JPH03195721A - Epoxy resin composition - Google Patents

Epoxy resin composition

Info

Publication number
JPH03195721A
JPH03195721A JP33294389A JP33294389A JPH03195721A JP H03195721 A JPH03195721 A JP H03195721A JP 33294389 A JP33294389 A JP 33294389A JP 33294389 A JP33294389 A JP 33294389A JP H03195721 A JPH03195721 A JP H03195721A
Authority
JP
Japan
Prior art keywords
epoxy resin
formula
curing agent
resistance
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33294389A
Other languages
Japanese (ja)
Inventor
Naoki Mogi
直樹 茂木
Shigeru Naruse
成瀬 滋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP33294389A priority Critical patent/JPH03195721A/en
Publication of JPH03195721A publication Critical patent/JPH03195721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain the title composition having excellent thermal stress resistance applied to IC package in soldering, cracking resistance and water-vapor resistance comprising a specific epoxy resin, a specific curing agent of phenol resin, an inorganic filler and a curing promoter as essential components. CONSTITUTION:The objective composition comprising (A) an epoxy resin containing 30-100wt.%, preferably >=60wt.% based on total amounts of epoxy resins of a biphenyl type epoxy resin shown by formula I (R1 to R6 are H, halogen or alkyl); (B) a curing agent of phenol resin, containing 50-100%, preferably >=70% based on total amounts of curing agents of phenol resin of a trihydric curing agent of phenol resin shown by formula II (R1 to R11 are H, halogen or alkyl), (C) an inorganic filler (preferably fused silica powder) and (D) a curing promoter (e.g. diazabicycloundecene) as essential components.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、最近の表面実装化における半田付け時でのI
Cパッケージに受ける耐熱ストレス性に優れた半導体封
止用エポキシ樹脂 組成物に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the I/O during soldering in recent surface mounting.
The present invention relates to an epoxy resin composition for semiconductor encapsulation that has excellent resistance to heat stress applied to C packages.

〔従来の技術〕[Conventional technology]

従来、ダイオード、トランジスタ、集積回路等の電子部
品を熱硬化性樹脂で封止しているが、特に集積回路では
耐熱性、耐湿性に優れた0−タレゾールノボラックエポ
キシ樹脂をノボラック型フェノール樹脂で硬化させたエ
ポキシ樹脂が用いられている。
Conventionally, electronic components such as diodes, transistors, and integrated circuits are sealed with thermosetting resins, but especially for integrated circuits, 0-talesol novolac epoxy resin, which has excellent heat resistance and moisture resistance, is used as a novolac type phenolic resin. A hardened epoxy resin is used.

ところが近年、集積回路の高集積化に伴いチップがだん
だん大型化し、かつパッケージは従来のDIPタイプか
ら表面実装化された小型、薄型のフラットパッケージ、
SOP、SOJ、PLCCに変わってきている。
However, in recent years, as integrated circuits have become more highly integrated, chips have become larger and larger, and packages have changed from the conventional DIP type to surface-mounted small, thin flat packages.
It is changing to SOP, SOJ, and PLCC.

即ち大型チップを小型で薄いパッケージに封入すること
により、応力によりクラック発生、これらのクラックに
よる耐湿性の低下等の問題が大きくクローズアップされ
てきている。
That is, by enclosing a large chip in a small and thin package, problems such as the occurrence of cracks due to stress and a decrease in moisture resistance due to these cracks have been brought into focus.

詩に半田づけの工程において急激に200℃以上の高温
にされされることによりパッケージの割れや樹脂とチッ
プの剥離により耐湿性が劣化してしまうといった問題点
がでてきている。
Problems have arisen, such as the package cracking and the resin peeling off from the chip, resulting in deterioration of moisture resistance due to the sudden high temperature of over 200°C during the soldering process.

ている。ing.

これらの問題を解決するために半田付は時の熱衝撃を緩
和する目的で、熱可塑性オリゴマーの添加(特開昭62
−115849号公報)や各種シリコーン化合物の添加
(特開昭62−11585号公報、62−116654
号公報62−128162号公報)、更にはシリコーン
変性(特開昭62−136860号公報)などの手法で
対処しているがいずれも半田付は時にパッケージにクラ
ンクが生じてしまい信鯨性の優れた半導体封止用エポキ
シ樹脂組成物を得るまでには至らなかった。
In order to solve these problems, soldering requires the addition of thermoplastic oligomers (Japanese Patent Laid-Open No. 62/1999) to alleviate the thermal shock caused by soldering.
-115849) and addition of various silicone compounds (JP-A-62-11585, 62-116654)
62-128162) and silicone modification (Japanese Unexamined Patent Publication No. 62-136860), but in both cases, soldering sometimes causes cracks in the package and does not have good reliability. However, it has not been possible to obtain an epoxy resin composition for semiconductor encapsulation.

一方、半田付は時の耐熱ストレス性つまり耐半田ストレ
ス性に優れた半導体封止用エポキシ樹脂組成物を得るた
めに、樹脂系としてビフェニル型エポキシ樹脂の使用(
特開昭64−65116号公報)等が、検討されてきた
がビフェニル型エポキシ樹脂の使用によりリードフレー
ムとの密着性及び低吸水性が向上し、耐半田ストレス性
の向上、特にクラック発生が低減するが、耐熱性が劣る
ため特に250°C以上のような高温では耐半田ストレ
ス性が不十分である。
On the other hand, in order to obtain an epoxy resin composition for semiconductor encapsulation that has excellent resistance to heat stress during soldering, that is, resistance to soldering stress, biphenyl-type epoxy resin is used as the resin system (
The use of biphenyl-type epoxy resin improves adhesion with the lead frame and low water absorption, improves solder stress resistance, and particularly reduces crack generation. However, since the heat resistance is poor, the solder stress resistance is insufficient especially at high temperatures such as 250° C. or higher.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、このような問題に対してエポキシ樹脂として
ビフェニル型エポキシ樹脂を用い、更に耐熱性を向上さ
せるために、フェノール樹脂硬化剤として3官能フエノ
ール樹脂硬化剤を用いることにより半田付は時の耐熱ス
トレス性が著しく優れた半導体封止用エポキシ樹脂組成
物を提供するところにある。
The present invention solves these problems by using a biphenyl-type epoxy resin as the epoxy resin, and in order to further improve heat resistance, using a trifunctional phenolic resin curing agent as the phenolic resin curing agent, which reduces soldering time. An object of the present invention is to provide an epoxy resin composition for semiconductor encapsulation that has extremely excellent heat stress resistance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のエポキシ樹脂組成物は、エポキシ樹脂として下
記式〔I〕で示される構造のビフェニル型エポキシ樹脂 RI  RsRy  Rs (式中のR,−Raは水素、ハロゲン、アルキル基の中
から選択される同一もしくは異なる原子または基)を総
エポキシ樹脂量に対して30〜100重量%含むエポキ
シ樹脂とフェノール樹脂硬化剤として下記式(II)で
示される3官能フエノール樹脂硬化剤 υn (式中のRI−Ra+は水素、ハロゲン、アルキル基の
中から選択される同一もしくは異なる原子または基)を
総フェノール樹脂硬化剤量に対して50〜100重量%
含むフェノール樹脂硬化剤と無機充填剤および硬化促進
剤からなることを特徴とし、従来のエポキシ樹脂組成物
に比べ、非常に優れた耐半田ストレス性を有するもので
ある。
The epoxy resin composition of the present invention is a biphenyl-type epoxy resin RI RsRy Rs having a structure represented by the following formula [I] as an epoxy resin (R and -Ra in the formula are selected from hydrogen, halogen, and an alkyl group). The trifunctional phenolic resin curing agent υn (RI- in the formula Ra+ is the same or different atom or group selected from hydrogen, halogen, alkyl group) from 50 to 100% by weight based on the total amount of phenolic resin curing agent.
It is characterized by comprising a phenolic resin curing agent, an inorganic filler, and a curing accelerator, and has extremely superior solder stress resistance compared to conventional epoxy resin compositions.

〔作 用〕[For production]

式(r )の構造で示されるビフェニル型エポキシ樹脂
は1分子中に2つのエポキシ基を有する2官能性エポキ
シ樹脂である。特徴としては溶融粘度が低く、トランス
ファー成形時の流動性に優れること。またリードフレー
ムとの密着性及び低吸水性に優れるなどの特長も有する
。特にリードフレームとの密着性及び低吸水性より耐半
田ストレス性に良好な結果を示す。このビフェニル型エ
ポキシ樹脂の使用量はこれを311節することにより耐
半田ストレス性を最大限に引き出すことができる。
The biphenyl type epoxy resin represented by the structure of formula (r) is a bifunctional epoxy resin having two epoxy groups in one molecule. Its characteristics include low melt viscosity and excellent fluidity during transfer molding. It also has features such as excellent adhesion to lead frames and low water absorption. In particular, it shows good results in solder stress resistance due to adhesion with lead frames and low water absorption. By setting the amount of biphenyl type epoxy resin to 311, the solder stress resistance can be maximized.

耐半田ストレス性の効果を出すためには、式〔I〕で示
されるビフェニル型エポキシ樹脂を総エポキシ樹脂量の
30重量%以上、好ましくは60重量%以上の使用が望
ましい。30重量%未満だとリードフレームとの密着性
及び低吸水性が上がらず耐半田ストレス性が不充分であ
る。更に式中のR5−R4はメチル基、R3〜R,は水
素原子が好ましい。
In order to obtain the effect of solder stress resistance, it is desirable to use the biphenyl type epoxy resin represented by formula [I] in an amount of 30% by weight or more, preferably 60% by weight or more of the total amount of epoxy resin. If it is less than 30% by weight, the adhesion to the lead frame and low water absorption will not be improved and the solder stress resistance will be insufficient. Furthermore, R5-R4 in the formula is preferably a methyl group, and R3-R are preferably hydrogen atoms.

式(’ I )で示されるビフェニル型エポキシ樹脂以
外に他のエポキシ樹脂を併用する場合、用いるエポキシ
樹脂とはエポキシ基を有するポリマー全般をいう。
When other epoxy resins are used in combination with the biphenyl-type epoxy resin represented by formula ('I), the epoxy resins used refer to all polymers having epoxy groups.

たとえばビスフェニル型エポキシ樹脂、タレゾールノボ
ラック型エポキシ樹脂、フェノールノボラック型エポキ
シ樹脂、及びトリフエノールメタン型エポキシ樹脂、ア
ルキル変性トリフエノールメタン型エポキシ樹脂等の3
官能型エポキシ樹脂、トリアジン核含有エポキシ樹脂等
のことをいう。
For example, bisphenyl type epoxy resin, Talesol novolac type epoxy resin, phenol novolac type epoxy resin, triphenolmethane type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, etc.
Refers to functional epoxy resins, triazine core-containing epoxy resins, etc.

式(I[)で示される構造の3官能フエノール樹脂硬化
剤は一分子中に3個の水酸基を有するフェノール樹脂硬
化剤である。その特徴はエポキシ樹脂との硬化物で架橋
密度が向上し、耐熱性つまりガラス転移温度が向上する
。従って最近の表面実装化に対する半田付は時での耐半
田ストレス性に好適である。
The trifunctional phenolic resin curing agent having the structure represented by formula (I[) is a phenolic resin curing agent having three hydroxyl groups in one molecule. Its characteristics are that the cured product with epoxy resin improves crosslinking density and heat resistance, that is, glass transition temperature. Therefore, soldering for recent surface mounting is suitable for resistance to solder stress over time.

この3官能フエノール樹脂硬化剤の使用量は、これを調
節することにより耐半田ストレス性を最大限に引き出す
ことができる。耐半田ストレス性の効果を出す為には式
(II)で示される3官能フエノール樹脂硬化剤を総フ
ェノール樹脂硬化剤量の50重量%以上、好ましくは7
0重量%以上の使用が望ましい。50重量%未満だと、
架橋密度つまり耐熱性が上がらず、耐半田ストレス性が
不充分である。更に式中のRt 、Rt 、R4〜R1
、R1゜、R8は水素原子、83% R@ 、R9はメ
チル基が好ましい。また2官能以下のフェノール樹脂硬
化剤では架橋密度が上がらず、耐熱性が劣り耐半田スト
レス性が低下する傾向がある。
By adjusting the amount of the trifunctional phenolic resin curing agent used, the solder stress resistance can be maximized. In order to achieve the effect of solder stress resistance, the trifunctional phenolic resin curing agent represented by formula (II) should be used in an amount of 50% by weight or more, preferably 7% by weight of the total amount of phenolic resin curing agent.
It is desirable to use 0% by weight or more. If it is less than 50% by weight,
The crosslinking density, that is, the heat resistance does not increase, and the solder stress resistance is insufficient. Furthermore, Rt , Rt , R4 to R1 in the formula
, R1° and R8 are preferably hydrogen atoms, and 83% R@ and R9 are preferably methyl groups. In addition, a phenolic resin curing agent having less than two functional groups does not increase the crosslinking density, and tends to have poor heat resistance and low solder stress resistance.

式(II)で示される3官能フエノール樹脂硬化剤以外
に他のフェノール樹脂硬化剤を併用する場合、用いるフ
ェノール樹脂硬化剤とはフェノール性水酸基を有するポ
リマー全般をいう、たとえばフェノールノボラック樹脂
、クレゾールノボラック樹脂、ジシクロペンタジェン変
性フェノール樹脂、ジシクロペンタジェン変性フェノー
ル樹脂とフェノールノボラック及びクレゾールノボラッ
ク樹脂との共重合物、バラキシレン変性フェノール樹脂
等を用いることができる。
When using other phenolic resin curing agents in addition to the trifunctional phenolic resin curing agent represented by formula (II), the phenolic resin curing agent used refers to any polymer having a phenolic hydroxyl group, such as phenol novolak resin, cresol novolac, etc. Resins, dicyclopentadiene-modified phenolic resins, copolymers of dicyclopentadiene-modified phenolic resins with phenol novolak and cresol novolak resins, varaxylene-modified phenolic resins, and the like can be used.

本発明に用いる無機充填材としては、溶融シリカ粉末、
球状シリカ粉末、結晶シリカ粉末、2次凝集シリカ粉末
、多孔質シリカ粉末、2次凝集シリカ粉末または多孔質
シリカ粉末を粉砕したシリカ粉末、アルミナ等が挙げら
れ、特に溶融シリカ粉末が好ましい。
Inorganic fillers used in the present invention include fused silica powder,
Examples include spherical silica powder, crystalline silica powder, secondary agglomerated silica powder, porous silica powder, silica powder obtained by pulverizing secondary agglomerated silica powder or porous silica powder, alumina, etc., and fused silica powder is particularly preferred.

本発明に使用される硬化促進剤はエポキシ基とフェノー
ル性水酸基との反応を促進するものであればよく、一般
に封止用材料に使用されているものを広く使用すること
ができ、例えばジアザビシクロウンデセン(DBU)、
トリフェニルホスフィン(TPP)、ジメチルベンジル
アミン(BDMA)や2メチルイミダゾール(2MZ)
等が単独もしくは2種類以上混合して用いられる。
The curing accelerator used in the present invention may be one that promotes the reaction between the epoxy group and the phenolic hydroxyl group, and a wide variety of those commonly used in sealing materials can be used, such as diaza. Bicycloundesene (DBU),
Triphenylphosphine (TPP), dimethylbenzylamine (BDMA) and 2methylimidazole (2MZ)
etc. may be used alone or in combination of two or more.

本発明の封止用エポキシ樹脂組成物はエポキシ樹脂、硬
化剤、無機充填材及び硬化促進剤を必須成分とするが、
これ以外に必要に応じてシランカップリング剤、ブロム
化エポキシ樹脂、二酸化アンチモン、ヘキサブロムベン
ゼン等の難燃剤、カーボンブランク、ベンガラ等の着色
剤、天然ワックス、合成ワックス等の離型剤及びシリコ
ーンオイル、ゴム等の低応力添加剤等の種々の添加剤を
適宜配合しても差し支えがない。
The epoxy resin composition for sealing of the present invention contains an epoxy resin, a curing agent, an inorganic filler, and a curing accelerator as essential components,
In addition, if necessary, silane coupling agents, brominated epoxy resins, antimony dioxide, flame retardants such as hexabromobenzene, carbon blanks, coloring agents such as red iron, mold release agents such as natural wax and synthetic wax, and silicone oil. There is no problem in appropriately blending various additives such as low stress additives such as rubber and the like.

又、本発明の封止用エポキシ樹脂組成物を成形材料とし
て製造するには、エポキシ樹脂、硬化剤、硬化促進剤、
充填剤、その他の添加剤をミキサー等によって十分に均
一に混合した後、さらに熱ロールまたはニーグー等で溶
融混練し、冷却後粉砕して成形材料とすることができる
。これらの成形材料は電子部品あるいは電気部品の封止
、被覆、絶縁等に適用することができる。
In addition, in order to produce the epoxy resin composition for sealing of the present invention as a molding material, an epoxy resin, a curing agent, a curing accelerator,
After the filler and other additives are thoroughly and uniformly mixed using a mixer or the like, the mixture can be further melt-kneaded using a hot roll or a niegoo, cooled, and then pulverized to obtain a molding material. These molding materials can be applied to sealing, covering, insulating, etc. electronic or electrical components.

実施例1 下記組成物、 式(I[[]で示されるビフェニル型エポキシ樹脂16
重量部 ffC H3 オルソクレゾールノボラックエポキシ樹脂4重量部 式(IV)で示される3官能フ工ノール樹脂8重量部 フェノールノボラック樹脂 溶融シリカ粉末 トリフェニルホスフィン カーボンブラック カルナバワックス を、ミキサーで常温で混合し、 2重量部 68.8重量部 0.2重量部 0.5重量部 0.5重量部 70〜100°Cで 2軸ロールにより混練し、冷却後粉砕した成形材料とし
た。
Example 1 The following composition, biphenyl-type epoxy resin 16 represented by the formula (I[[]
Part by weight ffC H3 Orthocresol novolac epoxy resin 4 parts by weight Trifunctional phenolic resin represented by formula (IV) 8 parts by weight Phenol novolac resin Fused silica powder Triphenylphosphine carbon black Carnauba wax are mixed at room temperature with a mixer, 2 parts by weight 68.8 parts by weight 0.2 parts by weight 0.5 parts by weight 0.5 parts by weight The mixture was kneaded with twin-screw rolls at 70 to 100°C, cooled, and then pulverized to give a molding material.

得られた成形材料をタブレット化し、低圧トランスファ
ー成形機にて175°C170kg/d、120秒の条
件で半田クランク試験用として6×6国のチップを52
Pパツケージに封止し、又半田耐湿性試験用として3×
611Ifflのチップを16pSOPパツケージに封
止した。
The obtained molding material was made into tablets, and 52 6×6 country chips were molded for solder crank test using a low-pressure transfer molding machine at 175°C, 170 kg/d, and 120 seconds.
It is sealed in a P package, and also 3x for solder moisture resistance test.
A 611Iffl chip was sealed in a 16p SOP package.

封止したテスト用素子について下記の半田クラック試験
及び半田耐湿性試験をおこなった。
The following solder crack test and solder moisture resistance test were conducted on the sealed test device.

半田クラック試験:封止したテスト用素子を85°C1
85%RHの環境下で48Hrおよび72Hr処理し、
その後250°Cの半田槽に10秒間浸漬後、顕微鏡で
外部クランクを観察した。半田耐湿性試験:封止したテ
スト用素子を85°Cで、85%RHの環境下で72H
r処理し、その後250゛Cの半田槽に10秒間浸漬後
、プレッシャークツカー試験(125°C1100%R
H)を行い回路のオープン不良を測定した。
Solder crack test: sealed test element at 85°C1
Treated for 48 hours and 72 hours in an environment of 85% RH,
Thereafter, the external crank was immersed in a solder bath at 250°C for 10 seconds, and then observed under a microscope. Solder moisture resistance test: The sealed test element was heated at 85°C and 85% RH for 72 hours.
R treatment, then immersed in a 250°C solder bath for 10 seconds, and then subjected to a pressure cooker test (125°C 1100%R).
H) was performed to measure open defects in the circuit.

試験結果を第1表に示す。The test results are shown in Table 1.

実施例2〜6 第1表の処方に従って配合し、実施例1と同様にして成
形材料を得た。この成形材料で試験用の封止した成形品
を得、この成形品を用いて実施例1と同様に半田クラン
ク試験及び半田耐湿性試験を行なった。試験結果を第1
表に示す。
Examples 2 to 6 Molding materials were obtained in the same manner as in Example 1 by blending according to the formulations in Table 1. A sealed molded product for testing was obtained using this molding material, and a solder crank test and a solder moisture resistance test were conducted in the same manner as in Example 1 using this molded product. Test results first
Shown in the table.

比較例1〜6 第1表の処方に従って配合し、実施例1と同様にして成
形材料を得た。この成形材料で試験用の封止した成形品
を得、この成形品を用いて実施例1と同様に半田クラン
ク試験及び半田耐湿性試験を行った。試験結果を第1表
に示す。
Comparative Examples 1 to 6 Molding materials were obtained in the same manner as in Example 1 by blending according to the formulations in Table 1. A sealed molded product for testing was obtained using this molding material, and a solder crank test and a solder moisture resistance test were conducted in the same manner as in Example 1 using this molded product. The test results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

本発明に従うと従来技術では得ることのできなかったリ
ードフレームとの密着性、低吸水性及び耐熱性を有する
エポキシ樹脂組成物を得ることができるので、半田付は
工程による急激な温度変化による熱ストレスを受けたと
きの耐クラツク性に非常に優れ、更に耐湿性が良好なこ
とから電子、電気部品の封止用、被覆用、絶縁用等に用
いた場合、特に表面実装パッケージに搭載された高集積
大型チップICにおいて偉績性が非常に必要とする製品
について好適である。
According to the present invention, it is possible to obtain an epoxy resin composition that has adhesion to lead frames, low water absorption, and heat resistance, which could not be obtained using conventional techniques. It has excellent crack resistance when subjected to stress, and also has good moisture resistance, so when used for sealing, covering, and insulating electronic and electrical components, it is especially suitable for use in surface mount packages. It is suitable for products that require high performance in highly integrated large chip ICs.

Claims (1)

【特許請求の範囲】[Claims] (1)(A)下記式〔 I 〕で示されるビフェニル型エ
ポキシ樹脂 ▲数式、化学式、表等があります▼〔 I 〕 (式中のR_1〜R_8は水素、ハロゲン、アルキル基
の中から選択される同一もしくは異なる原子または基)
を総エポキシ樹脂量に対して30〜100重量%含むエ
ポキシ樹脂。 (B)下記式〔II〕で示される3官能フェノール樹脂硬
化剤 ▲数式、化学式、表等があります▼〔II〕 (式中R_1〜R_1_1は水素、ハロゲン、アルキル
基の中から選択される同一もしくは異なる原子または基
)を総フェノール樹脂硬化剤量に対して50〜100重
量%含むフェノール樹脂硬化剤。 (C)無機充填剤、および (D)硬化促進剤。 を必須成分とする半導体封止用エポキシ樹脂組成物。
(1) (A) Biphenyl-type epoxy resin represented by the following formula [I] ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [ I ] (R_1 to R_8 in the formula are selected from hydrogen, halogen, and alkyl groups) (same or different atoms or groups)
An epoxy resin containing 30 to 100% by weight based on the total amount of epoxy resin. (B) Trifunctional phenolic resin curing agent represented by the following formula [II] ▲ Numerical formula, chemical formula, table, etc. are available ▼ [II] (In the formula, R_1 to R_1_1 are the same selected from hydrogen, halogen, and alkyl group) or different atoms or groups) from 50 to 100% by weight based on the total amount of phenolic resin curing agent. (C) an inorganic filler, and (D) a curing accelerator. An epoxy resin composition for semiconductor encapsulation which has as an essential component.
JP33294389A 1989-12-25 1989-12-25 Epoxy resin composition Pending JPH03195721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33294389A JPH03195721A (en) 1989-12-25 1989-12-25 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33294389A JPH03195721A (en) 1989-12-25 1989-12-25 Epoxy resin composition

Publications (1)

Publication Number Publication Date
JPH03195721A true JPH03195721A (en) 1991-08-27

Family

ID=18260541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33294389A Pending JPH03195721A (en) 1989-12-25 1989-12-25 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPH03195721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06107911A (en) * 1992-09-24 1994-04-19 Sumitomo Bakelite Co Ltd Resin composition for semiconductor sealing use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06107911A (en) * 1992-09-24 1994-04-19 Sumitomo Bakelite Co Ltd Resin composition for semiconductor sealing use

Similar Documents

Publication Publication Date Title
JP2991849B2 (en) Epoxy resin composition
JP2823633B2 (en) Epoxy resin composition
JPH01152151A (en) Epoxy resin composition
JPH03195721A (en) Epoxy resin composition
JPH03195722A (en) Epoxy resin composition
JPH0232115A (en) Epoxy resin composition for sealing semiconductor
JPH07173253A (en) Epoxy resin composition
JP3093051B2 (en) Epoxy resin composition
JP3255376B2 (en) Epoxy resin composition
JP2951089B2 (en) Epoxy resin composition
JP3093050B2 (en) Epoxy resin composition
JP2690992B2 (en) Epoxy resin composition
JPH02219816A (en) Epoxy resin composition
JP3004454B2 (en) Resin composition
JPH07173255A (en) Epoxy resin composition
JPH02155914A (en) Epoxy resin composition
JPH03195723A (en) Epoxy resin composition
JPH0232116A (en) Epoxy resin composition for sealing semiconductor
JPH03198353A (en) Manufacture of resin seal type semiconductor device
JPH05160300A (en) Epoxy resin composition
JPH04103619A (en) Epoxy resin composition
JPH0275620A (en) Epoxy resin composition for sealing semiconductor
JPH0559149A (en) Epoxy resin composition
JPH05343570A (en) Epoxy resin composition
JPH0328219A (en) Epoxy resin composition