエポ
キシ樹脂をノボラック型フェノール樹脂で硬化させたエ
ポキシ樹脂が用いられている。
(Prior art) Conventionally, electronic components such as diodes, transistors, and integrated circuits have been encapsulated with thermosetting resins. Especially for integrated circuits, 0-cresol novolac epoxy resin, which has excellent heat resistance and moisture resistance, has been encapsulated with novolac resin. Epoxy resin cured with phenolic resin is used.

ところが近年、集積回路の高集積化に伴いチップがだん
だん大型化し、かつパッケージは従来のDIPタイプか
ら表面実装化された小型、薄型のフラットパッケージ、
例えばSOP、 SOJ、 PLCCに変わってきてい
る。
However, in recent years, as integrated circuits have become more highly integrated, chips have become larger and larger, and packages have changed from the conventional DIP type to surface-mounted small, thin flat packages.
For example, it is changing to SOP, SOJ, and PLCC.

即ち、大型チップを小型で薄いパッケージに封入するこ
とになり、応力によりクラック発生、これらのクラック
による耐湿性の低下等の問題が大きくクローズアップさ
れてきている。
That is, a large chip is enclosed in a small and thin package, and problems such as the occurrence of cracks due to stress and a decrease in moisture resistance due to these cracks have been brought into focus.

特に半田づけの工程において急激に200°C以上の高
温にさらされることによりパッケージの割れや、樹脂と
チップの剥離により耐湿性が劣化してしまうといった問
題点がでてきている。
Particularly in the soldering process, rapid exposure to high temperatures of 200° C. or higher has caused problems such as cracking of the package and deterioration of moisture resistance due to peeling of the resin and chip.

これらの大型チップを封止するのに適した、信頼性の高
い封止用樹脂組成物の開発が望まれてきている。
It has been desired to develop a highly reliable sealing resin composition suitable for sealing these large chips.

これらの問題を解決するために半田づけ時の熱衝撃を緩
和する目的で、熱可塑性オリゴマーの添加(特開昭62
−115849号公報)や、各種シリコーン化合物の添
加(特開昭62−115850号公報、62−1166
54号公報62−128162号公報)、更にはシリコ
ーン変性(特開昭62i36860号公報)などの手法
で対処しているがいずれも半田づけ時にパッケージにク
ラックが生じてしまい信頼性の優れた半導体封止用エポ
キシ樹脂組成物を得るまでには至らなかつtこ。
In order to solve these problems, thermoplastic oligomers were added (Japanese Patent Laid-Open No. 62-2010) to alleviate the thermal shock during soldering.
-115849) and addition of various silicone compounds (JP-A-62-115850, 62-1166).
54 Publication No. 62-128162) and silicone modification (Japanese Unexamined Patent Publication No. 62-128160), but in both cases cracks occur in the package during soldering, making it difficult to package semiconductors with excellent reliability. However, it has not been possible to obtain an epoxy resin composition for stopping use.

方、耐半田ストレス性に優れた耐熱性エポキシ樹脂組成
物を得るために、樹脂系としては多官能エポキシ樹脂の
使用(特開昭61−168620号公報)等が検討され
てきたが、多官能エポキシ樹脂の使用により架橋密度が
上がり耐熱性が向上するが、特に200°C〜300’
Oのような高温にさらされた場合においては耐半田スト
レス性が不十分であった。
On the other hand, in order to obtain a heat-resistant epoxy resin composition with excellent solder stress resistance, the use of a polyfunctional epoxy resin as the resin system (Japanese Unexamined Patent Publication No. 168620/1983) has been considered; The use of epoxy resin increases the crosslinking density and improves heat resistance, especially from 200°C to 300'
When exposed to high temperatures such as O, the solder stress resistance was insufficient.

(発明が解決しようとする課題) 本発明はこのような問題に対して、エポキシ樹脂として
3官能エポキシ樹脂を用い、硬化剤としてジシクロペン
タジェン変性フェノール樹脂を用いることにより、耐半
田ストレス性が著しく優れた半導体封止用エポキシ樹脂
組成物を提供するとことにある。
(Problems to be Solved by the Invention) The present invention solves these problems by using a trifunctional epoxy resin as the epoxy resin and a dicyclopentadiene-modified phenol resin as the curing agent, thereby improving solder stress resistance. It is an object of the present invention to provide an extremely excellent epoxy resin composition for semiconductor encapsulation.

(課題を解決するための手段) 本発明のエポキシ樹脂組成物は、エポキシ樹脂として、
下記式(I)で示される構造の3官能エポキシ樹脂 (式中R1〜R11は、水素、ハロゲン、アルキル基の
中から選択される原子または基)を総エポキシ樹脂量に
対して50〜100重量%含むエポキシ樹脂と、硬化剤
として下記式(II)で示される構造のジシクロペンタ
ジェン変性フェノ−(式中R,,R2は水素、ハロゲン
、アルキル基の中から選択される原子または基) を総硬化剤量に対して40〜100重量%含む硬化剤を
使用することを特徴とし、従来のエポキシ樹脂組成物に
比べて、非常に優れた耐半田ストレス性を有したもので
ある。
(Means for Solving the Problems) The epoxy resin composition of the present invention includes, as an epoxy resin,
A trifunctional epoxy resin having a structure represented by the following formula (I) (in the formula, R1 to R11 are atoms or groups selected from hydrogen, halogen, and alkyl groups) is added in an amount of 50 to 100% by weight based on the total amount of epoxy resin. % of an epoxy resin, and a dicyclopentadiene-modified phenol having a structure represented by the following formula (II) as a curing agent (wherein R,, R2 are atoms or groups selected from hydrogen, halogen, and alkyl groups) It is characterized by using a curing agent containing 40 to 100% by weight based on the total amount of curing agent, and has extremely excellent solder stress resistance compared to conventional epoxy resin compositions.

式(I)で示される構造の3官能エポキシ樹脂の使用量
は、これを調節することにより、耐半田ストレス性を最
大限に引き出すことができる。
By adjusting the amount of the trifunctional epoxy resin having the structure represented by formula (I), the solder stress resistance can be maximized.

耐半田ストレス性の効果を出す為には、式(I)で示さ
れる3官能エポキシ樹脂を総エポキシ樹脂量の50重量
%以上、好ましくは70重量%以上の使用が望ましい。
In order to obtain the effect of solder stress resistance, it is desirable to use the trifunctional epoxy resin represented by formula (I) in an amount of 50% by weight or more, preferably 70% by weight or more of the total amount of epoxy resin.

50重量%未満だと架橋密度が、上がらず耐半田ストレ
ス性が不充分である。
If it is less than 50% by weight, the crosslinking density will not increase and the solder stress resistance will be insufficient.

更に式中のR1,R2、R4−R7、R+ o 、 R
+ 、は水素原子、R3,R,、R,はメチル基が好ま
しい。
Furthermore, R1, R2, R4-R7, R+ o, R in the formula
+ is preferably a hydrogen atom, and R3, R,, R, is preferably a methyl group.

また、2官能以下のエポキシ樹脂では架橋密度が上がら
ず、耐熱性が劣り、耐半田ストレス性の効果が得られな
い。
In addition, if the epoxy resin is difunctional or less, the crosslinking density will not increase, the heat resistance will be poor, and the effect of solder stress resistance will not be obtained.

式(1)で示される3官能エポキシ樹脂と併用するエポ
キシ樹脂とは、エポキシ基を有するもの全般をいう。た
とえばビスフェノール型エボキン樹脂、ノボラック型エ
ポキシ樹脂、トリアジン核含有エポキシ樹脂等のことを
いう。
The epoxy resin used in combination with the trifunctional epoxy resin represented by formula (1) refers to any resin having an epoxy group. For example, it refers to bisphenol type Evoquin resin, novolac type epoxy resin, triazine nucleus-containing epoxy resin, etc.

式(11)で示される構造の7エノール樹脂硬化剤は主
骨格中にジシクロペンタジェンを有し、可撓性、撥水性
を有するジシクロペンタジェン変性フェノール樹脂硬化
剤である。
The 7-enol resin curing agent having the structure represented by formula (11) has dicyclopentadiene in its main skeleton, and is a dicyclopentadiene-modified phenol resin curing agent having flexibility and water repellency.

このようなフェノール樹脂の使用量は、これを調節する
ことにより耐半田ストレス性を最大限に引き出すことが
できる。
By adjusting the amount of the phenol resin used, the solder stress resistance can be maximized.

耐半田ストレス性の効果を出す為には、式(U)で示さ
れるジシクロペンタジェン変性フェノール樹脂硬化剤を
総硬化剤量の40重量%以上、好ましくは70重量%以
上の使用が望ましい。
In order to obtain the effect of solder stress resistance, it is desirable to use the dicyclopentadiene-modified phenolic resin curing agent represented by formula (U) in an amount of 40% by weight or more, preferably 70% by weight or more of the total amount of the curing agent.

40重量%未満だと耐衝撃性及び低吸水性が上がらず、
耐半田ストレス性が不十分である。更に式中のR,、R
2は水素原子またはメチル基が望ましい。アルキル基に
ついては炭素数が2を越えるとエポキシ樹脂との反応性
が低下し、硬化性か劣化する傾向がある。
If it is less than 40% by weight, impact resistance and low water absorption will not improve.
Solder stress resistance is insufficient. Furthermore, R,,R in the formula
2 is preferably a hydrogen atom or a methyl group. If the number of carbon atoms in the alkyl group exceeds 2, the reactivity with the epoxy resin tends to decrease and the curability tends to deteriorate.

nの値は0〜5の範囲のものを用いる必要がある。It is necessary to use a value of n in the range of 0 to 5.

nの値が5より大きい場合流動性が低下し、成形性が悪
くなる。
When the value of n is greater than 5, fluidity decreases and moldability deteriorates.

式(I[)で示されるジシクロペンタジェン変性フェノ
ール樹脂硬化剤と併用する硬化剤としては、例えば、フ
ェノールノボラック樹脂、クレゾールノボラック樹脂、
ジシクロペンタジェン変性フェノール樹脂とフェノール
ノボラック及びクレゾールノボラック樹脂との共重合物
、バラキシレン変性フェノール硬化剤、酸無水物、アミ
ン系硬化剤等を用いることが出来る。
Examples of the curing agent used in combination with the dicyclopentadiene-modified phenolic resin curing agent represented by formula (I[) include phenol novolak resin, cresol novolak resin,
Copolymers of dicyclopentadiene-modified phenol resin and phenol novolak and cresol novolak resins, varaxylene-modified phenol curing agents, acid anhydrides, amine-based curing agents, and the like can be used.

本発明で用いる無機充填材としては、溶解シリカ粉末、
球状シリカ粉末、結晶シリカ粉末、2次凝集シリカ粉末
、多孔質シリカ粉末、2次凝集シリカ粉末または多孔質
シリカ粉末を粉砕したシリカ粉末、アルミナ等が挙げら
れ、特に、溶解シリカ粉末が好ましい 本発明に使用される硬化促進剤はエポキシ基とフェノー
ル性水酸基との反応を促進するものであればよく、一般
に封止用材料に使用されているものを広く使用すること
かでき、例えばジアザビシクロウンデセン(DBU) 
、l・リフェニルホスフィン(TPP) 、ジメチルベ
ンジルアミン(BDMA)や2メチルイミダゾール(2
MZ)等か単独もしくは2種以上混合して用いられる。
Inorganic fillers used in the present invention include dissolved silica powder,
Examples include spherical silica powder, crystalline silica powder, secondary agglomerated silica powder, porous silica powder, secondary agglomerated silica powder, silica powder obtained by pulverizing porous silica powder, alumina, etc. In the present invention, fused silica powder is particularly preferred. The curing accelerator to be used may be one that promotes the reaction between the epoxy group and the phenolic hydroxyl group, and a wide variety of those commonly used in sealing materials can be used, such as diazabicyclone. Desen (DBU)
, l-riphenylphosphine (TPP), dimethylbenzylamine (BDMA) and 2-methylimidazole (2
MZ) etc. may be used alone or in combination of two or more.

本発明の封止用エポキシ樹脂組成物はエポキシ樹脂、硬
化剤、無機充填材及び硬化促進剤を必須成分とするが、
これ以外に必要に応じてシランカップリング剤、ブロム
化エポキシ樹脂、三酸化アンチモン、ヘキサブロムベン
ゼン等の難燃剤、カーボンブラック、ベンガラ等の着色
剤、天然ワックス、合皮ワックス等の離型剤及びシリコ
ーンオイル、ゴム等の低応力添加剤等の種々の添加剤を
適宜配合しても差し支えがない。
The epoxy resin composition for sealing of the present invention contains an epoxy resin, a curing agent, an inorganic filler, and a curing accelerator as essential components,
In addition, if necessary, silane coupling agents, brominated epoxy resins, flame retardants such as antimony trioxide and hexabromobenzene, coloring agents such as carbon black and red iron, mold release agents such as natural wax and synthetic leather wax, etc. There is no problem in appropriately blending various additives such as low stress additives such as silicone oil and rubber.

また、本発明の封止用エポキシ樹脂組成物を成形材料と
して製造するには、エポキシ樹脂、硬化剤、硬化促進剤
、充填剤、その他の添加剤をミキサー等によって十分に
均一に混合した後、さらに熱ロール又はニーダ−等で溶
融混練し、冷却後粉砕して成形材料とすることができる
。これらの成形材料は電子部品あるいは電気部品の封止
、被覆、絶縁等に適用することができる。
In addition, in order to manufacture the epoxy resin composition for sealing of the present invention as a molding material, after sufficiently and uniformly mixing the epoxy resin, curing agent, curing accelerator, filler, and other additives with a mixer etc. Furthermore, it can be melt-kneaded using a heated roll or kneader, cooled, and then crushed to obtain a molding material. These molding materials can be applied to sealing, covering, insulating, etc. electronic or electrical components.

(実施例) 実施例1 下記組成物 式(III)で示される3官能工ポキン樹脂12重量部 オルソクレゾールノボラックエポキシ樹脂8重量部 式(IV)で示されるジシクロペンタジェン変性フェノ
ール樹脂 6重量部 (n−1,2であり、その混合比がn=1が2゜n=2
が8の割合で混合されているもの。)フェノールノボラ
ック樹脂     5重量部溶融シリカ粉末     
   68.8重量部トリフェニルホスフィン    
 0 、2 fIfk部カーボンブラック      
  0.5重量部カルナバワックス       0.
5Ii量部を、ミキサーで常温で混合し、70〜100
°cテ2iMロールにより混練し、冷却後粉砕した成形
材料としIこ。
(Example) Example 1 Composition below: 12 parts by weight of trifunctional engineered poquin resin represented by formula (III) 8 parts by weight of orthocresol novolac epoxy resin 6 parts by weight of dicyclopentadiene-modified phenol resin represented by formula (IV) (n-1,2, and the mixing ratio n=1 is 2゜n=2
are mixed at a ratio of 8 parts. ) Phenol novolak resin 5 parts by weight fused silica powder
68.8 parts by weight triphenylphosphine
0, 2 fIfk part carbon black
0.5 parts by weight carnauba wax 0.
5 parts of Ii were mixed at room temperature with a mixer, and the
The molding material was kneaded using a °C 2iM roll, cooled, and then ground.

得られた成形材料をダブレット化し、低圧トランスファ
ー成形機にて175°C% 70kg/ cm2.12
0秒の条件で半田クラック試験用として6×6Tnmの
チップを52pパツケージに封止し、又、半田耐湿性試
験用として3 X 6mmのチップを15psOPパツ
ケジに封止した。
The obtained molding material was made into a doublet and molded at 175°C% 70kg/cm2.12 using a low-pressure transfer molding machine.
A 6 x 6 Tnm chip was sealed in a 52p package for a solder crack test under 0 second conditions, and a 3 x 6 mm chip was sealed in a 15 ps OP package for a solder moisture resistance test.

封止したテスト用素子について下記の半田クラ1 ツク試験及び半田耐湿性試験をおこなった。Solder crack 1 below for the sealed test element. A test and a solder moisture resistance test were conducted.

半田クラック性試験:封止したテスト用素子を85℃、
85%RHの環境下で48hrsおよび72brs処理
し、その後250℃の半田槽に10秒間浸漬後、顕微鏡
で外部クランクの発生を観察しIこ。
Solder cracking test: sealed test element at 85℃,
After processing in an environment of 85% RH for 48 hrs and 72 br, and then immersing it in a solder bath at 250°C for 10 seconds, the occurrence of external cranks was observed under a microscope.

半田耐湿性試験:封止したテスト用素子を85’0.8
5%RHの環境下で、48hrsおよび72hrs処理
し、その後250°Cの半田槽に10秒間浸漬後、プレ
ッシャークツカー試験(125’0.100%RH)を
行い回路のオーブン不良を測定した。
Solder moisture resistance test: sealed test element at 85'0.8
The circuit was processed for 48 hours and 72 hours in an environment of 5% RH, and then immersed in a solder bath at 250°C for 10 seconds, and then subjected to a pressure cooker test (125'0.100% RH) to measure oven failure of the circuit.

試験結果を第1表に示す。The test results are shown in Table 1.

実施例2〜5 第1表の処方に従って配合し、実施例1と同様にして成
形材料を得た。この成形材料で試験用の封止した成形品
を得、この成形品を用いて実施例1と同様に半田クラッ
ク試験及び半田耐湿性試験を行った。試験結果を第1表
に示す。
Examples 2 to 5 Molding materials were obtained in the same manner as in Example 1 by blending according to the formulations in Table 1. A sealed molded product for testing was obtained using this molding material, and a solder crack test and a solder moisture resistance test were conducted in the same manner as in Example 1 using this molded product. The test results are shown in Table 1.

比較例1〜4 第1表の処方にしたがって配合し、実施例1と同様にし
て成形材料を得た。この成形材料で試験用の封止した成
形品を得、この成形品を用いて実施例1と同様に半田ク
ラック試験及び半田耐湿性試験を行った。結果を第1表
に示す。
Comparative Examples 1 to 4 Molding materials were obtained in the same manner as in Example 1 by blending according to the prescriptions in Table 1. A sealed molded product for testing was obtained using this molding material, and a solder crack test and a solder moisture resistance test were conducted in the same manner as in Example 1 using this molded product. The results are shown in Table 1.

(発明の効果) 本発明に従うと従来技術では得ることのできなかった耐
熱性及び、低吸水性、耐衝撃性を有するエボキン樹脂組
成物を得ることができるので、半田づけ工程による急激
な温度変化による熱ストレスを受けたときの耐半田クラ
ック性に非常に優れ、更に、耐湿性が良好なことから電
子、電気部品の封止用、被覆用、絶縁用等に用いた場合
、特に表面実装パッケージに搭載された高集積大型チッ
プICにおいて信頼性が非常に必要とする製品について
好適である。
(Effects of the Invention) According to the present invention, it is possible to obtain an Evokin resin composition that has heat resistance, low water absorption, and impact resistance that could not be obtained using conventional techniques, so that rapid temperature changes due to the soldering process can be obtained. It has excellent solder crack resistance when subjected to heat stress caused by heat stress, and also has good moisture resistance, so it is especially suitable for surface mount packages when used for sealing, coating, insulation, etc. of electronic and electrical components. It is suitable for products that require high reliability in highly integrated large-chip ICs mounted on.

Claims (1)

【特許請求の範囲】[Claims] (1)(A)下記式( I )で示される構造の3官能エ
ポキシ ▲数式、化学式、表等があります▼……( I ) (式中R_1〜R_1_1は水素、ハロゲン、アルキル
基の中から選択される原子または基) を総エポキシ樹脂量にたいして50〜100重量%含む
エポキシ樹脂 (B)下記式(II)で示される構造のシンクロペンタジ
エン変性フェノール樹脂 ▲数式、化学式、表等があります▼……(II) (式中R_1、R_2は水素、ハロゲン、アルキル基の
中から選択される原子または基) を総硬化剤量に対して40〜100重量%含む硬化剤 (C)無機充填材 (D)硬化促進剤 を必須成分とする半導体封止用のエポキシ樹脂組成物。
(1) (A) Trifunctional epoxy with the structure shown by the following formula (I) ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼... (I) (In the formula, R_1 to R_1_1 are selected from hydrogen, halogen, and alkyl groups) Epoxy resin (B) containing 50 to 100% by weight of (selected atoms or groups) based on the total amount of epoxy resin ▲ Synchropentadiene-modified phenolic resin with the structure shown by the following formula (II) ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼… ...(II) (In the formula, R_1 and R_2 are atoms or groups selected from hydrogen, halogen, and alkyl groups) A curing agent containing 40 to 100% by weight based on the total amount of curing agent (C) Inorganic filler ( D) An epoxy resin composition for semiconductor encapsulation containing a curing accelerator as an essential component.
JP15828289A 1989-06-22 1989-06-22 Epoxy resin composition Granted JPH03128920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15828289A JPH03128920A (en) 1989-06-22 1989-06-22 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15828289A JPH03128920A (en) 1989-06-22 1989-06-22 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH03128920A true JPH03128920A (en) 1991-05-31
JPH0577687B2 JPH0577687B2 (en) 1993-10-27

Family

ID=15668192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15828289A Granted JPH03128920A (en) 1989-06-22 1989-06-22 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPH03128920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710962A (en) * 1993-06-25 1995-01-13 Matsushita Electric Works Ltd Epoxy resin composition, prepreg produced from this epoxy resin composition, and insulated substrate produced from this prepreg

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710962A (en) * 1993-06-25 1995-01-13 Matsushita Electric Works Ltd Epoxy resin composition, prepreg produced from this epoxy resin composition, and insulated substrate produced from this prepreg

Also Published As

Publication number Publication date
JPH0577687B2 (en) 1993-10-27

Similar Documents

Publication Publication Date Title
JP3008981B2 (en) Epoxy resin composition
JPH03128920A (en) Epoxy resin composition
JP2823633B2 (en) Epoxy resin composition
JP3011807B2 (en) Epoxy resin composition
JPH02219814A (en) Epoxy resin composition
JPH06184272A (en) Epoxy resin composition
JPH05175366A (en) Epoxy resin composition
JPH05166974A (en) Epoxy resin composition
JP3093051B2 (en) Epoxy resin composition
JPH03195722A (en) Epoxy resin composition
JPH02219816A (en) Epoxy resin composition
JP3235799B2 (en) Epoxy resin composition
JP2744499B2 (en) Epoxy resin composition
JPH0577688B2 (en)
JP2690992B2 (en) Epoxy resin composition
JP3093050B2 (en) Epoxy resin composition
JPH0328219A (en) Epoxy resin composition
JP3004454B2 (en) Resin composition
JPH0559149A (en) Epoxy resin composition
JPH06107772A (en) Epoxy resin composition
JPH06100658A (en) Epoxy resin composition
JPH06107768A (en) Epoxy resin composition
JPH01275626A (en) Epoxy resin composition for semiconductor sealing
JPH0275620A (en) Epoxy resin composition for sealing semiconductor
JPH02155914A (en) Epoxy resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees