JPH0577688B2 - - Google Patents

Info

Publication number
JPH0577688B2
JPH0577688B2 JP16085389A JP16085389A JPH0577688B2 JP H0577688 B2 JPH0577688 B2 JP H0577688B2 JP 16085389 A JP16085389 A JP 16085389A JP 16085389 A JP16085389 A JP 16085389A JP H0577688 B2 JPH0577688 B2 JP H0577688B2
Authority
JP
Japan
Prior art keywords
epoxy resin
weight
solder
formula
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16085389A
Other languages
Japanese (ja)
Other versions
JPH0326717A (en
Inventor
Naoki Mogi
Hiroshi Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP16085389A priority Critical patent/JPH0326717A/en
Publication of JPH0326717A publication Critical patent/JPH0326717A/en
Publication of JPH0577688B2 publication Critical patent/JPH0577688B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は耐半田ストレス性に優れた、半導体封
止用エポキシ樹脂組成物に関するものである。 (従来の技術) 従来、ダイオード、トランジスタ、集積回路等
の電子部品を熱硬化性樹脂で封止しているが、特
に集積回路では耐熱性、耐湿性に優れたo−クレ
ゾールノボラツクエポキシ樹脂をノボラツク型フ
エノール樹脂で硬化させたエポキシ樹脂が用いら
れている。 ところが近年、集積回路の高集積化に伴いチツ
プがだんだん大型化し、かつパツケージは従来の
DIPタイプから表面実装化された小型、薄型のフ
ラツトパツケージ、例えばSOP,SOJ,PLCCに
変わつてきている。 即ち、大型チツプを小型で薄いパツケージに封
入することになり、応力によりクラツク発生、こ
れらのクラツクによる耐湿性の低下等の問題が大
きくクローズアツプされてきている。 特に半田づけの工程において急激に200℃以上
の高温にさらされることによりパツケージの割れ
や、樹脂とチツプの剥離により耐湿性が劣化して
しまうといつた問題点がでてきている。 これらの大型チツプを封止するのに適した、信
頼性の高い封止用樹脂組成物の開発が望まれてき
ている。 これらの問題を解決するために半田づけ時の熱
衝撃を緩和する目的で、熱可塑性オリゴマーの添
加(特開昭62−115849号公報)や、各種シリコー
ン化合物の添加(特開昭62−115850号公報、62−
116654号公報62−128162号公報)、更にはシリコ
ーン変性(特開昭62−136860号公報)などの手法
で対処しているがいずれも半田づけ時にパツケー
ジにクラツクが生じてしまい信頼性の優れた半導
体封止用エポキシ樹脂組成物を得るまでには至ら
なかつた。 一方、耐半田ストレス性に優れた耐熱性エポキ
シ樹脂組成物を得るために、樹脂系としては多官
能エポキシ樹脂の使用(特開昭61−168620号公
報)等が検討されてきたが、多官能エポキシ樹脂
の使用により架橋密度が上がり耐熱性が向上する
が、特に200℃〜300℃のような高温にさらされた
場合においては耐半田ストレス性が不十分であつ
た。 (発明が解決しようとする課題) 本発明はこのような問題に対して、エポキシ樹
脂として3官能エポキシ樹脂を用い、硬化剤とし
てジシクロペンタジエン変性フエノール樹脂を用
い、更に充填材として2次凝集シリカ粉末を用い
ることにより、耐半田ストレス性が著しく優れた
半導体封止用エポキシ樹脂組成物を提供するとろ
にある。 (課題を解決するための手段) 本発明のエポキシ樹脂組成物は、エポキシ樹脂
として、下記式()で示される構造の3官能エ
ポキシ樹脂
(Industrial Application Field) The present invention relates to an epoxy resin composition for semiconductor encapsulation that has excellent solder stress resistance. (Prior art) Conventionally, electronic components such as diodes, transistors, and integrated circuits have been encapsulated with thermosetting resin, but especially for integrated circuits, o-cresol novolac epoxy resin, which has excellent heat resistance and moisture resistance, has been used. An epoxy resin cured with a novolac type phenolic resin is used. However, in recent years, as integrated circuits have become more highly integrated, chips have become larger and larger, and packages have become smaller than conventional ones.
The DIP type has been replaced by small, thin flat packages that are surface mounted, such as SOP, SOJ, and PLCC. That is, a large chip is enclosed in a small and thin package, and problems such as the occurrence of cracks due to stress and a decrease in moisture resistance due to these cracks are becoming more and more important. In particular, during the soldering process, rapid exposure to high temperatures of over 200°C has caused problems such as cracking of the package and deterioration of moisture resistance due to peeling of the resin and chip. It has been desired to develop a highly reliable encapsulating resin composition suitable for encapsulating these large chips. To solve these problems, thermoplastic oligomers have been added (Japanese Patent Laid-Open No. 115849/1982) and various silicone compounds have been added (Japanese Patent Laid-open No. 115850/1983) to alleviate thermal shock during soldering. Publication, 62−
116654 Publication No. 62-128162 Publication) and silicone modification (Japanese Patent Application Laid-open No. 136860/1983), but all of these techniques resulted in cracks in the package cage during soldering, resulting in poor reliability. However, it was not possible to obtain an epoxy resin composition for encapsulating a semiconductor. On the other hand, in order to obtain a heat-resistant epoxy resin composition with excellent solder stress resistance, the use of a polyfunctional epoxy resin as the resin system (Japanese Patent Application Laid-Open No. 168620/1983) has been considered; Although the use of epoxy resin increases the crosslinking density and improves heat resistance, the solder stress resistance is insufficient, especially when exposed to high temperatures such as 200°C to 300°C. (Problems to be Solved by the Invention) The present invention solves these problems by using a trifunctional epoxy resin as the epoxy resin, a dicyclopentadiene-modified phenol resin as the curing agent, and further using secondary agglomerated silica as the filler. By using the powder, it is possible to provide an epoxy resin composition for semiconductor encapsulation that has extremely excellent solder stress resistance. (Means for Solving the Problems) The epoxy resin composition of the present invention uses a trifunctional epoxy resin having a structure represented by the following formula () as an epoxy resin.

【化】 (式中R1〜R11は、水素、ハロゲン、アルキル
基の中から選択される原子または基) を総エポキシ樹脂量に対して50〜100重量%含む
エポキシ樹脂と硬化剤として下記式()で示さ
れる構造のジシクロペンタジエン変性フエノール
樹脂
[Chemical formula] (In the formula, R 1 to R 11 are atoms or groups selected from hydrogen, halogen, and alkyl groups) The epoxy resin containing 50 to 100% by weight based on the total amount of epoxy resin and the curing agent are as follows. Dicyclopentadiene-modified phenolic resin with the structure shown by formula ()

【化】 (式中R1,R2は水素、ハロゲン、アルキル基
の中から選択される原子または基) を総硬化剤量に対して40〜100重量%含む硬化剤
を使用し、更に無機充填材として1次平均粒子径
がが0.1〜1μm、2次平均粒子径が2〜60μmであ
り、かつ見掛け密度が0.1〜1g/c.c.、比表面積
が1〜10m2/gである2次凝集シリカ粉末を総無
機質充填材量に対して20〜100重量%含む無機充
填材を用いることを特徴とし、従来のエポキシ樹
脂組成物に比べて、非常に優れた耐半田ストレス
性を有したものである。 式()で示される構造の3官能エポキシ樹脂
の使用量は、これを調節することにより、耐半田
ストレス性を最大限に引き出すことができる。耐
半田ストレス性の効果を出す為には、式()で
示される3官能エポキシ樹脂を総エポキシ樹脂量
の50重量%以上、好ましくは70重量%以上の使用
が望ましい。50重量%未満だと架橋密度が、上が
らず耐半田ストレス性が不充分である。更に式中
のR1,R2,R4〜R7,R10,R11は水素原子、R3
R8,R9はメチル基が好ましい。 また、2官能以下のエポキシ樹脂では架橋密度
が上がらず、耐熱性が劣り、耐半田ストレス性の
効果が得られない。 式()で示される多官能エポキシ樹脂と併用
するエポキシ樹脂とは、エポキシ基を有するもの
全般をいう。たとえばビスフエノール型エポキシ
樹脂、ノボラツク型エポキシ樹脂、トリアジン核
含有エポキシ樹脂等のことをいう。 式()で示される構造のフエノール樹脂硬化
剤は主骨格中にジシクロペンタジエンを有し、可
撓性、撥水性を有するジシクロペンタジエン変性
フエノール樹脂硬化剤である。このジシクロペン
タジエン変性フエノール樹脂硬化剤の使用量は、
これを調節することにより耐半田ストレス性を最
大限に引き出すことができる。 耐半田ストレス性の効果を出す為には、式
()で示されるジシクロペンタジエン変性フエ
ノール樹脂硬化剤を総硬化剤量の40重量%以上、
好ましくは70重量%以上の使用が望ましい。40重
量%未満だと耐衝撃性及び低吸水性が上がらず、
耐半田ストレス性が不十分である。 更に式中のR1,R2は水素原子またはメチル基
が望ましい。アルキル基については炭素数が2を
越えるとエポキシ樹脂との反応性が低下し、硬化
性が劣化する傾向がある。 nの値は0〜5の範囲のものを用いる必要があ
る。nの値が5より大きい場合は流動性が低下
し、成形性が悪くなる。 式()で示されるジシクロペンタジエン変性
フエノール樹脂硬化剤と併用する硬化剤として
は、例えばフエノールノボラツク樹脂、クレゾー
ルノボラツク樹脂、ジシクロペンタジエン変性フ
エノール樹脂とフエノールノボラツク及びクレゾ
ールノボラツク樹脂との共重合物、パラキシレン
変性フエノール硬化剤、酸無水物、アミン系硬化
剤等を用いることが出来る。 また、本発明で用いられる無機充填材として
は、1次平均粒子径が0.1〜1μm、2次平均粒子
径が2〜60μmであり、かつ見掛け密度が0.1〜1
g/c.c.、比表面積が1〜10m2/gである2次凝集
シリカ粉末を総無機充填材量に対して20〜100重
量%含む無機充填材を用いる。 このような2次凝集シリカ粉末の使用量は、こ
れを調整することにより、耐半田ストレス性を最
大限に引き出す事が出来る。 耐半田ストレス性の効果を出すためには、2次
凝集シリカ粉末を総無機充填材量の20重量%以
上、更に好ましくは50重量%以上の使用が好まし
い。20重量%未満だと耐衝撃性が上がらず、耐半
田ストレス性が不十分である。 また、2次凝集シリカの平均粒子径は2〜60μ
mの範囲が好ましい。2次平均粒子径が2μm未
満だと耐衝撃性が低下し、60μmを越えると成形
性が低下し、いずれも好ましくない。 更に好ましくは流動性を考慮すると2〜10μm
が好ましい。 1次平均粒子径は0.1〜1μmの範囲が好ましい。
1次平均粒子径が0.1μm未満だと、流動性が低下
し、1μmを越えると耐衝撃性が低下し、いずれ
も好ましくない。 見掛け密度は0.1〜1g/c.c.の範囲が好ましく、
0.1g/c.c.未満だと流動性が低下し、1g/c.c.を
越えると耐衝撃性が低下してしまう。 また、比表面積は1〜10m2/gの範囲が好まし
く、更に好ましくは3〜7m2/gが良い。比表面
積が1m2/g未満だと成形品の強度が低下し、耐
半田ストレス性が低下し、10m2/gを越えると流
動性が低下し、いずれも好ましくない。 2次凝集シリカ粉末以外に、併用して用いられ
る無機充填材としては、溶融シリカ粉末、溶融球
状シリカ粉末、多孔質シリカ粉末あるいは多孔質
シリカ粉末を最適粒径に粉砕したもの、アルミナ
粉末、窒化ケイ素粉末等無機充填材全般が挙げら
れる。 本発明で用いられる硬化促進剤はエポキシ基と
フエノール性水酸基、酸無水物、アミン系硬化剤
のアミノ基と反応を促進するものであればよく、
一般に封止用材料に使用されているものを広く使
用することができ、例えばジアザビシクロウンデ
セン(DBU)、トリフエニルホスフイン
(TPP)、ジメチルベンジルアミン(BDMA)や
2メチルイミダゾール(2MZ)等が単独もしく
は2種以上混合して用いられる。 本発明の封止用エポキシ樹脂組成物はエポキシ
樹脂、硬化剤、無機充填材及び硬化促進剤を必須
成分とするが、これ以外に必要に応じてシランカ
ツプリング剤、ブロム化エポキシ樹脂、三酸化ア
ンチモン、ヘキサブロムベンゼン等の難燃剤、カ
ーボンブラツク、ベンガラ等の着色剤、天然ワツ
クス、合成ワツクス等の離型剤及びシリコーンオ
イル、ゴム等の低応力添加剤等の種々の添加剤を
適宜配合しても差し支えがない。 また、本発明の封止用エポキシ樹脂組成物を成
形材料として製造するには、エポキシ樹脂、硬化
剤、硬化促進剤、充填剤、その他の添加剤をミキ
サー等によつて十分に均一に混合した後、さらに
熱ロール又はニーダー等で溶融混練し、冷却後粉
砕して成形材料とすることができる。これらの成
形材料は電子部品あるいは電気部品の封止、被
覆、絶縁等に適用することができる。 (実施例) 実施例 1 下記組成物 式()で示される3官能エポキシ樹脂12重量部
[Chemical formula] (In the formula, R 1 and R 2 are atoms or groups selected from hydrogen, halogen, and alkyl groups.) A curing agent containing 40 to 100% by weight of the total amount of curing agent is used, and an inorganic As a filler, secondary agglomeration having a primary average particle diameter of 0.1 to 1 μm, a secondary average particle diameter of 2 to 60 μm, an apparent density of 0.1 to 1 g/cc, and a specific surface area of 1 to 10 m 2 /g It is characterized by using an inorganic filler containing 20 to 100% by weight of silica powder based on the total amount of inorganic filler, and has extremely superior solder stress resistance compared to conventional epoxy resin compositions. be. By adjusting the amount of the trifunctional epoxy resin having the structure represented by the formula (), the solder stress resistance can be maximized. In order to obtain the effect of solder stress resistance, it is desirable to use the trifunctional epoxy resin represented by the formula () in an amount of 50% by weight or more, preferably 70% by weight or more of the total amount of epoxy resin. If it is less than 50% by weight, the crosslinking density will not increase and the solder stress resistance will be insufficient. Furthermore, R 1 , R 2 , R 4 to R 7 , R 10 , and R 11 in the formula are hydrogen atoms, R 3 ,
R 8 and R 9 are preferably methyl groups. In addition, if the epoxy resin is difunctional or less, the crosslinking density will not increase, the heat resistance will be poor, and the effect of solder stress resistance will not be obtained. The epoxy resin used in combination with the polyfunctional epoxy resin represented by formula () refers to any resin having an epoxy group. For example, it refers to bisphenol type epoxy resin, novolak type epoxy resin, triazine nucleus-containing epoxy resin, etc. The phenolic resin curing agent having the structure represented by the formula () has dicyclopentadiene in its main skeleton, and is a dicyclopentadiene-modified phenolic resin curing agent having flexibility and water repellency. The amount of this dicyclopentadiene-modified phenolic resin curing agent is:
By adjusting this, the solder stress resistance can be maximized. In order to achieve the effect of solder stress resistance, the dicyclopentadiene-modified phenolic resin curing agent shown by the formula () should be used in an amount of 40% by weight or more of the total amount of curing agent.
It is preferable to use 70% by weight or more. If it is less than 40% by weight, impact resistance and low water absorption will not improve.
Solder stress resistance is insufficient. Furthermore, R 1 and R 2 in the formula are preferably a hydrogen atom or a methyl group. If the number of carbon atoms in the alkyl group exceeds 2, the reactivity with the epoxy resin tends to decrease and the curability tends to deteriorate. It is necessary to use a value of n in the range of 0 to 5. When the value of n is greater than 5, fluidity decreases and moldability deteriorates. Examples of curing agents used in combination with the dicyclopentadiene-modified phenolic resin curing agent represented by formula () include phenol novolak resins, cresol novolak resins, and combinations of dicyclopentadiene-modified phenolic resins with phenol novolak and cresol novolak resins. Copolymers, paraxylene-modified phenol curing agents, acid anhydrides, amine curing agents, etc. can be used. In addition, the inorganic filler used in the present invention has a primary average particle size of 0.1 to 1 μm, a secondary average particle size of 2 to 60 μm, and an apparent density of 0.1 to 1 μm.
An inorganic filler containing 20 to 100% by weight of secondary agglomerated silica powder having a specific surface area of 1 to 10 m 2 /g based on the total amount of inorganic filler is used. By adjusting the amount of secondary agglomerated silica powder used, the solder stress resistance can be maximized. In order to obtain the effect of solder stress resistance, it is preferable to use the secondary agglomerated silica powder in an amount of 20% by weight or more, more preferably 50% by weight or more of the total amount of inorganic filler. If it is less than 20% by weight, impact resistance will not improve and solder stress resistance will be insufficient. In addition, the average particle diameter of secondary agglomerated silica is 2 to 60μ
A range of m is preferred. If the secondary average particle diameter is less than 2 μm, impact resistance will decrease, and if it exceeds 60 μm, moldability will decrease, both of which are unfavorable. More preferably 2 to 10 μm considering fluidity.
is preferred. The primary average particle diameter is preferably in the range of 0.1 to 1 μm.
If the primary average particle diameter is less than 0.1 μm, fluidity will decrease, and if it exceeds 1 μm, impact resistance will decrease, both of which are not preferred. The apparent density is preferably in the range of 0.1 to 1 g/cc,
If it is less than 0.1 g/cc, fluidity will decrease, and if it exceeds 1 g/cc, impact resistance will decrease. Further, the specific surface area is preferably in the range of 1 to 10 m 2 /g, more preferably 3 to 7 m 2 /g. If the specific surface area is less than 1 m 2 /g, the strength of the molded product will decrease and the solder stress resistance will decrease, and if it exceeds 10 m 2 /g, the fluidity will decrease, both of which are unfavorable. Inorganic fillers that can be used in combination with secondary agglomerated silica powder include fused silica powder, fused spherical silica powder, porous silica powder, porous silica powder pulverized to the optimum particle size, alumina powder, and nitrided silica powder. Examples include general inorganic fillers such as silicon powder. The curing accelerator used in the present invention may be one that promotes the reaction between an epoxy group, a phenolic hydroxyl group, an acid anhydride, or an amino group of an amine curing agent.
A wide range of materials commonly used for sealing can be used, such as diazabicycloundecene (DBU), triphenylphosphine (TPP), dimethylbenzylamine (BDMA), and 2methylimidazole (2MZ). etc. may be used alone or in combination of two or more. The epoxy resin composition for sealing of the present invention contains an epoxy resin, a curing agent, an inorganic filler, and a curing accelerator as essential components. Various additives such as flame retardants such as antimony and hexabromobenzene, colorants such as carbon black and red iron, mold release agents such as natural wax and synthetic wax, and low stress additives such as silicone oil and rubber are appropriately blended. There is no problem. In addition, in order to produce the epoxy resin composition for sealing of the present invention as a molding material, the epoxy resin, curing agent, curing accelerator, filler, and other additives are sufficiently and uniformly mixed using a mixer or the like. After that, the mixture is further melt-kneaded using a hot roll or a kneader, cooled, and then crushed to obtain a molding material. These molding materials can be applied to sealing, covering, insulating, etc. electronic or electrical components. (Example) Example 1 12 parts by weight of trifunctional epoxy resin represented by the following composition formula ()

【化】 オルソクレゾールノボラツクエポキシ樹脂
8重量部 式()で示されるジシクロペンタジエン変性フ
エノール樹脂 5重量部
[Chemical] Orthocresol novolac epoxy resin
8 parts by weight Dicyclopentadiene-modified phenolic resin represented by the formula () 5 parts by weight

【化】 (n=1,2であり、その混合比がn=1が
2,n=2が8の割合で混合されているもの。) フエノールノボラツク樹脂 5重量部 2次凝集シリカ粉末(1次平均粒子径が0.4μm,
2次平均粒子径が3.5μm、見掛け密度が0.7g/
c.c.、比表面積が5m2/g) 35重量部 溶融シリカ粉末 38.8重量部 トリフエニルホスフイン 0.2重量部 カーボンブラツク 0.5重量部 カルナバワツクス 0.5重量部 を、ミキサーで常温で混合し、70〜100℃で2軸
ロールにより混練し、冷却後粉砕した成形材料と
した。 得られた成形材料をダブレツト化し、低圧トラ
ンスフアー成形機にて175℃、70Kg/cm2、120秒の
条件で半田クラツク試験用として6×6mmのチツ
プを52pパツケージに封止し、又、半田耐湿性試
験用として3×6mmのチツプを16pSOPパツケー
ジに封止した。 封止したテスト用素子について下記の半田クラ
ツク試験及び半田耐湿性試験をおこなつた。 半田クラツク試験:封止したテスト用素子を
85℃,85%RHの環境下で、72hr処理し、
その後250℃の半田槽に10秒間浸漬後、顕
微鏡で外部クラツク発生状況を観察した。 半田耐湿性試験:封止したテスト用素子を85
℃、85%RHの環境下で、72hrs処理し、
その後250℃の半田槽に10秒間浸漬後、プ
レツシヤークツカー試験(125℃、100%
RH)を行い回路のオーブン不良を測定し
た。 試験結果を第1表に示す。 実施例 2〜7 第1表の処方に従つて配合し、実施例1と同様
にして成形材料を得た。この成形材料で試験用の
封止した成形品を得、この成形品を用いて実施例
1と同様に半田クラツク試験及び半田耐湿性試験
を行つた。試験結果を第1表に示す。 比較例 1〜8 第1表の処方にしたがつて配合し、実施例1と
同様にして成形材料を得た。この成形品を用いて
実施例1と同様に半田クラツク試験及び半田耐湿
性試験を行つた。結果を第1表に示す。
[Chemical] (N=1, 2, and the mixing ratio is n=1 to 2 and n=2 to 8.) Phenol novolac resin 5 parts by weight Secondary agglomerated silica powder ( Primary average particle diameter is 0.4μm,
Secondary average particle diameter is 3.5μm, apparent density is 0.7g/
cc, specific surface area 5 m 2 /g) 35 parts by weight of fused silica powder 38.8 parts by weight triphenylphosphine 0.2 parts by weight Carbon black 0.5 parts by weight Carnauba wax 0.5 parts by weight were mixed at room temperature in a mixer, and heated to 70 to 100°C. The mixture was kneaded using a twin-screw roll, cooled, and then ground to obtain a molding material. The obtained molding material was made into a doublet, and a 6 x 6 mm chip was sealed in a 52p package for a solder crack test using a low-pressure transfer molding machine at 175°C, 70 kg/cm 2 and 120 seconds. A 3 x 6 mm chip was sealed in a 16 pSOP package for moisture resistance testing. The following solder crack test and solder moisture resistance test were conducted on the sealed test device. Solder crack test: The sealed test element is
Processed for 72 hours in an environment of 85℃ and 85%RH,
After that, it was immersed in a solder bath at 250°C for 10 seconds, and the occurrence of external cracks was observed using a microscope. Solder moisture resistance test: 85 times the sealed test element
℃, 72hrs treatment under 85%RH environment,
After that, after immersing it in a soldering bath at 250℃ for 10 seconds, the pressure solder test (125℃, 100%
RH) to measure the oven failure of the circuit. The test results are shown in Table 1. Examples 2 to 7 Molding materials were obtained in the same manner as in Example 1 by blending according to the formulations in Table 1. A sealed molded article for testing was obtained using this molding material, and a solder crack test and a solder moisture resistance test were conducted in the same manner as in Example 1 using this molded article. The test results are shown in Table 1. Comparative Examples 1 to 8 Molding materials were obtained in the same manner as in Example 1 by blending according to the formulations in Table 1. Using this molded article, a solder crack test and a solder moisture resistance test were conducted in the same manner as in Example 1. The results are shown in Table 1.

【表】【table】

【表】 (発明の効果) 本発明に従うと従来技術では得ることのできな
かつた耐熱性及び、耐衝撃性を有するエポキシ樹
脂組成物を得ることができるので、半田づけ工程
による急激な温度変化による熱ストレスを受けた
ときの耐半田クラツク性に非常に優れ、更に、耐
湿性が良好なことから、電子、電気部品の封止
用、被覆用、絶縁用等に用いた場合、特に表面実
装パツケージに搭載された高集積大型チツプIC
において信頼性が非常に必要とする製品について
好適である。
[Table] (Effects of the invention) According to the present invention, it is possible to obtain an epoxy resin composition that has heat resistance and impact resistance that could not be obtained using conventional techniques. It has excellent solder crack resistance when subjected to heat stress, and also has good moisture resistance, so it is especially suitable for surface mount packages when used for sealing, covering, and insulating electronic and electrical components. Highly integrated large chip IC installed in
It is suitable for products that require high reliability.

Claims (1)

【特許請求の範囲】 1 (A) 下記式()で示される構造の3官能エ
ポキシ 【化】 (式中R1〜R11は水素、ハロゲン、アルキル基
の中から選択される原子または基) を総エポキシ樹脂量にたいして50〜100重量%含
むエポキシ樹脂 (B) 下記式()で示される構造のジシクロペン
タジエン変性フエノール樹脂 【化】 (式中R1,R2は水素、ハロゲン、アルキル基
の中から選択される原子または基) を総硬化剤量に対して40〜100重量%含む硬化剤 (C) 1次平均粒子径が0.1〜1μm、2次平均粒子
径が2〜60μmであり、かつ見掛け密度が0.1〜
1g/c.c.、比表面積が1〜10m2/gである2次
凝集シリカ粉末を総無機充填材量に対して20〜
100重量%含む無機充填材 (D) 硬化促進剤 を必須成分とする半導体封止用のエポキシ樹脂組
成物。
[Claims] 1 (A) Trifunctional epoxy having a structure represented by the following formula () (wherein R 1 to R 11 are atoms or groups selected from hydrogen, halogen, and alkyl groups) Epoxy resin (B) containing 50 to 100% by weight based on the total amount of epoxy resin A dicyclopentadiene-modified phenol resin with a structure represented by the following formula () (in the formula, R 1 and R 2 are hydrogen, halogen, or an alkyl group) A curing agent (C) containing 40 to 100% by weight of (atoms or groups selected from among) based on the total amount of curing agent. , and the apparent density is 0.1~
Secondary agglomerated silica powder with a specific surface area of 1 g/cc and a specific surface area of 1 to 10 m 2 /g is added to the total amount of inorganic filler.
An epoxy resin composition for semiconductor encapsulation that contains 100% by weight of an inorganic filler (D) and a curing accelerator.
JP16085389A 1989-06-26 1989-06-26 Epoxy resin composition Granted JPH0326717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16085389A JPH0326717A (en) 1989-06-26 1989-06-26 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16085389A JPH0326717A (en) 1989-06-26 1989-06-26 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH0326717A JPH0326717A (en) 1991-02-05
JPH0577688B2 true JPH0577688B2 (en) 1993-10-27

Family

ID=15723809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16085389A Granted JPH0326717A (en) 1989-06-26 1989-06-26 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPH0326717A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19962451C1 (en) * 1999-12-22 2001-08-30 Heraeus Quarzglas Process for the production of opaque quartz glass and suitable Si0¶2¶ granulate for carrying out the process
US10834828B2 (en) 2018-01-26 2020-11-10 International Business Machines Corporation Creating inductors, resistors, capacitors and other structures in printed circuit board vias with light pipe technology

Also Published As

Publication number Publication date
JPH0326717A (en) 1991-02-05

Similar Documents

Publication Publication Date Title
JP3003887B2 (en) Resin composition for semiconductor encapsulation
JP2991849B2 (en) Epoxy resin composition
JPH0577688B2 (en)
JP3008981B2 (en) Epoxy resin composition
JP3011807B2 (en) Epoxy resin composition
JP3235798B2 (en) Epoxy resin composition
JP2823633B2 (en) Epoxy resin composition
JP2843247B2 (en) Epoxy resin composition
JP2744499B2 (en) Epoxy resin composition
JP3093051B2 (en) Epoxy resin composition
JPH05175366A (en) Epoxy resin composition
JP3235799B2 (en) Epoxy resin composition
JPH0577687B2 (en)
JP2690992B2 (en) Epoxy resin composition
JP3004454B2 (en) Resin composition
JP3366456B2 (en) Epoxy resin composition
JP2793449B2 (en) Epoxy resin composition
JP3093050B2 (en) Epoxy resin composition
JP3317473B2 (en) Epoxy resin composition
JPH06107772A (en) Epoxy resin composition
JPH05206328A (en) Resin composition
JPH0559149A (en) Epoxy resin composition
JPH062800B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH02219816A (en) Epoxy resin composition
JPH06107768A (en) Epoxy resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees