JPH09199426A - Manufacture of microcrystalline silicon semiconductor thin film - Google Patents

Manufacture of microcrystalline silicon semiconductor thin film

Info

Publication number
JPH09199426A
JPH09199426A JP8006378A JP637896A JPH09199426A JP H09199426 A JPH09199426 A JP H09199426A JP 8006378 A JP8006378 A JP 8006378A JP 637896 A JP637896 A JP 637896A JP H09199426 A JPH09199426 A JP H09199426A
Authority
JP
Japan
Prior art keywords
thin film
microcrystalline silicon
semiconductor thin
substrate
silicon semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8006378A
Other languages
Japanese (ja)
Inventor
Hisao Haku
久雄 白玖
Makoto Nakagawa
誠 中川
Katsutoshi Takeda
勝利 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8006378A priority Critical patent/JPH09199426A/en
Publication of JPH09199426A publication Critical patent/JPH09199426A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a microcrystalline silicon semiconductor thin film which shows desired microcrystalline semiconductor characteristics even for a thin film of 200Å or below in thickness. SOLUTION: In a vacuum chamber 1, glow discharge is generated between electrodes 2 and 3 which are placed face to face and material gas, chief of which is silicon, is decomposed to deposit a microcrystalline silicon semiconductor thin film on a substrate 4. At that time, high-frequency electric power 8 to be applied between the electrodes 2 and 3 is turned on and off like a pulse and ultrasonic vibration is applied to the substrate 4 by a piezoelectric diaphgram 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、太陽電池等の半
導体デバイスに適用するための微結晶シリコン系半導体
薄膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a microcrystalline silicon based semiconductor thin film for application to semiconductor devices such as solar cells.

【0002】[0002]

【従来の技術】従来、太陽電池等の半導体デバイスに適
用する微結晶シリコン系半導体薄膜の製造方法において
は、真空チャンバ内に、アノード側の基板とカソード側
の電極とを対向させて配置し、上記真空チャンバ内に、
シラン(SiH4)等の反応ガスを導入する一方、真空
チャンバ内の排気を行う排気系を設けて、チャンバ内の
圧力を所望の値に保つようにしている。そのような状態
において、上記両電極間に高周波電圧を印加し、グロー
放電を発生させ、反応ガスを分解させる。そして、分解
された反応ガスのラジカルが基板の表面に付着し、さら
に堆積して、シリコン薄膜に成長する。
2. Description of the Related Art Conventionally, in a method of manufacturing a microcrystalline silicon-based semiconductor thin film applied to a semiconductor device such as a solar cell, an anode side substrate and a cathode side electrode are arranged to face each other in a vacuum chamber, In the vacuum chamber,
While introducing a reaction gas such as silane (SiH 4 ), an exhaust system for exhausting the inside of the vacuum chamber is provided so that the pressure in the chamber is maintained at a desired value. In such a state, a high frequency voltage is applied between the electrodes to generate glow discharge and decompose the reaction gas. Then, the decomposed radicals of the reaction gas adhere to the surface of the substrate, are further deposited, and grow into a silicon thin film.

【0003】通常、得られる薄膜は非晶質であるが、反
応ガスとしてSiH4に大量の水素(H2)ガスを加える
ことにより、微結晶シリコンが得られる。この理由とし
ては、基板表面のダングリングボンドが水素でターミ
ネイトされ、その結果ラジカルの表面反応が促進され、
微結晶化されやすくなる、気相中のシリコン(Si)
系ラジカルの割合が水素希釈により低減され、堆積レー
トが下がり、微結晶化のための緩和時間(微結晶化が進
まないうちに次のラジカルがやってこない)が長くとれ
る、水素希釈により、気相中のSi系重合ラジカル
(基板表面で動きにくい)が減る、結合の弱い非晶質
部分を、水素によりスパッタリングできることなどが考
えられている。
Usually, the obtained thin film is amorphous, but microcrystalline silicon can be obtained by adding a large amount of hydrogen (H 2 ) gas to SiH 4 as a reaction gas. The reason for this is that dangling bonds on the substrate surface are terminated with hydrogen, and as a result, the surface reaction of radicals is promoted,
Silicon (Si) in the gas phase, which is easily crystallized
The proportion of system radicals is reduced by hydrogen dilution, the deposition rate is reduced, and the relaxation time for microcrystallization (the next radical does not arrive before microcrystallization progresses) is long. It is considered that the Si-based polymerized radicals (which are difficult to move on the substrate surface) in the inside can be reduced, and the amorphous portion having weak bonding can be sputtered with hydrogen.

【0004】[0004]

【発明が解決しようとする課題】このような高水素希釈
法による微結晶シリコン系半導体膜の形成方法について
は、ある程度の膜厚を堆積しなければ、低抵抗、低光吸
収といった本来の微結晶半導体膜の特性を示さなかっ
た。特に、積層型非晶質太陽電池の逆接合層に用いる2
00オングストローム以下の薄膜においては、所望の膜
特性が得られていないのが現状である。
Regarding the method of forming a microcrystalline silicon-based semiconductor film by such a high hydrogen dilution method, the original microcrystal such as low resistance and low light absorption is required unless a certain thickness is deposited. It did not show the characteristics of the semiconductor film. In particular, it is used for the reverse junction layer of a laminated amorphous solar cell 2
At present, the desired film characteristics are not obtained in the thin film having a thickness of 00 angstroms or less.

【0005】この発明は、上述した従来の問題点に鑑み
なされたものにして、200オングストローム以下の薄
膜においても、所望の微結晶半導体特性が得られる微結
晶シリコン系半導体薄膜の製造方法を提供することをそ
の目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and provides a method for producing a microcrystalline silicon-based semiconductor thin film capable of obtaining desired microcrystalline semiconductor characteristics even in a thin film of 200 angstroms or less. That is the purpose.

【0006】[0006]

【課題を解決するための手段】この発明の微結晶シリコ
ン系半導体薄膜の製造方法は、シリコンを主成分とする
材料ガスに高周波電力を印加し、材料ガスを分解して基
板上に微結晶シリコン系半導体薄膜を堆積させる際に、
高周波電力をパルス的にオン・オフすると共に、基板に
超音波振動を加えることを特徴とする。
A method of manufacturing a microcrystalline silicon-based semiconductor thin film according to the present invention comprises applying a high frequency power to a material gas containing silicon as a main component to decompose the material gas to form microcrystalline silicon on a substrate. When depositing a semiconductor thin film
It is characterized in that high-frequency power is turned on and off in a pulsed manner and ultrasonic vibration is applied to the substrate.

【0007】この発明は上記方法を用いることにより、
超音波振動によりラジカルの基板反応がさらに促進され
ると共に、高周波電力をパルス的に印加することによ
り、気相中のSi系重合ラジカルの割合をさらに低減で
きるのに加え、微結晶のための緩和時間がより長くとれ
る。このため、200オングストローム以下の薄膜にお
いても、所望の微結晶半導体膜特性が得られる。
By using the above method, the present invention provides
Ultrasonic vibration further promotes the substrate reaction of radicals, and by applying high-frequency power in pulses, the proportion of Si-based polymerized radicals in the gas phase can be further reduced, and relaxation for microcrystals is also possible. I have more time. Therefore, desired microcrystalline semiconductor film characteristics can be obtained even in a thin film having a thickness of 200 Å or less.

【0008】[0008]

【発明の実施の形態】以下、この発明の実施の形態につ
き説明する。図1は、この発明による微結晶シリコン系
半導体薄膜を形成する装置の概略構成図である。図1に
示すように、真空チャンバ1内に、上部放電電極2とヒ
ータを内蔵した下部放電電極3が設けられ、下部放電電
極3上にガラス等の基板4が載置される。また、真空チ
ャンバ1は図示していない真空ポンプなどの排気システ
ム5にて、減圧状態にされる。
Embodiments of the present invention will be described below. FIG. 1 is a schematic configuration diagram of an apparatus for forming a microcrystalline silicon semiconductor thin film according to the present invention. As shown in FIG. 1, an upper discharge electrode 2 and a lower discharge electrode 3 containing a heater are provided in a vacuum chamber 1, and a substrate 4 made of glass or the like is placed on the lower discharge electrode 3. The vacuum chamber 1 is decompressed by an exhaust system 5 such as a vacuum pump (not shown).

【0009】材料ガスは、SiH4ボンベ6a並びにH2
ボンベ6b、加えて特定の導電型を得る場合にはドーピ
ングガスボンベ6cを用い、マスフローコントローラ7
a〜7cで流量を制御された後、真空チャンバ1内に導
入される。
The material gas is SiH 4 cylinder 6a and H 2
The cylinder 6b and the doping gas cylinder 6c are used to obtain a specific conductivity type.
After the flow rate is controlled by a to 7c, it is introduced into the vacuum chamber 1.

【0010】さて、この発明では、グロー放電を生起さ
せるため、上部電極2と下部電極3間に、13.56M
Hzの高周波電力(RFパワー)をある特定の周期でオ
ン・オフ(ON/OFF)できる機能を有する電源8よ
り、高周波電力が印加される。そして、下部電極3には
基板寸法より一回り以上大きい領域に、ある特定の振動
周期で超音波振動を発生できるピエゾ振動板9が設置さ
れ、正弦波電源10よりこのピエゾ振動板9に電力を印
可し、駆動させ、基板4に超音波振動が加えられる。
Now, in the present invention, in order to generate a glow discharge, between the upper electrode 2 and the lower electrode 3 is 13.56M.
The high frequency power is applied from a power source 8 having a function of turning on / off (ON / OFF) the high frequency power (RF power) of Hz at a specific cycle. Then, a piezoelectric diaphragm 9 capable of generating ultrasonic vibration at a specific vibration cycle is installed in a region larger than the substrate size in the lower electrode 3, and electric power is supplied to the piezoelectric diaphragm 9 from a sine wave power source 10. It is applied and driven, and ultrasonic vibration is applied to the substrate 4.

【0011】微結晶シリコン系半導体薄膜の基本的な形
成条件としては、従来法と同じく高水素希釈条件を用い
た。具体的には、反応時の圧力10Pa、基板温度20
0℃、高周波電力80W(連続印加時)、SiH4流量
2cc/m、H2流量100cc/mとした。
As a basic forming condition of the microcrystalline silicon semiconductor thin film, a high hydrogen dilution condition was used as in the conventional method. Specifically, the reaction pressure is 10 Pa and the substrate temperature is 20.
The temperature was 0 ° C., the high frequency power was 80 W (when continuously applied), the SiH 4 flow rate was 2 cc / m, and the H 2 flow rate was 100 cc / m.

【0012】図2に、高周波(RF)パワーのON/O
FF周波数並びに、基板に印加する超音波振動の周波数
をパラメータとし、膜厚が約200オングストロームの
微結晶シリコン半導体薄膜を形成後、透過型電子顕微鏡
(TEM)にて、結晶粒の観測を行った結果を示す。R
Fパワー連続オン、超音波振動の印加なしの状態が、従
来条件に相当する。そして、結晶粒(大きさは200〜
2000オングストローム)が観測された場合を
「有」、観測されなかった場合を「無」で標記してい
る。
FIG. 2 shows ON / O of high frequency (RF) power.
Using the FF frequency and the frequency of ultrasonic vibration applied to the substrate as parameters, a microcrystalline silicon semiconductor thin film having a film thickness of about 200 Å was formed, and then crystal grains were observed with a transmission electron microscope (TEM). The results are shown. R
The state in which the F power is continuously turned on and no ultrasonic vibration is applied corresponds to the conventional condition. And crystal grains (size is 200 ~
2000 angstroms) are indicated as "yes" when they are observed, and "absent" when they are not observed.

【0013】この場合、従来の条件では全く微結晶シリ
コン半導体薄膜が形成されていないが、ON/OFF周
波数が1KHzでは超音波振動周波数として100KH
z〜10MHzの範囲で、超音波振動周波数が1MHz
ではON/OFF周波数として100Hz〜10KHz
の範囲で、非晶質シリコン中に粒径が2000オングス
トローム以下の結晶シリコンが混在した微結晶シリコン
半導体薄膜が形成されることが確認できた。
In this case, no microcrystalline silicon semiconductor thin film is formed under the conventional conditions, but when the ON / OFF frequency is 1 KHz, the ultrasonic vibration frequency is 100 KH.
Ultrasonic vibration frequency is 1MHz in the range of z-10MHz
Then, the ON / OFF frequency is 100 Hz to 10 KHz
It was confirmed that a microcrystalline silicon semiconductor thin film in which crystalline silicon having a grain size of 2000 angstroms or less was mixed in the amorphous silicon was formed in the range.

【0014】さらに、膜厚が約100オングストローム
の微結晶シリコン半導体薄膜を形成し、同様の観測を行
った結果を、図3に示す。この場合、ON/OFF周波
数が1KHz、超音波振動周波数として1MHz時の
み、微結晶シリコン半導体薄膜が観測された。
Further, a microcrystalline silicon semiconductor thin film having a film thickness of about 100 angstroms was formed, and the same observation was performed. The result is shown in FIG. In this case, the microcrystalline silicon semiconductor thin film was observed only when the ON / OFF frequency was 1 KHz and the ultrasonic vibration frequency was 1 MHz.

【0015】これらの結果は、この発明の優位性を示す
ものであり、特定の領域で薄膜下でも微結晶シリコン半
導体薄膜が形成できた要因としては、以下の3点が考え
られる。 (1)ON/OFFを1KHz周期で行うことで、気相
中の重合ラジカルが減らせた(ラジカルの重合化はミリ
セカンドオーダーで進むと考えられる)。 (2)OFF時、次のラジカルが発生しないので、表面
反応のための緩和時間が多くとれる。 (3)超音波振動周波数として1MHzで行うことで、
基板表面反応が大きく促進された(ラジカルの表面反応
時間はマイクロセカンドオーダーと見積もられており、
何らかの相関があると考えられる)。
These results show the superiority of the present invention, and the following three points can be considered as the factors that the microcrystalline silicon semiconductor thin film could be formed even under the thin film in the specific region. (1) Polymerization radicals in the gas phase were reduced by performing ON / OFF at a 1 KHz cycle (polymerization of radicals is considered to proceed in the millisecond order). (2) Since the next radical is not generated when it is turned off, the relaxation time for the surface reaction can be long. (3) As the ultrasonic vibration frequency is 1 MHz,
Substrate surface reaction was greatly promoted (radical surface reaction time is estimated to be in the microsecond order,
It is considered that there is some correlation).

【0016】この発明の効果を、実際のデバイスで評価
するため、積層型非晶質シリコン太陽電池を作成した。
構造としては、透明電極を有するガラス基板上に、順次
p型/i型/n型/p型/i型/n型層を積層した後、
裏面金属電極をつけた、いわゆるタンデムセルとした。
ここで、微結晶シリコン層は基板に近い側のn型層に用
いた。
In order to evaluate the effect of the present invention in an actual device, a laminated amorphous silicon solar cell was prepared.
As a structure, after sequentially stacking p-type / i-type / n-type / p-type / i-type / n-type layers on a glass substrate having a transparent electrode,
A so-called tandem cell with a backside metal electrode was attached.
Here, the microcrystalline silicon layer was used for the n-type layer on the side closer to the substrate.

【0017】図3で微結晶シリコン半導体薄膜が観測さ
れた条件に、0.5%PH3ガスを添加し、上記n型微
結晶シリコン半導体層を100オングストローム形成し
たタンデムセルと、比較のため従来条件に、0.5%P
3ガスを添加し、上記n型非晶質シリコン層を100
オングストローム形成し、他の層は前記タンデムセルと
全て同じ条件としたタンデムセルとを作成し、両者の光
照射下での電圧−電流特性を測定した結果を図4に示
す。
Under the condition that a microcrystalline silicon semiconductor thin film is observed in FIG. 3, 0.5% PH 3 gas is added to the tandem cell in which the n-type microcrystalline silicon semiconductor layer is formed to 100 Å. 0.5% P for the condition
H 3 gas is added to make the n-type amorphous silicon layer 100
FIG. 4 shows the results of measuring the voltage-current characteristics of the tandem cells under the same conditions as those of the tandem cells in which the other layers were formed by angstrom formation under the same conditions.

【0018】実線で示したこの発明によるタンデムセル
特性に対し、破線で示した従来条件によるタンデムセル
は、明らかにnp逆接合部分における整流特性が現れ、
特性不良を起こしていることがわかる。これは、従来条
件では、逆接合部のn層が100オングストロームでは
微結晶化されておらず、p層との間でオーミック特性が
取れなかったことによる。
In contrast to the tandem cell characteristic according to the present invention shown by the solid line, the tandem cell under the conventional condition shown by the broken line clearly shows the rectifying characteristic at the np reverse junction portion.
It can be seen that the characteristics are defective. This is because under the conventional conditions, the n layer at the reverse junction was not microcrystallized at 100 angstroms, and ohmic characteristics could not be obtained with the p layer.

【0019】さらに比較のため、従来の条件下におい
て、同n層を300オングストロームと厚く作成し、微
結晶シリコン層として機能させ、他層も膜厚を最適化し
た場合と、この発明によるタンデムセルとの比較特性を
行った結果を表1に示す。
Further, for comparison, the tandem cell according to the present invention and the case where the thickness of the n-layer is 300 angstroms and is made to function as a microcrystalline silicon layer and the thickness of the other layers is optimized under the conventional conditions. Table 1 shows the results of comparison characteristics with.

【0020】[0020]

【表1】 (セル面積:1cm角、照射光:AM−1.5、100mW/cm2[Table 1] (Cell area: 1 cm square, irradiation light: AM-1.5, 100 mW / cm 2 )

【0021】この場合においても、この発明では、各パ
ラメータが改善され、効率として4%の向上が見られ
た。この理由としては、この発明においては、n型微結
晶シリコン層を100オングストロームと薄くできるた
め光の吸収損失が少ないこと並びに微結晶半導体特性で
ある低抵抗化がより図れており電気的損失も少ないこと
による。
Also in this case, in the present invention, each parameter was improved and the efficiency was improved by 4%. The reason for this is that in the present invention, the n-type microcrystalline silicon layer can be made as thin as 100 angstroms, so that the light absorption loss is small, and the resistance, which is a characteristic of the microcrystalline semiconductor, is further reduced and the electrical loss is also small. It depends.

【0022】上記した実施の形態においては、微結晶シ
リコン半導体薄膜について説明したが、シリコンを主材
料としたアロイ、例えば、SiC、SiGeなどの微結
晶シリコン系半導体薄膜にもこの発明を適用することが
できる。
In the above-mentioned embodiments, the microcrystalline silicon semiconductor thin film has been described. However, the present invention can be applied to an alloy containing silicon as a main material, for example, a microcrystalline silicon semiconductor thin film such as SiC or SiGe. You can

【0023】また、材料ガスについても、SiH4に限
らず、Si26、Si38等の他のシリコンを主成分と
する材料ガスを用いることができる。
The material gas is not limited to SiH 4 , but other material gas containing silicon as a main component such as Si 2 H 6 and Si 3 H 8 can be used.

【0024】[0024]

【発明の効果】以上説明したように、この発明による方
法を用いることにより、200オングストローム以下の
薄膜においても、所望の微結晶半導体特性が得られる。
As described above, by using the method according to the present invention, desired microcrystalline semiconductor characteristics can be obtained even in a thin film having a thickness of 200 Å or less.

【0025】また、この発明法による微結晶シリコン系
半導体薄膜を積層型非晶質シリコン太陽電池の逆接合層
に適用することで、効率として4%の向上が図れる。
By applying the microcrystalline silicon semiconductor thin film according to the method of the present invention to the reverse junction layer of the laminated amorphous silicon solar cell, the efficiency can be improved by 4%.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による微結晶半導体薄膜の形成装置の
概略構成図である
FIG. 1 is a schematic configuration diagram of an apparatus for forming a microcrystalline semiconductor thin film according to the present invention.

【図2】微結晶シリコン半導体薄膜の形成結果を示す図
である。
FIG. 2 is a diagram showing a result of forming a microcrystalline silicon semiconductor thin film.

【図3】微結晶シリコン半導体薄膜の形成結果を示す図
である。
FIG. 3 is a diagram showing a result of forming a microcrystalline silicon semiconductor thin film.

【図4】この発明方法による太陽電池と従来方法による
積層型非晶質太陽電池の特性を示す図である。
FIG. 4 is a diagram showing characteristics of a solar cell according to the method of the present invention and a laminated amorphous solar cell according to a conventional method.

【符号の説明】[Explanation of symbols]

1 真空チャンバ 4 基板 8 高周波電源 9 振動板 1 vacuum chamber 4 substrate 8 high frequency power supply 9 diaphragm

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリコンを主成分とする材料ガスに高周
波電力を印加し、この材料ガスを分解して基板上に微結
晶シリコン系半導体膜を堆積させる際に、前記高周波電
力をパルス的にオン・オフすると共に、基板に超音波振
動を加えることを特徴とする微結晶シリコン系半導体薄
膜の製造方法。
1. When a high frequency power is applied to a material gas containing silicon as a main component and the material gas is decomposed to deposit a microcrystalline silicon-based semiconductor film on a substrate, the high frequency power is turned on in a pulsed manner. A method for manufacturing a microcrystalline silicon-based semiconductor thin film, which comprises turning off and applying ultrasonic vibration to the substrate.
【請求項2】 前記オン・オフ周期は、100Hzから
10KHzとし、超音波振動周波数は、100KHzか
ら10MHzとすることを特徴とする請求項1に記載の
微結晶シリコン系半導体薄膜の製造方法。
2. The method for producing a microcrystalline silicon-based semiconductor thin film according to claim 1, wherein the on / off cycle is 100 Hz to 10 KHz, and the ultrasonic vibration frequency is 100 KHz to 10 MHz.
JP8006378A 1996-01-18 1996-01-18 Manufacture of microcrystalline silicon semiconductor thin film Pending JPH09199426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8006378A JPH09199426A (en) 1996-01-18 1996-01-18 Manufacture of microcrystalline silicon semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8006378A JPH09199426A (en) 1996-01-18 1996-01-18 Manufacture of microcrystalline silicon semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH09199426A true JPH09199426A (en) 1997-07-31

Family

ID=11636728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8006378A Pending JPH09199426A (en) 1996-01-18 1996-01-18 Manufacture of microcrystalline silicon semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH09199426A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949685A2 (en) * 1998-03-16 1999-10-13 Canon Kabushiki Kaisha Semiconductor element and its manufacturing method
EP1087034A1 (en) * 1999-09-22 2001-03-28 GfE Metalle und Materialien GmbH Plasma coating method and three dimentional coated substrate
US9945032B2 (en) 2013-01-11 2018-04-17 The Aerospace Corporation Systems and methods for enhancing mobility of atomic or molecular species on a substrate at reduced bulk temperature using acoustic waves, and structures formed using same
US10160061B2 (en) 2016-08-15 2018-12-25 The Aerospace Corporation Systems and methods for modifying acoustic waves based on selective heating
US10173262B2 (en) 2016-02-04 2019-01-08 The Aerospace Corporation Systems and methods for monitoring temperature using acoustic waves during processing of a material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949685A2 (en) * 1998-03-16 1999-10-13 Canon Kabushiki Kaisha Semiconductor element and its manufacturing method
EP0949685A3 (en) * 1998-03-16 2007-06-13 Canon Kabushiki Kaisha Semiconductor element and its manufacturing method
EP1087034A1 (en) * 1999-09-22 2001-03-28 GfE Metalle und Materialien GmbH Plasma coating method and three dimentional coated substrate
US9945032B2 (en) 2013-01-11 2018-04-17 The Aerospace Corporation Systems and methods for enhancing mobility of atomic or molecular species on a substrate at reduced bulk temperature using acoustic waves, and structures formed using same
US10173262B2 (en) 2016-02-04 2019-01-08 The Aerospace Corporation Systems and methods for monitoring temperature using acoustic waves during processing of a material
US10160061B2 (en) 2016-08-15 2018-12-25 The Aerospace Corporation Systems and methods for modifying acoustic waves based on selective heating

Similar Documents

Publication Publication Date Title
JP3907726B2 (en) Method for manufacturing microcrystalline silicon film, method for manufacturing semiconductor device, and method for manufacturing photoelectric conversion device
WO2011028349A2 (en) Remote hydrogen plasma source of silicon containing film deposition
JPH04266019A (en) Film formation
JP2003282458A (en) Semiconductor device and method of manufacturing the same
JPH09199426A (en) Manufacture of microcrystalline silicon semiconductor thin film
JP3623520B2 (en) Thin film solar cell manufacturing method
JP5502210B2 (en) Microcrystalline semiconductor thin film manufacturing method
JP2008004813A (en) Silicon-based thin film photoelectric conversion element and manufacturing method and manufacturing apparatus therefor
JPH0142125B2 (en)
TW201201396A (en) Method for manufacturing a solar panel
JPH08506215A (en) Microwave excitation method for manufacturing high quality semiconductor materials
JPH10313125A (en) Formation of thin film
JP2700282B2 (en) Semiconductor device
JPH03101274A (en) Manufacture of amorphous solar cell
JP3746711B2 (en) Method for manufacturing microcrystalline silicon solar cell
JPS6316914B2 (en)
JP4497914B2 (en) Method for producing silicon thin film solar cell
JP2989055B2 (en) Solar cell manufacturing method
JPH09315811A (en) Amorphous semiconductor, its production and photovoltaic device
JPH10200139A (en) Amorphous semiconductor solar battery
JP3274099B2 (en) Solar cell manufacturing method
JP3078373B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2001291882A (en) Method of manufacturing thin film
JP3272681B2 (en) Solar cell manufacturing method
JP2758161B2 (en) Method for manufacturing semiconductor device