JPH02155914A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPH02155914A
JPH02155914A JP30876988A JP30876988A JPH02155914A JP H02155914 A JPH02155914 A JP H02155914A JP 30876988 A JP30876988 A JP 30876988A JP 30876988 A JP30876988 A JP 30876988A JP H02155914 A JPH02155914 A JP H02155914A
Authority
JP
Japan
Prior art keywords
epoxy resin
formulas
curing agent
tables
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30876988A
Other languages
Japanese (ja)
Other versions
JP2675108B2 (en
Inventor
Naoki Mogi
直樹 茂木
Kenichi Yanagisawa
健一 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP30876988A priority Critical patent/JP2675108B2/en
Priority to US07/444,919 priority patent/US5001174A/en
Priority to MYPI89001694A priority patent/MY104894A/en
Priority to DE68928583T priority patent/DE68928583T2/en
Priority to SG1996000866A priority patent/SG43788A1/en
Priority to EP89312807A priority patent/EP0372983B1/en
Priority to KR1019890018189A priority patent/KR0144007B1/en
Publication of JPH02155914A publication Critical patent/JPH02155914A/en
Application granted granted Critical
Publication of JP2675108B2 publication Critical patent/JP2675108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To improve the resistance to soldering stress by blending a specific epoxy resin with a p-xylene-modified phenol resin curing agent, an inorganic filler and a curing promotor. CONSTITUTION:An epoxy resin comprising 50-100wt.% polyfunctional epoxy resin of formula I (wherein X is a group of formulae II or III; Z is a group of V; n and m are each 0 or more, and n+m=1-10; and X and Z are present in a ratio of 3 : 1), and if desired, other epoxy resin are blended with a curing agent comprising 30-100wt.% p-xylene-modified phenol resin curing agent of formula VI (wherein n is 0-5), and if desired, other phenol resin curing agent, an inorganic filler which is preferably fused silica, porous silica or secondary agglomerated silica, and a curing promotor (e.g. triphenylphosphine).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐半田ストレス性に優れた半導体封止用エポ
キシ樹脂組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an epoxy resin composition for semiconductor encapsulation that has excellent solder stress resistance.

〔従来の技術〕[Conventional technology]

半導体関連技術は近年の軽薄短小傾向より実装密度を向
上させる方向で進んできた。そのためにメモリーの集積
度の向上や、実装方法のスルーホール実装から表面実装
への移行が進んでいる。
Semiconductor-related technology has progressed in the direction of increasing packaging density in response to the recent trend toward lighter, thinner, and smaller devices. To this end, memory density is increasing and the mounting method is shifting from through-hole mounting to surface mounting.

従ってパッケージは従来DIPタイプから表面実装用と
して小型薄型のフラットパッケージ、sop。
Therefore, the package has changed from the conventional DIP type to a small and thin flat package for surface mounting, SOP.

SOJ、PLCCに変わってきており、応力によるパッ
ケージタラツクの発生、これらのクシツクによる耐湿性
の低下等の問題がある。
SOJ and PLCC have been replaced, and there are problems such as generation of package tack due to stress and reduction in moisture resistance due to these tack.

特に表面実装工程でのリードの半田付は時にパッケージ
は急激な温度変化を受け、このためにパッケージにクラ
ンクが生じる問題が大きくクローズアップされている。
In particular, when soldering leads in the surface mounting process, the package is sometimes subject to rapid temperature changes, and the problem of cranking of the package due to this is attracting attention.

これらの問題を解決するために半田付は時の熱衝撃を緩
和する目的で、熱可塑性オリゴマーの添加(特開昭62
−115849号公報)や各種シリコーン化合物の添加
(特開昭62−115850号公報、62−11665
4号公報、62−128162号公報)、更にはシリコ
ーン変性(特開昭62−136860号公報)などの手
法で対処しているがいずれも半田付は時にパッケージに
クラックが生じてしまい信転性の優れた半導体封止用エ
ポキシ樹脂組成物を得るまでには至らなかった。
In order to solve these problems, soldering requires the addition of thermoplastic oligomers (Japanese Patent Laid-Open No. 62/1999) to alleviate the thermal shock caused by soldering.
-115849) and addition of various silicone compounds (JP-A-62-115850, 62-11665)
4, 62-128162) and silicone modification (Japanese Patent Application Laid-open No. 62-136860), these methods sometimes cause cracks in the package when soldering, and the reliability is poor. However, it has not been possible to obtain an epoxy resin composition for encapsulating a semiconductor with excellent properties.

一方、耐半田ストレス性に優れた耐熱性エポキシ樹脂組
成物を得る為に樹脂系としては多官能エポキシ樹脂の使
用(特開昭62−168620号公報)等が検討されて
きたが、多官能エポキシ樹脂の使用では架橋密度が上が
り耐熱性が向上するが、特に200℃〜300℃のよう
な高温にさらされた場合においては耐半田ストレス性が
不充分であった。
On the other hand, in order to obtain heat-resistant epoxy resin compositions with excellent solder stress resistance, the use of polyfunctional epoxy resins (Japanese Unexamined Patent Publication No. 168620/1983) has been considered as a resin system. Although the use of resin increases the crosslinking density and improves heat resistance, the solder stress resistance is insufficient especially when exposed to high temperatures such as 200°C to 300°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はこのような問題に対してエポキシ樹脂として式
(1)で示される多官能エポキシ樹脂を、フェノール樹
脂硬化剤として式(II)で示されるバラキシレン変性
フェノール樹脂硬化剤(nは整数、n−0〜5) を用いることにより耐半田ストレス性が著しく優れた半
導体封止用エポキシ#B4脂組酸物を提供するところに
ある。
In order to solve these problems, the present invention uses a polyfunctional epoxy resin represented by formula (1) as an epoxy resin and a xylene-modified phenolic resin hardener represented by formula (II) as a phenol resin hardener (n is an integer, An object of the present invention is to provide an epoxy #B4 resin composition for semiconductor encapsulation which has extremely excellent solder stress resistance by using the following.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のエポキシ樹脂組成物は従来の封止用樹脂組成物
に比べて非常に優れた耐半田ストレス性を有したもので
ある。
The epoxy resin composition of the present invention has extremely superior solder stress resistance compared to conventional sealing resin compositions.

(nとmは、0以上の整数、n+m=1〜10であり、
式中のXとZで割合が3:1で存在する混合物、) 上記式(1)で表わされるエポキシ樹脂は1分子中に3
個以上のエポキシ基を有する多官能エポキシ樹脂であり
、この多官能エポキシ樹脂を用いることにより、従来の
方法では得ることの出来なかった耐半田ストレス性に非
常に優れたエポキシ樹脂組成物を得ることができる。
(n and m are integers greater than or equal to 0, n+m=1 to 10,
A mixture in which X and Z in the formula are present in a ratio of 3:1) The epoxy resin represented by the above formula (1) has 3 to 1 molecule in one molecule.
This is a polyfunctional epoxy resin having 1 or more epoxy groups, and by using this polyfunctional epoxy resin, an epoxy resin composition with extremely excellent solder stress resistance that could not be obtained by conventional methods can be obtained. Can be done.

このようなエポキシ樹脂の使用量は、これを調節するこ
とにより耐半田ストレス性を最大限に弓き出すことがで
きる。耐半田ストレス性の効果を出す為には好ましくは
、式(I)で示される多官能エポキシ樹脂をエポキシ樹
脂の50重量%以上、更に好ましくは70重四%以上の
使用が望ましい。
By adjusting the amount of epoxy resin used, the solder stress resistance can be maximized. In order to obtain the effect of solder stress resistance, it is preferable to use the polyfunctional epoxy resin represented by formula (I) in an amount of 50% by weight or more, more preferably 70% by weight or more of the epoxy resin.

50重量%未満だと架橋密度が、上がらず耐半田ストレ
ス性が不充分である。
If it is less than 50% by weight, the crosslinking density will not increase and the solder stress resistance will be insufficient.

更に式中のXとZの割合が3:1で存在する混合物であ
ることが好ましい。
Furthermore, it is preferable that the ratio of X and Z in the formula is 3:1.

この場合Xを3としたときのZの比率が、lより小さい
と、成形時の硬化性が上がらず、成形性が悪くなる傾向
があり、また比率が、1より大きいと吸水性が上がり、
半田浸漬時の熱衝撃が大きく、耐半田ストレス性が、悪
くなる傾向がある。
In this case, if the ratio of Z when X is 3 is smaller than 1, the curability during molding will not increase and the moldability will tend to deteriorate, and if the ratio is larger than 1, water absorption will increase,
Thermal shock during solder immersion is large, and solder stress resistance tends to deteriorate.

又2官能以下のエポキシ樹脂では架橋8度が、上がらず
耐熱性が劣り耐半田ストレス性の効果が、得られない。
In addition, with an epoxy resin having less than two functional groups, the crosslinking degree does not increase to 8 degrees, the heat resistance is poor, and the effect of solder stress resistance cannot be obtained.

又n+mの値は1−10の範囲が好ましい、この場合n
+mの値が1より小さい場合、硬化性が低下し、成形性
が悪くなる傾向があり、またn十mの値が10より大き
い場合流動性が低下し、成形性が悪くなる傾向がある。
Also, the value of n+m is preferably in the range of 1-10, in this case n
When the value of +m is less than 1, the curability tends to decrease and the moldability tends to deteriorate, and when the value of n0m exceeds 10, the fluidity tends to decrease and the moldability tends to deteriorate.

ここでいうエポキシ樹脂とは、エポキシ基を有するもの
全般をいう、たとえばビスフェノール型エポキシ樹脂、
ノボラック型エポキシ樹脂・トリアジン核含有エポキシ
樹脂等のことをいう。
The epoxy resin referred to here refers to all those having an epoxy group, such as bisphenol type epoxy resin,
Refers to novolac type epoxy resin, triazine core-containing epoxy resin, etc.

(nは整数、n−0〜5) 上記式(rl)で表されるフェノール樹脂硬化剤はフェ
ノールとアラルキルエーテル(α、α1−ジメトキシバ
ラキシレン)を用い、フリーゾルタラフッ反応により縮
合させて得たものであり、このバラキシレン変性フェノ
ール樹脂を用いることにより、従来の方法では得ること
の出来なかった耐半田ストレス性に非常に優れたエポキ
シ樹脂組成物を得ることができる。
(n is an integer, n-0 to 5) The phenolic resin curing agent represented by the above formula (rl) is produced by condensing phenol and aralkyl ether (α, α1-dimethoxyvaraxylene) through a free-sol Tarafluor reaction. By using this paraxylene-modified phenol resin, it is possible to obtain an epoxy resin composition with extremely excellent solder stress resistance, which could not be obtained by conventional methods.

このようなフェノール樹脂の使用量はこれを調節するこ
とにより耐半田ストレス性を最大限に引き出すことがで
きる。耐半田ストレス性の効果を出す為には、式(El
)で示されるバラキシレン変性フェノール樹脂硬化剤を
フェノール樹脂硬化剤の30Mm%以上、更に好ましく
は50重量%以上の使用が望ましい。
By adjusting the amount of such phenol resin used, the solder stress resistance can be maximized. In order to obtain the effect of solder stress resistance, the formula (El
) It is desirable to use the varaxylene-modified phenolic resin curing agent in an amount of 30 Mm% or more, more preferably 50% by weight or more of the phenolic resin curing agent.

この場合50重量%未満だと、耐水性、可撓性及びリー
ドフレームとの密着性が上がらず、耐半田ストレス性が
不充分である。
In this case, if it is less than 50% by weight, water resistance, flexibility, and adhesion to the lead frame will not improve, resulting in insufficient solder stress resistance.

nの値はO〜5の範囲が好ましい、この場合nの値が、
5より大きい場合流動性が低下し、成形性が悪くなる傾
向がある。
The value of n is preferably in the range of 0 to 5. In this case, the value of n is
When it is larger than 5, fluidity tends to decrease and moldability tends to deteriorate.

又、主鎖にバラキシレンを含まないフェノールノボラッ
ク樹脂硬化剤等では耐水性及びリードフレームとの密着
性が上がらず、熱時の水蒸気の爆発による衝撃が増加し
、耐半田ストレス性の効果が得られない。
In addition, phenol novolak resin curing agents that do not contain paraxylene in the main chain do not improve water resistance or adhesion to the lead frame, and the impact caused by explosions of steam during heating increases, making it difficult to improve solder stress resistance. I can't.

ここで併用する他のフェノール樹脂硬化剤とは、エポキ
シ樹脂と硬化反応するポリマー全般のことを言い、例え
ばフェノールノボラック樹脂、タレゾールノボラック樹
脂、ジシクロペンタジェン変性フェノール樹脂、多官能
フェノール樹脂、酸無水物といった一般名を挙げること
が出来る。
Other phenolic resin curing agents used here refer to polymers in general that cure and react with epoxy resins, such as phenol novolac resins, talesol novolac resins, dicyclopentadiene-modified phenolic resins, polyfunctional phenolic resins, and acid Common names such as anhydrides can be mentioned.

本発明に使用される無機充填材としては通常のシリカ粉
末として溶融シリカ、結晶シリカ、多孔質シリカ、2次
凝集シリカの他、アルミナ、炭酸カルシウム、炭素繊維
等の充填材全般を指し、特に溶融シリカ、多孔質シリカ
、2次凝集シリカの使用が好ましい。
Inorganic fillers used in the present invention include ordinary silica powder such as fused silica, crystalline silica, porous silica, and secondary agglomerated silica, as well as fillers in general such as alumina, calcium carbonate, and carbon fiber. Preference is given to using silica, porous silica, and secondary agglomerated silica.

本発明に使用される硬化促進剤はエポキシ基とフェノー
ル性水酸基との反応を促進するものであればよく、一般
に封止用材料に使用されているものを広く使用すること
ができ、例えばジアザビシクロウンデセン(DBU)、
トリフェニルホスフィン(TPP)、ジメチルベンジル
アミン(BDMA)や2メチルイミダゾール(2MZ)
等が単独もしくは2種類以上混合して用いられる。
The curing accelerator used in the present invention may be one that promotes the reaction between the epoxy group and the phenolic hydroxyl group, and a wide variety of those commonly used in sealing materials can be used, such as diaza. Bicycloundesene (DBU),
Triphenylphosphine (TPP), dimethylbenzylamine (BDMA) and 2methylimidazole (2MZ)
etc. may be used alone or in combination of two or more.

本発明の封止用エポキシ樹脂組成物はエポキシ樹脂、硬
化剤、無機充填材及び硬化促進剤を必須成分とするが、
これ以外に必要に応じてシランカップリング剤、ブロム
化エポキシ樹脂、二酸化アンチモン、ヘキサブロムベン
ゼン等の難燃剤、カーボンブラック、ベンガラ等の着色
剤、天然ワックス、合成ワックス等の離型剤及びシリコ
ーンオイル、ゴム等の低応力添加剤等の種々の添加剤を
適宜配合しても差し支えがない。
The epoxy resin composition for sealing of the present invention contains an epoxy resin, a curing agent, an inorganic filler, and a curing accelerator as essential components,
In addition to this, silane coupling agents, brominated epoxy resins, antimony dioxide, flame retardants such as hexabromobenzene, coloring agents such as carbon black and red iron, mold release agents such as natural waxes and synthetic waxes, and silicone oils are added as necessary. There is no problem in appropriately blending various additives such as low stress additives such as rubber and the like.

又、本発明の封止用エポキシ樹脂組成物を成形材料とし
て製造するには、エポキシ樹脂、硬化剤硬化促進剤、充
填材、その他の添加剤をミキサー等によって十分に均一
に混合した後、さらに熱ロールまたはニーダ−等で溶融
混練し、冷却後粉砕して成形材料とすることができる。
In addition, in order to produce the epoxy resin composition for sealing of the present invention as a molding material, the epoxy resin, curing agent, curing accelerator, filler, and other additives are thoroughly and uniformly mixed using a mixer or the like, and then further A molding material can be obtained by melt-kneading with a hot roll or kneader, cooling, and then pulverizing.

これらの成形材料は電子部品あるいは電機部品の封止、
被覆、絶縁等に適用することができる。
These molding materials are used for sealing electronic or electrical parts,
Can be applied to coating, insulation, etc.

〔実施例〕〔Example〕

実施例1 下記組成物 式(III)で示されるトリス(ヒドロキシアルキフェ
ニル)メタントリグリシジルエーテル15重量部 オルトクレゾールノボラックエポキシ樹脂5重量部 式(IV)で示されるバラキシレン変性フェノール樹脂 ただしn=0、l、2が20:50:30の混合物6重
量部 フェノールノボラック樹脂    4重量部溶融シリカ
粉末        68.8重量部トリフェニルホス
フィン    0.2重量部カーボンブラック    
    0.5重量部カルナバワックス       
 0.5重量部を、ミキサーで常温で混合し、70〜1
00℃で2軸ロールにより混練し、冷却後粉砕し成形材
料とした。
Example 1 Composition below 15 parts by weight of tris(hydroxyalkyphenyl)methane triglycidyl ether represented by formula (III) 5 parts by weight of ortho-cresol novolac epoxy resin Variaxylene-modified phenolic resin represented by formula (IV) where n=0 , l, 2 in a ratio of 20:50:30 6 parts by weight Phenol novolak resin 4 parts by weight Fused silica powder 68.8 parts by weight Triphenylphosphine 0.2 parts by weight Carbon black
0.5 parts by weight carnauba wax
Mix 0.5 parts by weight with a mixer at room temperature to 70-1
The mixture was kneaded using twin-screw rolls at 00°C, cooled, and then ground to obtain a molding material.

得られた成形材料をタブレット化し、低圧トランスファ
ー成形機にて175°C170kg/cd、120秒の
条件で半田クラック試験用として6×6IIImのチッ
プを52pQFPに封止し、又半田耐湿性試験用として
3X6mのチップを16ps。
The obtained molding material was made into a tablet, and a 6×6IIIm chip was sealed in a 52pQFP for a solder crack test using a low-pressure transfer molding machine at 175°C, 170 kg/cd, and 120 seconds, and also for a solder moisture resistance test. 16ps for 3x6m chip.

Pに封止した。It was sealed in P.

封止したテスト用素子について下記の半田クランク試験
及び半田耐湿性試験をおこなった。
The following solder crank test and solder moisture resistance test were conducted on the sealed test element.

半田クランク試験;封止したテスト用素子を85℃、8
5%RHの環境下で48Hrおよび72Hr処理し、そ
の後260℃の半田槽に10秒間浸浸漬後微鏡で外部ク
ランクを観察した。
Solder crank test: sealed test element at 85℃, 8
It was processed for 48 hours and 72 hours in an environment of 5% RH, and then immersed in a solder bath at 260° C. for 10 seconds, and then the external crank was observed with a microscope.

半田耐湿性試験:封止したテスト用素子を85°Cで、
85%RHの環境下で?2Hr処理し、その後260 
’Cの半田槽にlO秒間浸漬後プレッシャークツカー試
験(125°C1100%RH)を行い回路のオープン
不良を測定した。
Solder moisture resistance test: The sealed test element was heated to 85°C.
Under an environment of 85% RH? Treated for 2 hours, then 260
After being immersed in a solder bath of 'C for 10 seconds, a pressure couture test (125°C, 1100% RH) was performed to measure open circuit defects.

実施例2〜5 第1表の処方に従って配合し、実施例1と同様にして成
形材料を得た。この成形材料で試験用の封止した成形品
を得、この成形品を用いて実施例1と同様に半田クラン
ク試験及び半田耐湿性試験を行なった。試験結果を第1
表に示す。
Examples 2 to 5 Molding materials were obtained in the same manner as in Example 1 by blending according to the formulations in Table 1. A sealed molded product for testing was obtained using this molding material, and a solder crank test and a solder moisture resistance test were conducted in the same manner as in Example 1 using this molded product. Test results first
Shown in the table.

比較例2〜6 第1表の処方に従って配合し、実施例1と同様にして成
形材料を得た。この成形材料で試験用の封止した成形品
を得、この成形品を用いて実施例1と同様に半田クラン
ク試験及び半田耐湿試験を行なった。試験結果を第1表
に示す。
Comparative Examples 2 to 6 Molding materials were obtained in the same manner as in Example 1 by blending according to the formulations in Table 1. A sealed molded product for testing was obtained using this molding material, and a solder crank test and a solder moisture resistance test were conducted in the same manner as in Example 1 using this molded product. The test results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明に従うと従来技術では得ることのできなかった耐
熱性、耐水性及び、可撓性を有するエポキシ樹脂組成物
を得ることができるので、半田付は工程による急激な温
度変化による熱ストレスを受けたときの耐クラツク性に
非常に優れ、更に耐湿性が良好なことから電子、電機部
品の封止用、被覆用絶縁用等に用いた場合、特に表面実
装パッケージに搭載された高集積大型チップICにおい
て信幀性が非常に必要とする製品について好適である。
According to the present invention, it is possible to obtain an epoxy resin composition that has heat resistance, water resistance, and flexibility that could not be obtained using conventional techniques. It has excellent crack resistance when exposed to heat, and has good moisture resistance, so it can be used for sealing electronic and electrical parts, coating insulation, etc., especially for highly integrated large chips mounted on surface mount packages. It is suitable for products that require high reliability in IC.

Claims (1)

【特許請求の範囲】[Claims] (1)(A)式( I )の化学構造式で示される多官能
エポキシ樹脂 ▲数式、化学式、表等があります▼・・・( I ) X;▲数式、化学式、表等があります▼、▲数式、化学
式、表等があります▼ Y;▲数式、化学式、表等があります▼、Z;▲数式、
化学式、表等があります▼ (nとmは、0以上の整数、n+m=1〜10であり、
式中のXとZの割合が3:1で存在する混合物。)を総
エポキシ樹脂量に対して50〜100重量%を含むエポ
キシ樹脂 (B)式(II)の化学構造式で示されるパラキシレン変
性フェノール樹脂硬化剤 ▲数式、化学式、表等があります▼・・・(II) (nは整数、n=0〜5) を総フェノール樹脂硬化剤量に対して30〜100重量
%を含むフェノール樹脂硬化剤 (C)無機充填材 (D)硬化促進剤 を必須成分とすることを特徴とするエポキシ樹脂組成物
(1) (A) Multifunctional epoxy resin represented by the chemical structural formula (I)▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・(I)X;▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Y; ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, Z; ▲ Mathematical formulas,
There are chemical formulas, tables, etc. ▼ (n and m are integers greater than or equal to 0, n + m = 1 to 10,
A mixture in which the ratio of X and Z in the formula is 3:1. ) containing 50 to 100% by weight based on the total amount of epoxy resin (B) A paraxylene-modified phenolic resin curing agent represented by the chemical structural formula (II) ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼・... (II) (n is an integer, n = 0 to 5) A phenolic resin curing agent containing 30 to 100% by weight based on the total amount of phenolic resin curing agent (C) Inorganic filler (D) Curing accelerator An epoxy resin composition characterized in that it is an essential component.
JP30876988A 1988-12-08 1988-12-08 Epoxy resin composition Expired - Fee Related JP2675108B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP30876988A JP2675108B2 (en) 1988-12-08 1988-12-08 Epoxy resin composition
MYPI89001694A MY104894A (en) 1988-12-08 1989-12-04 Epoxy resin composition for semiconductor sealing.
US07/444,919 US5001174A (en) 1988-12-08 1989-12-04 Epoxy resin composition for semiconductor sealing employing triphenylmethane based novolac epoxy resin
SG1996000866A SG43788A1 (en) 1988-12-08 1989-12-08 Epoxy resin composition for semiconductor sealing
DE68928583T DE68928583T2 (en) 1988-12-08 1989-12-08 Epoxy resin composition for the sealing of semiconductors
EP89312807A EP0372983B1 (en) 1988-12-08 1989-12-08 Epoxy resin composition for semiconductor sealing
KR1019890018189A KR0144007B1 (en) 1988-12-08 1989-12-08 Epoxy resin composition for simiconductor sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30876988A JP2675108B2 (en) 1988-12-08 1988-12-08 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPH02155914A true JPH02155914A (en) 1990-06-15
JP2675108B2 JP2675108B2 (en) 1997-11-12

Family

ID=17985079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30876988A Expired - Fee Related JP2675108B2 (en) 1988-12-08 1988-12-08 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JP2675108B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451548A (en) * 1990-06-19 1992-02-20 Nitto Denko Corp Semiconductor device
US5319005A (en) * 1992-01-27 1994-06-07 Hitachi Chemical Co., Ltd. Epoxy resin molding material for sealing of electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451548A (en) * 1990-06-19 1992-02-20 Nitto Denko Corp Semiconductor device
US5319005A (en) * 1992-01-27 1994-06-07 Hitachi Chemical Co., Ltd. Epoxy resin molding material for sealing of electronic component

Also Published As

Publication number Publication date
JP2675108B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
JPH02155914A (en) Epoxy resin composition
JP2991849B2 (en) Epoxy resin composition
JPH04218523A (en) Epoxy resin composition
JPH0232115A (en) Epoxy resin composition for sealing semiconductor
JPH01152151A (en) Epoxy resin composition
JPH02219814A (en) Epoxy resin composition
JPH0275620A (en) Epoxy resin composition for sealing semiconductor
JP2823633B2 (en) Epoxy resin composition
JP2680389B2 (en) Epoxy resin composition
JP3008981B2 (en) Epoxy resin composition
JPH03195722A (en) Epoxy resin composition
JPH0232116A (en) Epoxy resin composition for sealing semiconductor
JPH02219816A (en) Epoxy resin composition
JPH0275619A (en) Epoxy resin composition for sealing semiconductor
JP2690992B2 (en) Epoxy resin composition
JPH02173033A (en) Epoxy resin composition for semiconductor sealing
JP2703057B2 (en) Epoxy resin composition
JPH01268713A (en) Epoxy resin composition for sealing semiconductor
JPH03195723A (en) Epoxy resin composition
JPH03195721A (en) Epoxy resin composition
JPH0326717A (en) Epoxy resin composition
JPH01275626A (en) Epoxy resin composition for semiconductor sealing
JPH02187422A (en) Epoxy resin composition
JPH03128920A (en) Epoxy resin composition
JPH0328219A (en) Epoxy resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees