JPH0574713A - Manufacture of amorphous semiconductor thin film - Google Patents

Manufacture of amorphous semiconductor thin film

Info

Publication number
JPH0574713A
JPH0574713A JP3236402A JP23640291A JPH0574713A JP H0574713 A JPH0574713 A JP H0574713A JP 3236402 A JP3236402 A JP 3236402A JP 23640291 A JP23640291 A JP 23640291A JP H0574713 A JPH0574713 A JP H0574713A
Authority
JP
Japan
Prior art keywords
gas
film
thin film
semiconductor thin
amorphous semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3236402A
Other languages
Japanese (ja)
Inventor
Takeshi Ishikawa
岳史 石川
Ichiro Yoshida
一郎 吉田
Kazuhiko Yoshida
一彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP3236402A priority Critical patent/JPH0574713A/en
Publication of JPH0574713A publication Critical patent/JPH0574713A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To provide the manufacturing method for an amorphous semiconductor thin film having excellent productivity and no irregularity in the face direction of characteristics. CONSTITUTION:This semiconductor thin film is formed by alternately repeating a film forming process, wherein an amorphous semiconductor thin film is formed on a substrate 4 by introducing raw gas across an electrode couple (gas dissociation device) 1 opposing to the film-forming substrate 4 in a film-forming chamber 10, and a chemical annealing process in which the introduction of raw gas is shut out and atomlike hydrogen is grown by introducing hydrogen gas. Both film formation and chemical annealing can be conducted by merely switching gas by a gas dissociation device, and productivity can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非晶質半導体薄膜の製造
方法に関し、例えばアモルファスシリコン太陽電池など
に採用されるアモルファスシリコン薄膜の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an amorphous semiconductor thin film, and more particularly to a method for manufacturing an amorphous silicon thin film used in an amorphous silicon solar cell or the like.

【0002】[0002]

【従来の技術】アモルファスシリコン薄膜には光照射に
よって光導電率が低下する光劣化と呼ばれる問題があ
り、特開平3−32019号公報は、成膜室で非晶質半
導体薄膜を成膜し、次にこの非晶質半導体薄膜を改質室
に移送し、この改質室で非晶質半導体薄膜表面を原子状
水素雰囲気に曝して該表面を化学アニ−ルすることを開
示している。
2. Description of the Related Art An amorphous silicon thin film has a problem called photodegradation in which the photoconductivity is lowered by irradiation with light. Japanese Patent Laid-Open No. 3-32019 discloses that an amorphous semiconductor thin film is formed in a film forming chamber. Then, it is disclosed that the amorphous semiconductor thin film is transferred to a reforming chamber, and the surface of the amorphous semiconductor thin film is exposed to an atomic hydrogen atmosphere in the reforming chamber to chemically anneal the surface.

【0003】また、固体物理誌,Vol.26,No.
1,1991,43〜49頁は、単一のチャンバに非晶
質半導体薄膜成膜用の成膜装置と、化学アニ−ル用のマ
イクロ波プラズマ装置とを装備し、成膜と化学アニ−ル
とを単一チャンバ内で交互に繰り返して所定厚の非晶質
半導体薄膜を得ることを開示している。
Solid State Physics, Vol. 26, No.
1, 1991, pp. 43-49, a single chamber is equipped with a film forming apparatus for forming an amorphous semiconductor thin film and a microwave plasma apparatus for chemical annealing. It is disclosed that the amorphous semiconductor thin film having a predetermined thickness is obtained by alternately repeating the above steps in a single chamber.

【0004】[0004]

【発明が解決しようとする課題】この種の非晶質半導体
薄膜の製造では、成膜と化学アニ−ルとを多数回繰り返
す必要があるので、上記した前者の二室式に比べて後者
の一室式の方法は室間移送時間が不要となるので形成に
必要な時間を格段に短縮でき、生産性に優れる。しかし
ながら後者の方法では、非晶質半導体薄膜成膜用の成膜
装置と、化学アニ−ル用のマイクロ波プラズマ装置とを
配備しなければならず、成膜装置は当然基板と対面して
配設されるので、マイクロ波プラズマ装置は基板の側方
に偏設せざるを得ない。その結果、大面積の非晶質半導
体薄膜を製造する場合、マイクロ波プラズマ装置に近接
する薄膜の部位と、離遠する薄膜の部位とで、原子状水
素濃度がばらつく可能性があり、大面積の非晶質半導体
薄膜の製造に支障があった。また、基板と対面する位置
に化学アニ−ル用のマイクロ波プラズマ装置と成膜装置
とを並設することも考えられるが、この場合には両装置
の位置取りが難しくなり、かつ、大面積の非晶質半導体
薄膜の製造において成膜が不均一となる可能性が考えら
れる。
In the production of this type of amorphous semiconductor thin film, it is necessary to repeat film formation and chemical annealing a number of times. Since the one-chamber method does not require transfer time between chambers, the time required for formation can be significantly shortened and the productivity is excellent. However, in the latter method, a film forming apparatus for forming an amorphous semiconductor thin film and a microwave plasma apparatus for chemical annealing must be provided, and the film forming apparatus is naturally arranged facing the substrate. Since the microwave plasma device is provided, the microwave plasma device cannot but be provided laterally of the substrate. As a result, when manufacturing a large-area amorphous semiconductor thin film, the atomic hydrogen concentration may vary between the part of the thin film that is close to the microwave plasma device and the part of the thin film that is far from the microwave plasma device. There was a problem in the production of the amorphous semiconductor thin film. It is also conceivable to arrange a microwave plasma apparatus for chemical annealing and a film forming apparatus in parallel at a position facing the substrate, but in this case, positioning of both apparatuses becomes difficult and a large area is required. There is a possibility that the film formation may become non-uniform in the production of the amorphous semiconductor thin film.

【0005】本発明は上記問題点に鑑みなされたもので
あり、生産性に優れかつ特性の面方向ばらつきが少ない
非晶質半導体薄膜の製造方法を提供することをその目的
としている。
The present invention has been made in view of the above problems, and it is an object of the present invention to provide a method of manufacturing an amorphous semiconductor thin film which is excellent in productivity and has less variation in characteristics in the surface direction.

【0006】[0006]

【課題を解決するための手段】本発明の非晶質半導体薄
膜の製造方法は、成膜室内の成膜用基板に対面するガス
解離装置に原料ガスを導入して非晶質半導体薄膜を前記
基板上に成膜させる成膜工程と、前記原料ガス導入を遮
断するとともに前記非晶質半導体薄膜表面を原子状水素
に曝す化学アニ−ル工程とを交互に実施する非晶質半導
体薄膜の製造方法において、前記化学アニ−ル工程は、
前記成膜工程で用いられた前記ガス解離装置に水素ガス
を導入して前記原子状水素を生成することを特徴として
いる。
According to the method for producing an amorphous semiconductor thin film of the present invention, a raw material gas is introduced into a gas dissociation device facing a film forming substrate in a film forming chamber to form the amorphous semiconductor thin film. Manufacture of an amorphous semiconductor thin film in which a film forming step of forming a film on a substrate and a chemical annealing step of blocking the introduction of the raw material gas and exposing the surface of the amorphous semiconductor thin film to atomic hydrogen are alternately performed. In the method, the chemical annealing step comprises
It is characterized in that hydrogen gas is introduced into the gas dissociation device used in the film forming step to generate the atomic hydrogen.

【0007】上記ガス解離装置は、ガスを解離してイオ
ンや活性原子を生成する装置であって、RFプラズマ装
置やマイクロ波プラズマ装置などのプラズマ発生装置、
触媒コイルなどの非プラズマ装置を採用することができ
る。
The gas dissociation device is a device that dissociates a gas to generate ions and active atoms, and is a plasma generation device such as an RF plasma device or a microwave plasma device.
A non-plasma device such as a catalytic coil can be employed.

【0008】[0008]

【発明の効果】以上説明したように本発明の非晶質半導
体薄膜の製造方法では、単一成膜室内に成膜用基板に対
面して配設されたガス解離装置に、原料ガスと水素ガス
とを交互に切り換えるだけで成膜と化学アニ−ルとを実
施できるので、面方向における化学アニ−ル特性ばらつ
きを低減するとともに高い生産性を実現することがで
き、実用化の点で優れた効果を奏することができる。
As described above, in the method for producing an amorphous semiconductor thin film of the present invention, the source gas and the hydrogen are added to the gas dissociation device which is arranged in the single film forming chamber so as to face the film forming substrate. Since film formation and chemical annealing can be performed simply by switching gas and gas alternately, it is possible to reduce the variation of chemical annealing characteristics in the surface direction and achieve high productivity, which is excellent in practical application. It is possible to exert the effect.

【0009】[0009]

【実施例】(第1実施例)本発明の一実施例を以下に説
明する。図1に示す製造装置は、アモルファスシリコン
膜製造装置であって、図示しない真空ポンプにより減圧
される真空槽10の底部には成膜用の基板4が水平に配
設されており、基板4の上方に基板4と対面してRF
(高周波)プラズマ装置(本発明でいうガス解離装置)
の上部電極(ガス吹出口)1及びメッシュ電極3が水平
方向に配設されている。
(First Embodiment) An embodiment of the present invention will be described below. The manufacturing apparatus shown in FIG. 1 is an amorphous silicon film manufacturing apparatus, in which a film-forming substrate 4 is horizontally arranged at the bottom of a vacuum chamber 10 whose pressure is reduced by a vacuum pump (not shown). RF facing the substrate 4 above
(High frequency) plasma device (gas dissociation device in the present invention)
The upper electrode (gas outlet) 1 and the mesh electrode 3 are horizontally arranged.

【0010】上部電極1は、ガス導入配管11に接続さ
れるガス導入口12を上面に、メッシュ状のガス送出ネ
ット13を下面に有する金属製のガス吹出口であって、
メッシュ電極3はガス送出ネット13から下方に約2c
m離れ、基板4から上方に約1cm離れて配設されてい
る。基板4はガラス板であって約40cm×約30cm
の大きさをもち、電熱ヒ−タパネル5上に水平に載置さ
れている。
The upper electrode 1 is a metal gas outlet having a gas introduction port 12 connected to a gas introduction pipe 11 on the upper surface and a mesh-shaped gas delivery net 13 on the lower surface,
The mesh electrode 3 is about 2c downward from the gas delivery net 13.
m away from the substrate 4 and about 1 cm above the substrate 4. Substrate 4 is a glass plate, about 40 cm x about 30 cm
And is horizontally mounted on the electric heating heater panel 5.

【0011】以下、この製造装置を用いて図2のタイミ
ングチャ−ト及び表1の各製造条件に基づいてi型のア
モルファスシリコン膜を製造した。以下にこの製造工程
を説明する。 (成膜工程)図2のタイミングチャ−トにおける期間T
1に表1の成膜条件に基づいて成膜工程を実施した。そ
の結果、原料ガスとしてのSiH4 、H2 がRF放電に
よりプラズマ化され、基板4上にアモルファスシリコン
膜a−Si:Hが成膜される。
Using this manufacturing apparatus, an i-type amorphous silicon film was manufactured based on the timing chart of FIG. 2 and the manufacturing conditions of Table 1 below. The manufacturing process will be described below. (Film forming process) Period T in the timing chart of FIG.
The film forming process was carried out based on the film forming conditions shown in Table 1. As a result, SiH 4 and H 2 as source gases are turned into plasma by RF discharge, and an amorphous silicon film a-Si: H is formed on the substrate 4.

【0012】(掃気工程)次に、図2のタイミングチャ
−トにおける期間T2に表1の掃気条件に基づいて掃気
工程を実施し、真空槽10内のSiH4 ガスを除去す
る。重要なことは、この掃気工程において高周波電力を
遮断して残存SiH4 、H 2 により掃気工程期間中に成
膜されないようにすることである。掃気工程中に高周波
通電すると最終的に形成されるアモルファスシリコン膜
の厚さ方向の特性、組成などが変動してしまい、アモル
ファスシリコン膜の格子結合状態が劣化し、光照射下で
の光感度の経時的な劣化が促進されることが実験上、判
明している。
(Scavenging process) Next, the timing chart of FIG.
-Scavenging based on the scavenging conditions in Table 1 during period T2
The process is performed, and SiH in the vacuum chamber 10FourRemove gas
It The important thing is to use high frequency power in this scavenging process.
Cut off and remain SiHFour, H 2During the scavenging process
It is not to be filmed. High frequency during scavenging process
Amorphous silicon film that is finally formed when electricity is applied
The characteristics and composition in the thickness direction of the
The lattice bond state of the fass silicon film deteriorates and
It has been experimentally determined that the deterioration of the light sensitivity of
I have revealed.

【0013】(化学アニ−ル工程)次に、図2のタイミ
ングチャ−トにおける期間T3に表1の化学アニ−ル条
件に基づいて化学アニ−ル工程を実施した。その結果、
導入されたH2 ガスがRF放電によりプラズマ化され、
アモルファスシリコン膜a−Si:Hの表面に接触し、
この表面で原子状水素となってアモルファスシリコン膜
a−Si:Hの表面近傍に侵入し、アモルファスシリコ
ン膜a−Si:Hの網目構造の格子状態を安定化させ
る。
(Chemical anneal step) Next, a chemical anneal step was carried out based on the chemical anneal conditions shown in Table 1 during the period T3 in the timing chart of FIG. as a result,
The introduced H 2 gas is turned into plasma by RF discharge,
Contacting the surface of the amorphous silicon film a-Si: H,
Atomic hydrogen is formed on this surface to penetrate into the vicinity of the surface of the amorphous silicon film a-Si: H, and stabilizes the lattice state of the network structure of the amorphous silicon film a-Si: H.

【0014】(掃気工程)次に、図2のタイミングチャ
−トにおける期間T4に表1の掃気条件に基づいて掃気
工程を実施し、真空槽10内のH2 ガスを除去する。こ
の掃気工程の目的も成膜後の掃気工程と同じである。な
お、基板温度は各工程を通じてヒ−タパネル5により2
00℃〜300℃の範囲の所定温度に維持された。上記
4つの部分工程からなるサイクルを所定回数繰り返して
必要な厚さのアモルファスシリコン膜を得た。
(Scavenging Step) Next, during the period T4 in the timing chart of FIG. 2, the scavenging step is carried out based on the scavenging conditions in Table 1 to remove the H 2 gas in the vacuum chamber 10. The purpose of this scavenging step is the same as that of the scavenging step after film formation. The substrate temperature is set to 2 by the heater panel 5 through each process.
It was maintained at a predetermined temperature in the range of 00 ° C to 300 ° C. The cycle consisting of the above-mentioned four partial steps was repeated a predetermined number of times to obtain an amorphous silicon film having a required thickness.

【0015】このようにして成膜したアモルファスシリ
コン膜の光劣化特性を図3に示す。光照射はソ−ラシミ
ュレ−タを用い、光照射時のスペクトルはAM1(赤道
直下条件)、照射強度は200mW/cm2 とし、光導
電率測定時の照射条件はAM1、照射強度100mW/
cm2 とした。ここで比較例品として上記成膜工程のみ
で同じ厚さに成膜したアモルファスシリコン膜を採用し
た。
The photodegradation characteristics of the amorphous silicon film thus formed are shown in FIG. For the light irradiation, a solar simulator was used, the spectrum at the time of light irradiation was AM1 (condition directly under the equator), the irradiation intensity was 200 mW / cm 2, and the irradiation condition at the time of measuring photoconductivity was AM1, irradiation intensity 100 mW /
It was set to cm 2 . Here, as a comparative example, an amorphous silicon film formed to have the same thickness only in the film forming step was adopted.

【0016】図3からこの実施例のアモルファスシリコ
ン膜が化学アニ−ルの採用によりそれを採用しない比較
例品に比べて優れた光劣化特性を有することがわかる。 (実施例2)本発明の他の実施例を以下に説明する。図
4に示す製造装置は、触媒式のアモルファスシリコン膜
製造装置であって、図1の装置に比較して、高周波電源
6及びメッシュ電極3の代わりとして、ガス吹出口1の
直下、基板4の直上に触媒加熱用の電源20により通電
加熱されるコイル状の金属触媒線8が配設されている。
It can be seen from FIG. 3 that the amorphous silicon film of this example has excellent photodegradation characteristics due to the use of the chemical anneal as compared with the comparative example product which does not use it. (Embodiment 2) Another embodiment of the present invention will be described below. The manufacturing apparatus shown in FIG. 4 is a catalytic type amorphous silicon film manufacturing apparatus, and, as a substitute for the high frequency power source 6 and the mesh electrode 3, compared with the apparatus of FIG. A coil-shaped metal catalyst wire 8 which is electrically heated by a power source 20 for heating the catalyst is arranged immediately above.

【0017】以下、この製造装置を用いて図5のタイミ
ングチャ−ト及び表2の各工程製造条件に基づいてi型
のアモルファスシリコン膜を製造した。以下にこの製造
工程を説明する。 (成膜工程)図5のタイミングチャ−トにおける期間T
1に表2の成膜条件に基づいて成膜工程を実施した。そ
の結果、原料ガスとしてのSiH4 、H2 が触媒により
活性原子化され、基板4上にアモルファスシリコン膜a
−Si:Hが成膜される。ここで、金属触媒線8として
1500℃〜1600℃に加熱したタングステン線を用
いたが、白金線やモリブデン線を用いることもできる。
Using this manufacturing apparatus, an i-type amorphous silicon film was manufactured on the basis of the timing chart of FIG. 5 and the manufacturing conditions of each step shown in Table 2 below. The manufacturing process will be described below. (Film forming process) Period T in the timing chart of FIG.
The film forming process was performed on the basis of the film forming conditions shown in Table 1. As a result, SiH 4 and H 2 as source gases are activated into atoms by the catalyst, and the amorphous silicon film a is formed on the substrate 4.
-Si: H is formed into a film. Here, as the metal catalyst wire 8, a tungsten wire heated to 1500 ° C. to 1600 ° C. is used, but a platinum wire or a molybdenum wire can also be used.

【0018】(掃気工程)実施例1と同じであり、真空
槽10内のSiH4ガスを除去する。 (化学アニ−ル工程)次に、図5のタイミングチャ−ト
における期間T3に表2の化学アニ−ル条件に基づいて
化学アニ−ル工程を実施した。その結果、導入されたH
2 ガスが触媒により活性原子化され、アモルファスシリ
コン膜a−Si:Hの表面に接触し、この表面で原子状
水素となってアモルファスシリコン膜a−Si:Hの表
面近傍に侵入し、アモルファスシリコン膜a−Si:H
の網目構造の格子状態を安定化させる。
(Scavenging step) As in Example 1, the SiH 4 gas in the vacuum chamber 10 is removed. (Chemical anneal step) Next, a chemical anneal step was carried out based on the chemical anneal conditions shown in Table 2 during the period T3 in the timing chart of FIG. As a result, the introduced H
2 The gas is activated into atoms by a catalyst, contacts the surface of the amorphous silicon film a-Si: H, becomes atomic hydrogen on this surface, and penetrates into the vicinity of the surface of the amorphous silicon film a-Si: H. Film a-Si: H
Stabilizes the lattice state of the mesh structure of.

【0019】(掃気工程)実施例1と同じであり、真空
槽10内のH2 ガスを除去する。基板温度は各工程を通
じてヒ−タパネル5により200℃〜300℃の範囲の
所定温度に維持された。上記4つの部分工程からなるサ
イクルを所定回数繰り返して必要な厚さのアモルファス
シリコン膜を得た。
(Scavenging process) As in the first embodiment, H 2 gas in the vacuum chamber 10 is removed. The substrate temperature was maintained at a predetermined temperature in the range of 200 ° C. to 300 ° C. by the heater panel 5 during each process. The cycle consisting of the above-mentioned four partial steps was repeated a predetermined number of times to obtain an amorphous silicon film having a required thickness.

【0020】こうして成膜されたアモルファスシリコン
膜も実施例1のものにほぼ等しい光劣化特性をもつこと
がわかった。以上説明したように、これら実施例では、
成膜と化学アニ−ルとを同一槽内の同一のガス解離装置
で単にガスを繰り返し切り換えるだけで実施することが
でき、面方向の特性ばらつきが少なくかつ光劣化特性が
優れた非晶質半導体薄膜を高能率に製造することができ
る。更に、製造装置の構成が単純で信頼性及び経済性に
富む利点もある。
It was found that the amorphous silicon film formed in this way also has substantially the same photodegradation characteristics as those of the first embodiment. As described above, in these examples,
Amorphous semiconductors that can be used for film formation and chemical annealing in the same gas dissociation device in the same tank by simply repeatedly switching the gas, with little variation in characteristics in the surface direction and excellent photodegradation characteristics. The thin film can be manufactured with high efficiency. Further, there is an advantage that the manufacturing apparatus has a simple structure and is highly reliable and economical.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の製造工程に用いる製造装置の模式
断面図
FIG. 1 is a schematic cross-sectional view of a manufacturing apparatus used in the manufacturing process of the first embodiment.

【図2】第1実施例のタイミングチャ−トFIG. 2 is a timing chart of the first embodiment.

【図3】第1実施例のアモルファスシリコン膜の光劣化
特性を示す特性図
FIG. 3 is a characteristic diagram showing the photodegradation characteristics of the amorphous silicon film of the first embodiment.

【図4】第2実施例の製造工程に用いる製造装置の模式
断面図
FIG. 4 is a schematic sectional view of a manufacturing apparatus used in the manufacturing process of the second embodiment.

【図5】第2実施例のタイミングチャ−トFIG. 5 is a timing chart of the second embodiment.

【符号の説明】[Explanation of symbols]

1 上部電極(ガス解離装置) 3 下部電極(ガス解離装置) 4 基板(成膜用基板) 10 真空槽(成膜室) 1 Upper electrode (gas dissociation device) 3 Lower electrode (gas dissociation device) 4 Substrate (deposition substrate) 10 Vacuum chamber (deposition chamber)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】成膜室内の成膜用基板に対面するガス解離
装置に原料ガスを導入して非晶質半導体薄膜を前記基板
上に成膜させる成膜工程と、前記原料ガス導入を遮断す
るとともに前記非晶質半導体薄膜表面を原子状水素に曝
す化学アニ−ル工程とを交互に実施する非晶質半導体薄
膜の製造方法において、 前記化学アニ−ル工程は、前記成膜工程で用いられた前
記ガス解離装置に水素ガスを導入して前記原子状水素を
生成することを特徴とする非晶質半導体薄膜の製造方
法。
1. A film forming step of introducing a source gas into a gas dissociation device facing a film forming substrate in a film forming chamber to form an amorphous semiconductor thin film on the substrate, and interrupting the introduction of the source gas. In the method for producing an amorphous semiconductor thin film, which comprises alternately performing a chemical annealing step of exposing the surface of the amorphous semiconductor thin film to atomic hydrogen, the chemical annealing step is used in the film forming step. A method for producing an amorphous semiconductor thin film, characterized in that hydrogen gas is introduced into the gas dissociator to generate the atomic hydrogen.
JP3236402A 1991-09-17 1991-09-17 Manufacture of amorphous semiconductor thin film Pending JPH0574713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3236402A JPH0574713A (en) 1991-09-17 1991-09-17 Manufacture of amorphous semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3236402A JPH0574713A (en) 1991-09-17 1991-09-17 Manufacture of amorphous semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH0574713A true JPH0574713A (en) 1993-03-26

Family

ID=17000231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3236402A Pending JPH0574713A (en) 1991-09-17 1991-09-17 Manufacture of amorphous semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH0574713A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063956A1 (en) * 1999-04-20 2000-10-26 Sony Corporation Method and apparatus for thin-film deposition, and method of manufacturing thin-film semiconductor device
JP2002198311A (en) * 2000-12-25 2002-07-12 Sony Corp Method for forming polycrystalline semiconductor thin film and method for manufacturing semiconductor device and equipment and electro-optical system for putting these methods into practice
JP2002270526A (en) * 2001-03-14 2002-09-20 Sony Corp Method of forming polycrystalline semiconductor thin film, method of manufacturing semiconductor device and device for using in execution of these methods
JP2002294451A (en) * 2001-03-30 2002-10-09 Sony Corp Method for forming polycrystalline semiconductor thin- film, method for manufacturing semiconductor device, and apparatus for carrying out these methods
JP2002299265A (en) * 2001-04-04 2002-10-11 Sony Corp Forming method for polycrystalline semiconductor membrane and manufacturing method for semiconductor device
JP2002299264A (en) * 2001-04-04 2002-10-11 Sony Corp Forming method for polycrystalline semiconductor membrane and manufacturing method for semiconductor device
JP2002541332A (en) * 1999-04-14 2002-12-03 アーサー シャーマン Sequential chemical vapor deposition
US6858451B2 (en) 2002-04-24 2005-02-22 Denso Corporation Method for manufacturing a dynamic quantity detection device
JP2007027485A (en) * 2005-07-19 2007-02-01 Ulvac Japan Ltd Method and device for deposition
JP2009539270A (en) * 2006-05-31 2009-11-12 ティーガル コーポレイション System and method for semiconductor processing
US20110244128A1 (en) * 2010-03-31 2011-10-06 Tokyo Electron Limited Flow plate utilization in filament assisted chemical vapor deposition

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8323737B2 (en) 1996-08-16 2012-12-04 Asm International N.V. Sequential chemical vapor deposition
JP2011184799A (en) * 1999-04-14 2011-09-22 Asm Internatl Nv Sequential chemical vapor deposition
JP2002541332A (en) * 1999-04-14 2002-12-03 アーサー シャーマン Sequential chemical vapor deposition
JP4556329B2 (en) * 1999-04-20 2010-10-06 ソニー株式会社 Thin film forming equipment
US6653212B1 (en) 1999-04-20 2003-11-25 Sony Corporation Method and apparatus for thin-film deposition, and method of manufacturing thin-film semiconductor device
WO2000063956A1 (en) * 1999-04-20 2000-10-26 Sony Corporation Method and apparatus for thin-film deposition, and method of manufacturing thin-film semiconductor device
JP2002198311A (en) * 2000-12-25 2002-07-12 Sony Corp Method for forming polycrystalline semiconductor thin film and method for manufacturing semiconductor device and equipment and electro-optical system for putting these methods into practice
JP2002270526A (en) * 2001-03-14 2002-09-20 Sony Corp Method of forming polycrystalline semiconductor thin film, method of manufacturing semiconductor device and device for using in execution of these methods
JP4599734B2 (en) * 2001-03-14 2010-12-15 ソニー株式会社 Method for forming polycrystalline semiconductor thin film and method for manufacturing semiconductor device
JP2002294451A (en) * 2001-03-30 2002-10-09 Sony Corp Method for forming polycrystalline semiconductor thin- film, method for manufacturing semiconductor device, and apparatus for carrying out these methods
JP4599746B2 (en) * 2001-04-04 2010-12-15 ソニー株式会社 Method for forming polycrystalline semiconductor thin film and method for manufacturing semiconductor device
JP4644964B2 (en) * 2001-04-04 2011-03-09 ソニー株式会社 Method for forming polycrystalline semiconductor thin film and method for manufacturing semiconductor device
JP2002299264A (en) * 2001-04-04 2002-10-11 Sony Corp Forming method for polycrystalline semiconductor membrane and manufacturing method for semiconductor device
JP2002299265A (en) * 2001-04-04 2002-10-11 Sony Corp Forming method for polycrystalline semiconductor membrane and manufacturing method for semiconductor device
US6858451B2 (en) 2002-04-24 2005-02-22 Denso Corporation Method for manufacturing a dynamic quantity detection device
JP2007027485A (en) * 2005-07-19 2007-02-01 Ulvac Japan Ltd Method and device for deposition
JP2009539270A (en) * 2006-05-31 2009-11-12 ティーガル コーポレイション System and method for semiconductor processing
US20110244128A1 (en) * 2010-03-31 2011-10-06 Tokyo Electron Limited Flow plate utilization in filament assisted chemical vapor deposition

Similar Documents

Publication Publication Date Title
JPH06105691B2 (en) Method for producing carbon-doped amorphous silicon thin film
US4760008A (en) Electrophotographic photosensitive members and methods for manufacturing the same using microwave radiation in magnetic field
JPH0574713A (en) Manufacture of amorphous semiconductor thin film
WO2011132775A1 (en) Method for manufacturing a thin-film solar cell
JP4496401B2 (en) Plasma CVD apparatus and method for manufacturing solar cell
JPH08506215A (en) Microwave excitation method for manufacturing high quality semiconductor materials
JPH0574707A (en) Manufacture of amorphous semiconductor thin film
JP5773194B2 (en) Manufacturing method of solar cell
JP3100668B2 (en) Method for manufacturing photovoltaic element
JP3968649B2 (en) Thin film forming method and apparatus
JP3272681B2 (en) Solar cell manufacturing method
JPH05275354A (en) Manufacture of silicon film
JPS63224217A (en) Method and device for forming deposition film
JPS61222117A (en) Forming method for deposit-film
JPH01275761A (en) Deposit film-forming equipment
JPH1174550A (en) Production of amorphous silicon solar cell
JPH07201764A (en) Plasma vapor phase reaction
JPH0134926B2 (en)
JPH05343713A (en) Manufacture of amorphous solar cell
JPH07273041A (en) Formation of semiconductor thin film
JPH0546093B2 (en)
JPS61219131A (en) Formation of deposited film
JPS61234030A (en) Forming method for accumulated film
JPS61190925A (en) Formation of deposited film
JPS60218831A (en) Deposited film forming method