JP2758161B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2758161B2
JP2758161B2 JP62168025A JP16802587A JP2758161B2 JP 2758161 B2 JP2758161 B2 JP 2758161B2 JP 62168025 A JP62168025 A JP 62168025A JP 16802587 A JP16802587 A JP 16802587A JP 2758161 B2 JP2758161 B2 JP 2758161B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
amorphous semiconductor
substrate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62168025A
Other languages
Japanese (ja)
Other versions
JPS6411317A (en
Inventor
修 嶋田
宏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62168025A priority Critical patent/JP2758161B2/en
Publication of JPS6411317A publication Critical patent/JPS6411317A/en
Application granted granted Critical
Publication of JP2758161B2 publication Critical patent/JP2758161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、非晶質半導体層を用いた半導体装置の製造
方法に係り、特に非晶質半導体層の特性制御の方法に関
する。 (従来の技術) 液晶駆動回路等、大面積化が必要な半導体装置に非晶
質シリコン(a−Si)などの非晶質半導体層を用いたも
のが注目されている。従来、a−Si層の伝導型制御は、
a−Si層形成時に同時に不純物をドープすることにより
行われていた。例えば、ガラス基板上にp型水素化a−
Si(a−Si:H)層を形成するには、膜形成装置内に原料
ガスであるモノシラン(SiH4)と水素(H2)と共に、ホ
ウ素(B)を含むジボラン(B2H6)ガスを導入し、これ
を高周波電力またはマイクロ波電力により分解させる。
ここで生じたイオンおよびラジカルがガラス基板に到達
して、ホウ素を含むp型のa−Si:H層が得られる。 この様な伝導型制御では、基板上に形成されたa−S
i:H層全面がp型となるため、必要な面積だけp型層が
欲しい場合には、堆積された層を選択エッチングするこ
とが必要になる。従って異なる導電型のa−Si:H層の組
合わせによる素子を得るためには、膜形成とエッチング
を繰返すことが必要となる。この結果、素子形成された
基板表面は凹凸の大きいものとなり、歪線の断線を生じ
易い。また層間絶縁膜も凹凸の大きい面に形成されるた
め、絶縁不良が発生し易い。同様のことは、a−Si:H層
の導電型制御に限らず、異種の半導体層例えばa−SiC
層や絶縁層であるSiN層をa−Si:H層と組合わせる場合
にも言える。 (発明が解決しようとする問題点) 以上のように膜形成と同時にその特性制御が行なわれ
る従来の非晶質半導体層を用いた素子形成においては、
表面の凹凸が大きくなる、工程が複雑になる等、信頼性
上問題であった。 本発明は、このような問題を解決した非晶質半導体層
を用いた半導体装置の製造方法を提供することを目的と
する。 [発明の構成] (問題点を解決するための手段) 本発明に係る半導体装置の製造方法は、非晶質シリコ
ンを主成分とする非晶質半導体層が形成された基板を容
器内に装着し、この容器内に特性制御用物質と水素を含
む原料ガスを導入してこれを外部から与えるエネルギー
により分解し、発生した元素イオンを電界により加速し
て前記非晶質半導体層に導入して、前記非晶質半導体層
の特性制御を行なう半導体装置の製造方法であって、前
記特性制御物質として、前記原料ガスの分解の際に、前
記非晶質半導体層の抵抗率制御を行なう窒素イオンが発
生するものを使用することを特徴とする。 (作用) 本発明の方法によれば、非晶質半導体層に特性変化を
もたらす元素の導入に当たってマスクを用いることによ
り、基板上の非晶質半導体層の任意の領域について特性
制御が可能である。従って、選択エッチングを要せず、
同一面内で高抵抗領域を分離形成することができる。こ
の結果素子表面を平坦に保つことができ、大きい凹凸を
設けることによる絶縁不良や配線段切れを防止すること
ができる。また、本発明によれば、発生した元素イオン
を電界により加速しているので、特性制御を行なうため
の元素イオンは非晶質半導体層に十分に導入される。さ
らに、本発明によれば、原料ガスに水素が含まれている
ので、この水素により非晶質半導体内のシリコンのダン
グリングボンド等の欠陥が修復される。したがって、本
発明によれば、特性制御を効果的に行なうことができ
る。 (実施例) 以下、本発明の実施例を図面を参照して説明する。 第1図は一実施例に用いた不純物ドーピング装置の構
成である。この装置は、a−Si膜形成装置と共用するこ
とができる。真空容器1は、排気口2,スロットルバルブ
3を介して真空ポンプを含む排気系4に接続されてい
る。真空容器1内には試料台6があり、この上に試料5
が載置される。試料5はこの実施例では、a−Si:H層が
既に全面形成された基板である。試料台6内にはヒータ
7があり、基板温度が所定値に保たれるようになってい
る。不純物原料ガス8はガス導入口9から真空容器1内
に導かれ、ここでマイクロ波電源10から供給されたマイ
クロ波電力により、導波路端部11で分解され、主に不純
物元素のラジカル種およびイオンが得られる。発生した
不純物元素イオンは、直流電源12により電極13と試料台
6間に印加された電圧により加速されて、試料5に達
し、そのa−Si:H層に導入される。 具体的な実験データを挙げる。原料ガス8として水素
希釈5000ppmのB2H6ガスを用い、マイクロ波電源10は周
波数2.45GHz,最大出力1.3kW、直流電源12は最大電圧100
kVのものを用いた。試料5は、厚さ0.5μmのガラス基
板(HOYA製,NA−40)に5000Åのa−Si:H層が形成され
たものである。このa−Si:H層は、比抵抗1010Ωcm程度
の高抵抗層である。基板温度は200℃に保ち、真空容器
1内は圧力0.5torr一定に保った。 第2図はこの様な条件でa−Si:H層にボロンドープを
行なった場合の、B2H6ガス流量と得られた比抵抗の関係
を示す。加速電圧は50kVであり、放電時間は各々20分で
ある。図から明らかなように、バラツキは大きいもの
の、ガス流量と共に比抵抗が低下しており、ボロンイオ
ンがa−Si:H層中に導入されていることが分かる。但
し、ガス流量に対して膜中に取り込まれて電気的に活性
になるボロンの量は少なく、この方法によるボロンの添
加効率は低い。 第3図は、ボロンイオン添加量の場所依存性を示す実
験データである。このデータは、B2H6ガス流量30SCCM、
加速電圧50kV、試料基板温度200℃、放電時間20分の条
件でボロンイオン導入を行なった場合のものである。試
料台は直径20cmの円形である。図から明らかなように、
比抵抗分布は中心から半径7.5cm以内ではバラツキが少
なく良好な結果が得られている。 第4図(a)〜(c)は、上記装置を具体的な素子形
成に適用した実施例の工程断面図である。ガラス基板14
には全面にn型a−Si:H層15が周知の膜形成法により形
成されている。この基板のn型a−Si:H層15上に、Al膜
によるマスク16を形成する((a))。この状態の基板
を第1図の装置に装着し、B2H6ガス流量80SCCMの条件で
ボロン導入を行ない、p型層17を形成する((b))。
マスク16をエッチング除去し、n型領域およびp型領域
にそれぞれMo電極181,182を形成し、pn接合ダイオード
とした((c))。 第5図はこのようにして得られたpn接合ダイオードの
特性である。図から、順方向印加電圧0.75Vの時の電流
は2.07μAであり、この点でのオン抵抗は約36kΩとな
る。このオン抵抗は結晶Siのpn接合ダイオードに比べる
と4桁程度高いが、用いたn型a−Si:H層15の比抵抗10
3Ωcmであることを考慮すれば、それ程悪いものではな
い。 以上のようにこの実施例によれば、a−Si:H層の選択
的な導電型制御ができ、従って選択エッチングを要せず
所望の導電型の組合わせによる素子を得ることができ
る。 上記実施例では、a−Si:H層の導電型制御を説明した
が、次のようにしてバンドギャップ制御が可能である。
先の実施例と同様の装置を用い、a−Si:H層が形成され
た基板を装着して原料ガスとして例えば、CH4を導入す
る。これを先の実施例と同様にして分解し、Cイオンを
a−Si:H層に導入するこにより、a−SiC:H層を得るこ
とができる。a−SiC:Hはa−Si:Hに比べてバンドギャ
ップが大きい。従ってこの方法を用いてa−Si:H層の一
部を選択的にa−SiC:H層に変えたことにより、ヘテロ
接合を形成することができる。この場合に、原料ガスCH
4と同時に、不純物原料ガスとして先の実施例のように
例えば水素希釈B2H6を導入すれば、バンドギャップ制御
と同時に導電型制御が可能である。 また本発明は、a−Si:H層の抵抗率制御、例えば選択
的に絶縁膜化するような制御も可能である。具体例を挙
げれば、先の実施例の装置を用い、a−Si:H層の形成さ
れ基板を装着して、原料ガスとしてNH3を導入する。こ
のNH3を先の実施例と同様の原理で分解してNイオンを
a−Si:H層に導入することにより、a−Si:H層を窒化し
てSiN層に変える。SiNは絶縁体であるから、a−Si:H層
の素子分離領域に選択的にこの方法でSiNを形成すれ
ば、素子分離が可能である。この方法では、素子分離領
域のa−Si:H層をエッチング除去する必要がなく、平坦
性を保った状態で素子分離が行われる。 本発明は上記実施例に限られるものではない。例えば
実施例ではa−Si:H層の特性制御のみ説明したが、条件
を選ぶことにより他の非晶質半導体層に任意の元素をド
ープする場合に本発明を適用することができる。また実
施例では、基板上の面積的に選択された領域について特
性制御を行ったが、例えば表面から所定範囲の深さに特
性制御を行なって、膜厚方向にpn,pi,ni等の接合形成や
ヘテロ接合形成を行なう場合、更に表面に絶縁膜を形成
する場合も本発明は有効である。 [発明の効果] 以上述べたように本発明によれば、非晶質半導体層の
抵抗率制御を膜形成とは別工程で行なうことにより、素
子表面を平坦に保ち、絶縁不良や配線断線を防止した信
頼性の高い半導体装置を実現することができる。
The present invention relates to a method for manufacturing a semiconductor device using an amorphous semiconductor layer, and more particularly to a method for controlling characteristics of an amorphous semiconductor layer. About. (Prior Art) A device using an amorphous semiconductor layer such as amorphous silicon (a-Si) has attracted attention for a semiconductor device requiring a large area, such as a liquid crystal driving circuit. Conventionally, conduction type control of a-Si layer
This has been performed by doping impurities simultaneously with the formation of the a-Si layer. For example, p-type hydrogenated a-
In order to form a Si (a-Si: H) layer, diborane (B 2 H 6 ) containing boron (B) together with monosilane (SiH 4 ) and hydrogen (H 2 ) as raw material gases is formed in a film forming apparatus. Gas is introduced and decomposed by high frequency power or microwave power.
The ions and radicals generated here reach the glass substrate, and a p-type a-Si: H layer containing boron is obtained. In such a conduction type control, the a-S
Since the entire surface of the i: H layer is p-type, if a p-type layer is required in a required area, it is necessary to selectively etch the deposited layer. Therefore, in order to obtain an element by combining a-Si: H layers of different conductivity types, it is necessary to repeat film formation and etching. As a result, the surface of the substrate on which the elements are formed has large irregularities, and the disconnection of the strain line is likely to occur. In addition, since the interlayer insulating film is also formed on a surface having large irregularities, insulation failure is likely to occur. The same applies not only to the control of the conductivity type of the a-Si: H layer, but also to different types of semiconductor layers such as a-SiC.
The same can be said when a SiN layer, which is a layer or an insulating layer, is combined with an a-Si: H layer. (Problems to be Solved by the Invention) As described above, in the conventional device formation using an amorphous semiconductor layer whose characteristics are controlled simultaneously with film formation,
There have been problems in reliability, such as increased surface irregularities and complicated processes. An object of the present invention is to provide a method for manufacturing a semiconductor device using an amorphous semiconductor layer which solves such a problem. [Structure of the Invention] (Means for Solving the Problems) In a method for manufacturing a semiconductor device according to the present invention, a substrate on which an amorphous semiconductor layer containing amorphous silicon as a main component is formed is mounted in a container. Then, a raw material gas containing a property controlling substance and hydrogen is introduced into the container, decomposed by externally applied energy, and the generated element ions are accelerated by an electric field and introduced into the amorphous semiconductor layer. A method of manufacturing a semiconductor device for controlling characteristics of the amorphous semiconductor layer, wherein the characteristic control substance includes nitrogen ions for controlling the resistivity of the amorphous semiconductor layer when the source gas is decomposed. Is used. (Function) According to the method of the present invention, the characteristic can be controlled for an arbitrary region of the amorphous semiconductor layer on the substrate by using a mask when introducing an element that causes a change in the characteristics of the amorphous semiconductor layer. . Therefore, no selective etching is required,
High-resistance regions can be formed separately in the same plane. As a result, the element surface can be kept flat, and poor insulation and disconnection of wiring due to the provision of large unevenness can be prevented. Further, according to the present invention, since the generated element ions are accelerated by the electric field, the element ions for controlling the characteristics are sufficiently introduced into the amorphous semiconductor layer. Further, according to the present invention, since hydrogen is contained in the source gas, defects such as dangling bonds of silicon in the amorphous semiconductor are repaired by the hydrogen. Therefore, according to the present invention, characteristic control can be effectively performed. Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of an impurity doping apparatus used in one embodiment. This apparatus can be used in common with an a-Si film forming apparatus. The vacuum vessel 1 is connected to an exhaust system 4 including a vacuum pump via an exhaust port 2 and a throttle valve 3. A sample stage 6 is provided in the vacuum vessel 1, and a sample 5
Is placed. Sample 5 in this embodiment is a substrate on which an a-Si: H layer has already been formed. A heater 7 is provided in the sample table 6 so that the substrate temperature is maintained at a predetermined value. The impurity source gas 8 is guided from the gas inlet 9 into the vacuum vessel 1, where it is decomposed at the waveguide end 11 by the microwave power supplied from the microwave power supply 10, and mainly the radical species of the impurity element and Ions are obtained. The generated impurity element ions are accelerated by a voltage applied between the electrode 13 and the sample table 6 by the DC power supply 12, reach the sample 5, and are introduced into the a-Si: H layer. Specific experimental data will be given. Using hydrogen dilution 5000ppm of B 2 H 6 gas as a source gas 8, a microwave power source 10 is frequency 2.45 GHz, the maximum output 1.3 kW, DC power supply 12 is the maximum voltage 100
kV was used. Sample 5 is a glass substrate (made by HOYA, NA-40) having a thickness of 0.5 μm, on which a 5000-degree a-Si: H layer is formed. This a-Si: H layer is a high resistance layer having a specific resistance of about 10 10 Ωcm. The substrate temperature was kept at 200 ° C., and the pressure in the vacuum vessel 1 was kept constant at 0.5 torr. FIG. 2 shows the relationship between the B 2 H 6 gas flow rate and the obtained specific resistance when the a-Si: H layer is doped with boron under such conditions. The accelerating voltage is 50 kV and the discharge time is 20 minutes each. As is clear from the figure, although the variation is large, the specific resistance decreases with the gas flow rate, and it can be seen that boron ions are introduced into the a-Si: H layer. However, the amount of boron that is taken into the film and becomes electrically active with respect to the gas flow rate is small, and the boron addition efficiency by this method is low. FIG. 3 is experimental data showing the location dependence of the boron ion addition amount. This data, B 2 H 6 gas flow rate 30 SCCM,
This is a case where boron ions are introduced under the conditions of an acceleration voltage of 50 kV, a sample substrate temperature of 200 ° C., and a discharge time of 20 minutes. The sample stage is circular with a diameter of 20 cm. As is clear from the figure,
In the specific resistance distribution, good results were obtained with little variation within a radius of 7.5 cm from the center. 4 (a) to 4 (c) are process cross-sectional views of an embodiment in which the above-described device is applied to a specific element formation. Glass substrate 14
An n-type a-Si: H layer 15 is formed on the entire surface by a known film forming method. A mask 16 of an Al film is formed on the n-type a-Si: H layer 15 of this substrate ((a)). The substrate in this state is mounted on the apparatus shown in FIG. 1, and boron is introduced under the condition of a B 2 H 6 gas flow rate of 80 SCCM to form a p-type layer 17 ((b)).
The mask 16 is removed by etching, respectively n-type region and a p-type region to form the Mo electrode 18 1, 18 2, and a pn junction diode ((c)). FIG. 5 shows the characteristics of the pn junction diode thus obtained. From the figure, the current when the forward applied voltage is 0.75 V is 2.07 μA, and the on-resistance at this point is about 36 kΩ. This on-resistance is about four orders of magnitude higher than that of a crystalline Si pn junction diode, but the specific resistance of the n-type a-Si: H layer 15 used is
Not so bad considering the 3 Ωcm. As described above, according to this embodiment, it is possible to selectively control the conductivity type of the a-Si: H layer. Therefore, it is possible to obtain an element having a desired combination of conductivity types without requiring selective etching. In the above embodiment, the control of the conductivity type of the a-Si: H layer has been described. However, the band gap can be controlled as follows.
Using the same apparatus as in the previous embodiment, the substrate on which the a-Si: H layer is formed is mounted, and for example, CH 4 is introduced as a source gas. This is decomposed in the same manner as in the previous embodiment, and an a-SiC: H layer can be obtained by introducing C ions into the a-Si: H layer. a-SiC: H has a larger band gap than a-Si: H. Therefore, a heterojunction can be formed by selectively changing a part of the a-Si: H layer to the a-SiC: H layer using this method. In this case, the raw material gas CH
Simultaneously with 4 , the introduction of, for example, hydrogen-diluted B 2 H 6 as the impurity source gas as in the previous embodiment makes it possible to control the conductivity type simultaneously with the band gap control. In the present invention, it is also possible to control the resistivity of the a-Si: H layer, for example, to selectively form an insulating film. As a specific example, using the apparatus of the above embodiment, the substrate on which the a-Si: H layer is formed is mounted, and NH 3 is introduced as a source gas. This NH 3 is decomposed according to the same principle as in the previous embodiment, and N ions are introduced into the a-Si: H layer, whereby the a-Si: H layer is nitrided to be changed to the SiN layer. Since SiN is an insulator, element isolation can be achieved by selectively forming SiN in the element isolation region of the a-Si: H layer by this method. In this method, it is not necessary to remove the a-Si: H layer in the element isolation region by etching, and element isolation is performed while maintaining flatness. The present invention is not limited to the above embodiment. For example, in the embodiment, only the control of the characteristics of the a-Si: H layer has been described. However, the present invention can be applied to a case where other elements are doped with an arbitrary element by selecting conditions. Further, in the embodiment, the characteristic control is performed on a region selected in terms of area on the substrate, but the characteristic control is performed, for example, to a predetermined range of depth from the surface, and the pn, pi, ni, etc. The present invention is also effective when forming a heterojunction or when forming an insulating film on the surface. [Effects of the Invention] As described above, according to the present invention, by controlling the resistivity of the amorphous semiconductor layer in a step different from the film formation, the element surface is kept flat, and insulation failure and wiring disconnection are prevented. A highly reliable semiconductor device which is prevented can be realized.

【図面の簡単な説明】 第1図は本発明の一実施例に用いた不純物ドーピング装
置を示す図、第2図はこの装置を用いたa−Si:H層の導
電型制御の効果を示す図、第3図は同じくその導電型制
御の場所依存性を示す図、第4図(a)〜(c)は実施
例のpn接合ダイオード製造工程を示す図、第5図は得ら
れたダイオードの特性を示す図である。 1……真空容器、2……排気口、3……スロットルバル
ブ、4……排気系、5……試料、6……試料台、7……
ヒータ、8……原料ガス、9……ガス導入口、10……マ
イクロ波電源、11……導波路端部、12……直流電源、13
……電極、14……ガラス基板、15……n型a−Si:H層、
16……Alマスク、17……p型層、181,182……電極。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an impurity doping apparatus used in one embodiment of the present invention, and FIG. 2 shows the effect of controlling the conductivity type of an a-Si: H layer using this apparatus. FIGS. 3A and 3B are diagrams showing the location dependence of the control of the conductivity type, FIGS. 4A to 4C are diagrams showing the steps of manufacturing the pn junction diode of the embodiment, and FIG. FIG. 6 is a diagram showing characteristics of the present invention. 1 vacuum chamber 2 exhaust port 3 throttle valve 4 exhaust system 5 sample 6 sample table 7
Heater 8 Source gas 9 Gas inlet 10 Microwave power supply 11 Waveguide end 12 DC power supply 13
…… electrode, 14 …… glass substrate, 15 …… n-type a-Si: H layer,
16 ... Al mask, 17 ... p-type layer, 18 1 , 18 2 ... electrodes.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−197824(JP,A) 特開 昭62−29132(JP,A) 特開 昭62−43120(JP,A) 特開 昭63−194326(JP,A) 特開 昭61−48979(JP,A) 特開 昭62−130519(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (56) References JP-A-57-197824 (JP, A)                 JP-A-62-29132 (JP, A)                 JP-A-62-43120 (JP, A)                 JP-A-63-194326 (JP, A)                 JP-A-61-48979 (JP, A)                 JP-A-62-130519 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.非晶質シリコンを主成分とする非晶質半導体層が形
成された基板を容器内に装着し、この容器内に特性制御
用物質と水素を含む原料ガスを導入してこれを外部から
与えるエネルギーにより分解し、発生した元素イオンを
電界により加速して前記非晶質半導体層に導入して、前
記非晶質半導体層の特性制御を行なう半導体装置の製造
方法であって、前記特性制御物質として、前記原料ガス
の分解の際に、前記非晶質半導体層の抵抗率制御を行な
う窒素イオンが発生するものを使用することを特徴とす
る半導体装置の製造方法。 2.前記非晶質半導体層は基板全面に形成され、前記元
素イオンの導入は前記非晶質半導体層にマスクを設けて
選択的に行なう特許請求の範囲第1項記載の半導体装置
の製造方法。 3.前記外部から与えるエネルギーはマイクロ波電力で
ある特許請求の範囲第1項記載の半導体装置の製造方
法。
(57) [Claims] A substrate on which an amorphous semiconductor layer containing amorphous silicon as a main component is formed is mounted in a container, a material gas for controlling properties and a hydrogen-containing source gas are introduced into the container, and energy is supplied from the outside. A method for manufacturing a semiconductor device in which the generated element ions are accelerated by an electric field and introduced into the amorphous semiconductor layer to control characteristics of the amorphous semiconductor layer, wherein the characteristic control substance is A method for producing a semiconductor device, wherein nitrogen gas is generated to control the resistivity of the amorphous semiconductor layer when the source gas is decomposed. 2. 2. The method according to claim 1, wherein the amorphous semiconductor layer is formed over the entire surface of the substrate, and the element ions are selectively introduced by providing a mask on the amorphous semiconductor layer. 3. 2. The method according to claim 1, wherein the external energy is microwave power.
JP62168025A 1987-07-06 1987-07-06 Method for manufacturing semiconductor device Expired - Fee Related JP2758161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62168025A JP2758161B2 (en) 1987-07-06 1987-07-06 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62168025A JP2758161B2 (en) 1987-07-06 1987-07-06 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6411317A JPS6411317A (en) 1989-01-13
JP2758161B2 true JP2758161B2 (en) 1998-05-28

Family

ID=15860420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62168025A Expired - Fee Related JP2758161B2 (en) 1987-07-06 1987-07-06 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2758161B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793269B2 (en) * 1987-10-16 1995-10-09 株式会社富士電機総合研究所 Amorphous semiconductor manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3118785A1 (en) * 1981-05-12 1982-12-02 Siemens AG, 1000 Berlin und 8000 München METHOD AND DEVICE FOR DOPING SEMICONDUCTOR MATERIAL
JPS6148979A (en) * 1984-08-17 1986-03-10 Seiko Epson Corp Manufacture of polycrystalline silicon thin-film transistor
JPS6229132A (en) * 1985-07-30 1987-02-07 Sanyo Electric Co Ltd Manufacture of semiconductor
JPS6243120A (en) * 1985-08-20 1987-02-25 Sanyo Electric Co Ltd Formation of p-type amorphous semiconductor film
JPS62130519A (en) * 1985-12-03 1987-06-12 Sony Corp Impurity doping to semiconductor thin film
JP2516951B2 (en) * 1987-02-06 1996-07-24 松下電器産業株式会社 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPS6411317A (en) 1989-01-13

Similar Documents

Publication Publication Date Title
US4398343A (en) Method of making semi-amorphous semiconductor device
US4665428A (en) Semiconductor device
JP4055358B2 (en) Semiconductor device and manufacturing method thereof
US4520380A (en) Amorphous semiconductors equivalent to crystalline semiconductors
JPH0230176B2 (en)
US5900646A (en) Method of preventing deterioration of film quality of transparent conductive film a semiconductor device
JPS63233564A (en) Manufacture of junction transistor
US4446168A (en) Method of forming amorphous silicon
US4710786A (en) Wide band gap semiconductor alloy material
US5036373A (en) Electric device with grains and an insulating layer
JP2906260B2 (en) Manufacturing method of PN junction device
US5538911A (en) Manufacturing method for a diamond electric device
JPS63194326A (en) Manufacture of semiconductor device
US4677738A (en) Method of making a photovoltaic panel
US5656330A (en) Resistive element having a resistivity which is thermally stable against heat treatment, and method and apparatus for producing same
US4839312A (en) Fluorinated precursors from which to fabricate amorphous semiconductor material
JP2758161B2 (en) Method for manufacturing semiconductor device
US5139970A (en) Electric device and manufacturing method of the same
JP4346700B2 (en) Method for manufacturing photoelectric conversion device
JPS6316914B2 (en)
JPH09199426A (en) Manufacture of microcrystalline silicon semiconductor thin film
JPS6132416A (en) Manufacture of semiconductor device
JP2771667B2 (en) Method for manufacturing semiconductor device
JPS59211289A (en) Manufacture of amorphous silicon solar battery
JPH01253271A (en) Semiconductor element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees