JPH05343713A - Manufacture of amorphous solar cell - Google Patents

Manufacture of amorphous solar cell

Info

Publication number
JPH05343713A
JPH05343713A JP4145523A JP14552392A JPH05343713A JP H05343713 A JPH05343713 A JP H05343713A JP 4145523 A JP4145523 A JP 4145523A JP 14552392 A JP14552392 A JP 14552392A JP H05343713 A JPH05343713 A JP H05343713A
Authority
JP
Japan
Prior art keywords
film
gas
reaction chamber
solar cell
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4145523A
Other languages
Japanese (ja)
Inventor
Shiyougo Touzaki
正吾 東崎
Katsuhiko Nomoto
克彦 野元
Jun Senda
純 千田
Yukihiko Nakada
行彦 中田
Hitoshi Sannomiya
仁 三宮
Manabu Ito
学 伊藤
Akitoshi Yokota
晃敏 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4145523A priority Critical patent/JPH05343713A/en
Publication of JPH05343713A publication Critical patent/JPH05343713A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain an amorphous silicon carbide p-type semiconductor containing micro crystals for solar cells having a larger area by using a plasma CVD system and combining a process for forming a semiconductor thin film and a process for micro crystallizing the film. CONSTITUTION:Using a timer to control the operation of a compressed air valve 15 makes it possible to introduce material gas and doping gas into a p-type layer reaction chamber 13 for a preset time and only hydrogen gas for another preset time subsequent thereto. If high-frequency power is kept applied to an anode and cathode electrodes in such a system, material such a system, material gas and doping gas are decomposed by plasma and a film grows on the surface of a substrate for a period when they are being introduced into the reaction chamber; the film undergoes hydrogen plasma treatment and is micro crystallized for a period when only it is being introduced thereinto. Repeating this sequence obtains a micro crystal silicon carbide thin film having a desired thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微結晶相を含むシリコ
ンカーボン半導体薄膜を用いた非晶質太陽電池の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an amorphous solar cell using a silicon carbon semiconductor thin film containing a microcrystalline phase.

【0002】[0002]

【従来の技術】微結晶相を含むシリコンカーボン半導体
薄膜は、半導体薄膜発光素子や受光素子あるいは太陽電
池に用いられて、それらの性能が向上することが知られ
ている。
2. Description of the Related Art It is known that a silicon carbon semiconductor thin film containing a microcrystalline phase is used in a semiconductor thin film light emitting device, a light receiving device or a solar cell to improve the performance thereof.

【0003】従来、その製膜方法としては、電子サイク
ロトロン共鳴プラズマ化学気相成長装置(以下、ECR
−pCVD装置という)を用いて、シラン(Si
4 ),メタン(CH4 ),ジボラン(B2 6 ),水
素(H2 )等の混合ガスを、電子サイクロトロン共鳴プ
ラズマにより、同時に分解し製膜する方法が広く知られ
ており、この製造方法を用いて、非晶質(アモルファ
ス)太陽電池のp型層を形成させていた。
Conventionally, as a film forming method thereof, an electron cyclotron resonance plasma chemical vapor deposition apparatus (hereinafter referred to as ECR) is used.
-Silicone (Si
A method of simultaneously decomposing a mixed gas of H 4 ), methane (CH 4 ), diborane (B 2 H 6 ), hydrogen (H 2 ) and the like by electron cyclotron resonance plasma to form a film is widely known. The p-type layer of an amorphous solar cell was formed using the manufacturing method.

【0004】微結晶相を含むp型のシリコンカーボン膜
においては、光学的バンドギャップが2.0eV以上
で、導電率の活性化エネルギーが0.1eV以下と、p
型層として優れた特性を得ることができる。これをアモ
ルファス太陽電池のp型層に用いることによって、拡散
電位が向上し、したがって、太陽電池の開放電圧を向上
させることができる。
In a p-type silicon carbon film containing a microcrystalline phase, the optical band gap is 2.0 eV or more, and the activation energy of conductivity is 0.1 eV or less.
Excellent characteristics can be obtained as a mold layer. By using this for the p-type layer of an amorphous solar cell, the diffusion potential can be improved and therefore the open circuit voltage of the solar cell can be improved.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述の
ECR−pCVD装置を用いた方法では、装置自体が一
般の半導体製造プロセスにはあまり普及していないばか
りでなく、半導体薄膜を応用した素子を製造する場合の
製造プロセス上の大きな利点である大面積化が、既に普
及している通常のプラズマ化学気相成長(CVD)装置
(たとえば、高周波プラズマCVD装置)に比べ容易で
はない。本発明の目的は、プラズマCVD装置により、
大面積の太陽電池用の微結晶相を含む非晶質シリコンカ
ーバイドp型半導体薄膜を得ることにある。
However, in the method using the above-mentioned ECR-pCVD apparatus, not only the apparatus itself is not widely used in a general semiconductor manufacturing process, but also an element using a semiconductor thin film is manufactured. In this case, it is not easy to increase the area, which is a great advantage in the manufacturing process, as compared with a general plasma chemical vapor deposition (CVD) apparatus that has been widely used (for example, a high frequency plasma CVD apparatus). An object of the present invention is to use a plasma CVD apparatus,
It is to obtain an amorphous silicon carbide p-type semiconductor thin film containing a microcrystalline phase for a large area solar cell.

【0006】[0006]

【課題を解決するための手段】本発明においては、プラ
ズマCVD装置を用い、原料ガスとドーピングガスを反
応室に供給し基板の上にp型非晶質シリコンカーボン半
導体薄膜を形成する工程と、前記のガスを反応室から排
気し水素ガスを反応室に供給し前記のp型非晶質シリコ
ンカーボン半導体薄膜を微結晶化する工程とを組合せた
工程を少なくとも1回行なうようにした。
In the present invention, a step of forming a p-type amorphous silicon carbon semiconductor thin film on a substrate by supplying a source gas and a doping gas to a reaction chamber using a plasma CVD apparatus, A step in which the gas is exhausted from the reaction chamber and hydrogen gas is supplied to the reaction chamber to microcrystallize the p-type amorphous silicon carbon semiconductor thin film is performed at least once.

【0007】[0007]

【作用】本発明によれば、通常のプラズマCVD(たと
えば、高周波プラズマCVD)装置で、p型層を形成す
る反応室に2系統のガスラインを設け、電磁リレー方式
の圧空バルブをタイマで制御するだけで、p型の微結晶
シリコンカーボン薄膜が得られる。
According to the present invention, in a normal plasma CVD (for example, high-frequency plasma CVD) apparatus, two lines of gas lines are provided in a reaction chamber for forming a p-type layer, and a pneumatic valve of an electromagnetic relay system is controlled by a timer. A p-type microcrystalline silicon carbon thin film can be obtained only by performing the above.

【0008】[0008]

【実施例】図1は、本発明に使用される製膜装置の一例
の略断面図である。
1 is a schematic sectional view of an example of a film forming apparatus used in the present invention.

【0009】たとえば、通常の多室型の容量結合型高周
波プラズマCVD装置は、前処理室9と後処理室10と
の間に設けられたn層反応室11,i層反応室12およ
びp層反応室13によって構成される。各反応室には電
極が設けられ、基板1は各電極の間を通りn,i,pの
各型の非晶質半導体層が形成される。
For example, in a general multi-chamber capacitively coupled high frequency plasma CVD apparatus, an n-layer reaction chamber 11, an i-layer reaction chamber 12 and a p-layer provided between a pretreatment chamber 9 and a posttreatment chamber 10 are provided. It is constituted by the reaction chamber 13. Electrodes are provided in the respective reaction chambers, and the substrate 1 passes through the respective electrodes to form n, i, and p amorphous semiconductor layers.

【0010】n層反応室11には、ガスライン17によ
り、たとえばSiH4 とPH3 が供給され、i層反応室
12には、ガスライン18によりSiH4 が供給され
る。
A gas line 17 supplies, for example, SiH 4 and PH 3 to the n-layer reaction chamber 11, and a gas line 18 supplies SiH 4 to the i-layer reaction chamber 12.

【0011】p層反応室13には、水素ガス導入のガス
ライン16aと原料ガスおよびドーピングガス導入のガ
スライン16bの2つのガスラインを設け、原料ガスお
よびドーピングガス導入のガスライン16bには、たと
えば電磁リレー方式の圧空バルブ14が設けられてい
る。また、その途中には圧空バルブ15を有する排気ラ
イン16cが設けられている。
The p-layer reaction chamber 13 is provided with two gas lines, a gas line 16a for introducing hydrogen gas and a gas line 16b for introducing source gas and doping gas, and the gas line 16b for introducing source gas and doping gas includes For example, an electromagnetic relay type compressed air valve 14 is provided. Further, an exhaust line 16c having a compressed air valve 15 is provided in the middle thereof.

【0012】圧空バルブ14が開で圧空バルブ15が閉
のときには、原料ガスおよびドーピングガスはp層反応
室13に導入され、逆に圧空バルブ15が開で圧空バル
ブ14が閉のときには、原料ガスおよびドーピングガス
は排気ライン16cから排気ポンプにより排気されるよ
うになっている。圧空バルブ14および15の開閉を、
タイマにより制御することにより、或る設定時間原料ガ
スおよびドーピングガスをp層反応室13に導入でき、
次の或る設定時間は水素ガスのみがp層反応室13に導
入される。
When the compressed air valve 14 is open and the compressed air valve 15 is closed, the source gas and the doping gas are introduced into the p-layer reaction chamber 13, and conversely, when the compressed air valve 15 is open and the compressed air valve 14 is closed, the source gas is removed. The doping gas is exhausted from the exhaust line 16c by an exhaust pump. Open and close the pneumatic valves 14 and 15
By controlling with a timer, the raw material gas and the doping gas can be introduced into the p-layer reaction chamber 13 for a certain set time,
During the next certain set time, only hydrogen gas is introduced into the p-layer reaction chamber 13.

【0013】このような系で、高周波電力をアノード電
極21とカソード電極22間にかけておけば、原料ガス
およびドーピングガスが反応室に導入されている時間に
プラズマ8により分解され、膜は基板1の表面に成長
し、次の水素ガスのみがp層反応室13に導入されてい
る時間に、膜は水素プラズマ処理され微結晶化すること
になる。このシーケンスを繰返すことにより所望の膜厚
の微結晶シリコンカーボン薄膜が得られる。
When high frequency power is applied between the anode electrode 21 and the cathode electrode 22 in such a system, the source gas and the doping gas are decomposed by the plasma 8 while being introduced into the reaction chamber, and the film is deposited on the substrate 1. During the time when the film grows on the surface and only the next hydrogen gas is introduced into the p-layer reaction chamber 13, the film is subjected to hydrogen plasma treatment and crystallized. By repeating this sequence, a microcrystalline silicon carbon thin film having a desired film thickness can be obtained.

【0014】このような装置を用いて、実際、原料ガス
流量としてシラン(SiH4 )1sccm、メタン(C
4 )1sccm、ドーピングガスとしてジボラン(B
2 6 )をガスドーピング比で1%とし、また水素(H
2 )流量を100sccmとし、1サイクル当り20Å
の膜を成長させ、1サイクル当り水素プラズマ処理時間
をパラメータとして製膜実験を行なった。
Using such a device, the raw material gas is actually
Silane (SiHFour) 1 sccm, methane (C
HFour) 1 sccm, diborane (B as a doping gas)
2H 6) With a gas doping ratio of 1%, and hydrogen (H
2) Flow rate is 100 sccm and 20Å per cycle
Growth time, hydrogen plasma treatment time per cycle
The film formation experiment was performed using the as a parameter.

【0015】図2は、横軸に水素プラズマ処理時間をと
って、縦軸に膜の暗導電率をプロットしたものである。
これに示されるように、膜の暗導電率は、水素プラズマ
処理時間50秒程度で、約7桁急激に向上し、この程度
の水素プラズマ処理によって、膜が微結晶化することが
わかる。また、組成分析,ラマン分光法あるいはX線回
折によっても、膜が微結晶を含むシリコンカーボン(μ
c−SiC:H)膜であることを確認できた。
FIG. 2 is a plot of the hydrogen plasma treatment time on the horizontal axis and the dark conductivity of the film on the vertical axis.
As shown in the graph, the dark conductivity of the film is rapidly improved by about 7 digits in the hydrogen plasma treatment time of about 50 seconds, and it is understood that the film is microcrystallized by this degree of hydrogen plasma treatment. In addition, the composition analysis, Raman spectroscopy or X-ray diffraction showed that the film contained silicon carbon (μ
It was confirmed that the film was a c-SiC: H) film.

【0016】図3は、図1の装置を用いて作成した太陽
電池の略断面図である。基板1上に、300Åのn型a
−Si:H膜2を図1のn層反応室11で堆積し、次
に、i層反応室12において、i型のa−Si:H膜3
を5000Å堆積した。引続いて、p層反応室13にお
いて、上述の製膜条件で、水素プラズマ処理50秒の条
件で、p型のμc−SiC:H膜4を200Å堆積し
た。この上に透明導電膜5をスパッタ法で600Å堆積
し、最後に集電極としてアルミ電極6を電子ビーム装置
で蒸着した。
FIG. 3 is a schematic sectional view of a solar cell prepared by using the apparatus shown in FIG. On the substrate 1, 300 Å n-type a
The -Si: H film 2 is deposited in the n-layer reaction chamber 11 of FIG. 1, and then in the i-layer reaction chamber 12, the i-type a-Si: H film 3 is deposited.
5000 Å was deposited. Subsequently, in the p-layer reaction chamber 13, 200 Å of the p-type μc-SiC: H film 4 was deposited under the above-mentioned film forming conditions and hydrogen plasma treatment for 50 seconds. On this, a transparent conductive film 5 was deposited by 600 Å by a sputtering method, and finally an aluminum electrode 6 as a collecting electrode was vapor-deposited by an electron beam apparatus.

【0017】このような構造を持つ太陽電池を、ソーラ
シミュレータによりAM1.5,100mW/cm2
下で測定したところ、以下の表1に示すデータが得られ
た。表1は、微結晶p型層を用いた太陽電池と非晶質p
層を用いた太陽電池との特性の比較表である。
When the solar cell having such a structure was measured with a solar simulator under AM 1.5, 100 mW / cm 2 light, the data shown in Table 1 below was obtained. Table 1 shows a solar cell using a microcrystalline p-type layer and an amorphous p-type layer.
It is a comparison table of the characteristic with the solar cell using a layer.

【0018】[0018]

【表1】 [Table 1]

【0019】表1に示すように、微結晶p型層を用いた
太陽電池は、開放電圧が0.97Vとなり、通常のp型
非晶質シリコンカーボン薄膜を用いた場合の開放電圧
0.84Vより向上した。この値は、ECR−pCVD
装置を用いて作成したμc−SiC:H膜をp型層に用
いた同様な太陽電池と同等か、もしくはそれ以上の値で
ある。
As shown in Table 1, the solar cell using the microcrystalline p-type layer has an open circuit voltage of 0.97V, and an open circuit voltage of 0.84V when using a normal p-type amorphous silicon carbon thin film. It has improved. This value is ECR-pCVD
The value is equal to or higher than that of a similar solar cell using a μc-SiC: H film formed by using the device as a p-type layer.

【0020】前述の実施例においては、i型層にa−S
i:H膜を用いたが、i型層としてアモルファスシリコ
ンゲルマニウム(a−SiGe)、アモルファスシリコ
ンカーボン(a−SiC)等の水素化またはフッ素化ア
モルファス合金膜を用いた太陽電池への適用も、もちろ
ん可能である。また、pin層を積層した太陽電池への
適用も可能である。微結晶層の光の吸収が少ないことか
ら、太陽電池の光入射側に用いたほうが有利であるが、
光入射と反対側に用いても開放電圧が向上する利点があ
る。
In the above-described embodiment, the i-type layer has a-S.
Although the i: H film is used, the application to a solar cell using a hydrogenated or fluorinated amorphous alloy film of amorphous silicon germanium (a-SiGe), amorphous silicon carbon (a-SiC) or the like as the i-type layer, Of course it is possible. Further, it can be applied to a solar cell in which a pin layer is laminated. Since the light absorption of the microcrystalline layer is small, it is more advantageous to use it on the light incident side of the solar cell.
Even if it is used on the side opposite to the light incident side, there is an advantage that the open circuit voltage is improved.

【0021】[0021]

【発明の効果】本発明によれば、通常のCVD装置によ
り微結晶シリコンカーボン薄膜が大面積に均一な膜とし
て容易に得られ、この製造方法を用いたアモルファス太
陽電池の性能を向上できる。
According to the present invention, a microcrystalline silicon carbon thin film can be easily obtained as a uniform film over a large area by a normal CVD apparatus, and the performance of an amorphous solar cell using this manufacturing method can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に使用される製膜装置の一例の略断面図
である。
FIG. 1 is a schematic sectional view of an example of a film forming apparatus used in the present invention.

【図2】水素プラズマ処理時間と膜の暗導電率との関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between hydrogen plasma treatment time and dark conductivity of a film.

【図3】本発明により製造された太陽電池の略断面図で
ある。
FIG. 3 is a schematic cross-sectional view of a solar cell manufactured according to the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 a−Si:H膜 3 a−Si:H膜 4 μc−SiC:H膜 5 透明導電膜 6 アルミ電極 11 n層反応室 12 i層反応室 13 p層反応室 14,15 圧空バルブ 1 substrate 2 a-Si: H film 3 a-Si: H film 4 μc-SiC: H film 5 transparent conductive film 6 aluminum electrode 11 n-layer reaction chamber 12 i-layer reaction chamber 13 p-layer reaction chamber 14, 15 compressed air valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中田 行彦 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 三宮 仁 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 伊藤 学 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 横田 晃敏 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukihiko Nakata 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Within Sharp Corporation (72) Inventor Hitoshi Sannomiya 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Incorporated (72) Inventor Manabu Ito 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Within Sharp Corporation (72) Inventor Akitoshi Yokota 22-22, Nagaike-cho, Abeno-ku, Osaka-shi, Osaka

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 プラズマ化学気相成長装置を用い、原料
ガスとドーピングガスを反応室に供給し基板の上にp型
非晶質シリコンカーボン半導体薄膜を形成する工程と、
前記のガスを反応室から排気し水素ガスを反応室に供給
し前記のp型非晶質シリコンカーボン半導体薄膜を微結
晶化する工程とを組合せた工程を少なくとも1回有する
ことを特徴とする非晶質太陽電池の製造方法。
1. A step of forming a p-type amorphous silicon carbon semiconductor thin film on a substrate by supplying a source gas and a doping gas into a reaction chamber using a plasma enhanced chemical vapor deposition apparatus,
At least once in combination with the step of exhausting the gas from the reaction chamber and supplying hydrogen gas to the reaction chamber to microcrystallize the p-type amorphous silicon carbon semiconductor thin film. Method for manufacturing crystalline solar cell.
JP4145523A 1992-06-05 1992-06-05 Manufacture of amorphous solar cell Withdrawn JPH05343713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4145523A JPH05343713A (en) 1992-06-05 1992-06-05 Manufacture of amorphous solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4145523A JPH05343713A (en) 1992-06-05 1992-06-05 Manufacture of amorphous solar cell

Publications (1)

Publication Number Publication Date
JPH05343713A true JPH05343713A (en) 1993-12-24

Family

ID=15387196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4145523A Withdrawn JPH05343713A (en) 1992-06-05 1992-06-05 Manufacture of amorphous solar cell

Country Status (1)

Country Link
JP (1) JPH05343713A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361356A1 (en) * 1988-09-26 1990-04-04 Nichias Corporation Heat-resistant and inorganic shaped article
US5834345A (en) * 1995-09-28 1998-11-10 Nec Corporation Method of fabricating field effect thin film transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361356A1 (en) * 1988-09-26 1990-04-04 Nichias Corporation Heat-resistant and inorganic shaped article
US5834345A (en) * 1995-09-28 1998-11-10 Nec Corporation Method of fabricating field effect thin film transistor

Similar Documents

Publication Publication Date Title
KR100393955B1 (en) Semiconductor device comprising a microcrystalline semiconductor film
JPS6122622A (en) Method and device for producing photovoltaic power panel
JPH04266019A (en) Film formation
JP2001332749A (en) Method for forming semiconductor thin film and amorphous silicon solar cell element
US4677738A (en) Method of making a photovoltaic panel
JPH07106611A (en) Fabrication of bsf solar cell
JPH05343713A (en) Manufacture of amorphous solar cell
JPH07130661A (en) Method of forming amorphous silicon oxide thin film
JP3697199B2 (en) Solar cell manufacturing method and solar cell
JP3078373B2 (en) Photoelectric conversion device and manufacturing method thereof
JPH09199426A (en) Manufacture of microcrystalline silicon semiconductor thin film
JPH03101274A (en) Manufacture of amorphous solar cell
JP2723548B2 (en) Formation method of carbon-containing silicon microcrystalline thin film
JPH02177371A (en) Manufacture of amorphous solar cell
JP2896247B2 (en) Photoelectric conversion element
Schropp Present status of hot wire chemical vapor deposition technology
JP2680702B2 (en) Method for producing amorphous alloy semiconductor thin film
JPS6041453B2 (en) Method for producing microcrystalline amorphous silicon film
TWI407578B (en) Chemical vapor deposition process
JPH05267190A (en) Production of semiconductor thin film
JPS5916326A (en) Manufacture of thin film
JPH04367221A (en) Method and apparatus for formation of nonsingle-crystal silicon film
JP2004087811A (en) Manufacturing method of silicon solar cell
JP2000101110A (en) Manufacture of solar battery
JPH0714072B2 (en) Method for manufacturing photoelectric conversion element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831