JPS6243120A - Formation of p-type amorphous semiconductor film - Google Patents

Formation of p-type amorphous semiconductor film

Info

Publication number
JPS6243120A
JPS6243120A JP18334985A JP18334985A JPS6243120A JP S6243120 A JPS6243120 A JP S6243120A JP 18334985 A JP18334985 A JP 18334985A JP 18334985 A JP18334985 A JP 18334985A JP S6243120 A JPS6243120 A JP S6243120A
Authority
JP
Japan
Prior art keywords
gas
semiconductor film
amorphous semiconductor
type amorphous
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18334985A
Other languages
Japanese (ja)
Inventor
Yukio Nakajima
行雄 中嶋
Hisao Haku
白玖 久雄
Kaneo Watanabe
渡邉 金雄
Tsugifumi Matsuoka
松岡 継文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP18334985A priority Critical patent/JPS6243120A/en
Priority to US06/888,474 priority patent/US4755483A/en
Publication of JPS6243120A publication Critical patent/JPS6243120A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To easily control the reaction conditions by using B(CH3)3 gas having both the characteristics of boron and carbon sources, as P-type doping gas. CONSTITUTION:Doping and wide-band-gapping are simultaneously performed by mainly using B(CH3)3 gas as P-type doping gas under the conditions that the IV group element gas such as Si2H6 and SiH4 is used as the main source gas. B works as a P-type dopant (boron source) and, in addition, C works as a carbon source for wide-band-gapping through decomposition of B(CH3)3 used as P-type doping gas. Therefore, only two types of the main source gas and doping gas can be used as the source gas.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はP型アモルファス半導体膜の形成方法に関し
、特に光CVD法によって、太陽電池や光センサなどの
窓材料として好適するP型アモルファス半導体膜を形成
する方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for forming a P-type amorphous semiconductor film, and in particular to a method for forming a P-type amorphous semiconductor film suitable as a window material for solar cells, optical sensors, etc., by photo-CVD method. Concerning how to form.

(従来技術) 従来、光CVD法によって、P型アモルファスシリコン
カーバイド膜(a−3iC膜)を形成するために、たと
えば、Appl、Phys、Lett、 、νo1.4
4゜No、9. L May 1984の第871頁〜
第873頁に示されるように、s+zHbなどを主原料
ガスとし、ボロン源すなわちドーピングガスとしてB2
H4を用い、カーボン源としてS i Ha(CHs)
z 、S fH2(CH)! 、Ct Hzなどを用い
ている。
(Prior Art) Conventionally, in order to form a P-type amorphous silicon carbide film (a-3iC film) by a photo-CVD method, for example, Appl, Phys, Lett, , νo1.4
4°No, 9. L May 1984, page 871~
As shown on page 873, s+zHb etc. are used as the main raw material gas, and B2 is used as the boron source, that is, the doping gas.
Using H4, S i Ha (CHs) as a carbon source
z, S fH2(CH)! , Ct Hz, etc. are used.

(発明が解決しようとする問題点) 上述のようなガス組成において、ボロン源として用いら
れるBzHbはたとえばJ、Appl、 Phys。
(Problems to be Solved by the Invention) In the gas composition as described above, BzHb used as a boron source is, for example, J, Appl, Phys.

Vol、56 No、10.15 November 
1984の第2803頁〜第2805頁に示されている
ように、主原料ガスSt。
Vol, 56 No, 10.15 November
1984, pages 2803 to 2805, the main raw material gas St.

H6に比べて、紫外線の吸収率が低いため、多量のドー
ピングガスを必要とする。ドーピングガスを多くすれば
、形成されるP型a−3iC膜の電気的特性たとえば光
学的バンドギャップが小さくなり、それが膜特性の低下
の一因になっていた。
Since it has a lower ultraviolet absorption rate than H6, it requires a large amount of doping gas. If the amount of doping gas is increased, the electrical characteristics, such as the optical band gap, of the formed P-type a-3iC film become smaller, which is one reason for the deterioration of the film characteristics.

カーボン源としてS i )(x (CH3)4−X系
ガスを用いれば、主原料ガスと同程度の流量を必要とす
る。このように混合ガスが大きな流量を必要とするとい
うことは、ガス利用効率が低いばかりであく、その反応
の制御性があまりよくないという問題がある。また、混
合ガスの流量が大きいと1、カーボンの分布特性が悪く
、したがって形成されるP型a−3iC膜の膜特性たと
えば電気導電率があまりよくないという問題がある。
If Si ) ( There is a problem that not only the utilization efficiency is low, but also the controllability of the reaction is not very good.In addition, if the flow rate of the mixed gas is large, the carbon distribution characteristics are poor, and therefore the formed P-type a-3iC film However, there is a problem in that the film properties, such as electrical conductivity, are not very good.

また、カーボン源としてCtH,を用いれば、膜中にC
−C結合が多くなり、それがその膜の電気伝導度に影響
を与える。
Furthermore, if CtH is used as a carbon source, CtH can be used as a carbon source.
-C bonds increase, which affects the electrical conductivity of the film.

それゆえに、この発明の主たる目的は、光CVD法にお
ける原料ガス分解に関する問題を解決し、効率よく、P
型アモルファス半導体膜を形成する方法を提供すること
である。
Therefore, the main purpose of this invention is to solve the problems related to the decomposition of raw material gas in the photoCVD method, and to efficiently
An object of the present invention is to provide a method for forming an amorphous semiconductor film.

(問題点を解決するための手段) この発明は、簡単にいえば、光CVD法において主原料
ガスを■族元素(たとえばSi、H,。
(Means for Solving the Problems) To put it simply, the present invention is based on a photo-CVD method in which the main raw material gas is a group Ⅰ element (for example, Si, H, etc.).

SiH,等を)としたとき、P型ドーピングガスとして
、主として、B (CH3)3を用いて、ドーピングと
ワイドバンドギャップ化とを同時に行なうようにした、
P型アモルファス半導体膜の形成方法である。
SiH, etc.), B (CH3)3 is mainly used as the P-type doping gas to simultaneously perform doping and widening the band gap.
This is a method for forming a P-type amorphous semiconductor film.

(作用) P型ドーピングガスとしてのB (CHs ) sの分
解によって、BがP型ドーパント(ボロンR)として、
またCがワイドバンドギャップ化のためのカーボン源と
して作用する。
(Function) B (CHs) as a P-type doping gas By the decomposition of s, B becomes a P-type dopant (boron R),
Further, C acts as a carbon source for widening the bandgap.

(発明の効果) この発明によれば、P型ドーピングガスとして、ボロン
源とカーボン源との両特性を持ったB(CH3)3ガス
を用いるようにしているため、原料ガスが主原料ガスと
ドーピングガスとの2種類だけでよいため、その反応条
件の制御が容易になる。しかも、従来のようなガス組成
の場合に比べて、主原料ガス以外のガスの流量が小さく
てよいため、形成されるP型アモルファス半導体膜の電
気的あるいは熱的な特性が悪化することがなく、したが
って良好なアモルファス半導体膜が得られる。
(Effects of the Invention) According to the present invention, B(CH3)3 gas, which has the characteristics of both a boron source and a carbon source, is used as the P-type doping gas, so that the source gas is not the main source gas. Since only two types of gases, including the doping gas, are required, the reaction conditions can be easily controlled. Moreover, compared to the case of conventional gas compositions, the flow rate of gases other than the main source gas may be smaller, so the electrical or thermal characteristics of the formed P-type amorphous semiconductor film will not deteriorate. , Therefore, a good amorphous semiconductor film can be obtained.

この発明の上述の目的、その他の目的、特徴および利点
は、図面を参照して行なう以下の実施例の詳細な説明か
ら一層明らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

(実施例) 第1図はこの発明に用いられる光CVD法による半導体
膜形成装置を示す図解図である。この形成装置10は反
応室12を含み、この反応室12内には、基板14を加
熱するためのヒータ16が配置される。基板14として
はたとえばガラスやステンレスのような金属などが利用
可能である。
(Example) FIG. 1 is an illustrative diagram showing a semiconductor film forming apparatus using a photo-CVD method used in the present invention. The forming apparatus 10 includes a reaction chamber 12, and a heater 16 for heating the substrate 14 is disposed within the reaction chamber 12. As the substrate 14, for example, glass or metal such as stainless steel can be used.

反応室12の上方には、低圧水銀灯18が設けられ、こ
の低圧水銀灯18からの光は、たとえば合成石英などか
らなる紫外線導入窓20を通して反応室12に配置され
た基板14上に導入される。
A low-pressure mercury lamp 18 is provided above the reaction chamber 12, and light from the low-pressure mercury lamp 18 is introduced onto a substrate 14 disposed in the reaction chamber 12 through an ultraviolet introduction window 20 made of, for example, synthetic quartz.

基板14の近傍には、ガス導入口22が形成され、この
ガス導入口22を通して流M調整された原料ガスが反応
室12内に流入される。
A gas inlet 22 is formed in the vicinity of the substrate 14 , and a raw material gas whose flow rate M is adjusted flows into the reaction chamber 12 through this gas inlet 22 .

なお、反応室12は真空排気ポンプ24によって、たと
えば0.1〜10Torr程度の圧力に保たれている。
Note that the reaction chamber 12 is maintained at a pressure of, for example, about 0.1 to 10 Torr by a vacuum pump 24.

この形成装置において、ヒータ16によって基板14を
たとえば100〜300℃に加熱し、ガス導入口22か
らの全ガス流量をたとえば1〜100cc/min、主
原料ガスに対するP型ドーピングガスの混入比を0.1
〜10%として、紫外光を1mW/cm”以上連続的に
照射することにより、基板14上にP型a−5iC膜を
堆積させる。
In this forming apparatus, the substrate 14 is heated to, for example, 100 to 300° C. by the heater 16, the total gas flow rate from the gas inlet 22 is set to, for example, 1 to 100 cc/min, and the mixing ratio of the P-type doping gas to the main source gas is set to 0. .1
~10%, and a P-type a-5iC film is deposited on the substrate 14 by continuously irradiating ultraviolet light at 1 mW/cm'' or more.

このような形成装置lOによって形成されたP型a−3
iC膜の特性が第2図に示される。この第2図では横軸
に上述の混入比(%)が示され、縦軸に導電率(Ω−1
c m −1)および光学的バンドギャップ(e V)
が、それぞれ示される。この第2図かられかるように、
P型ドーピングガスとしてのB(CH3)3の流量比を
増加させるに従って、導電率σphおよび暗導電率σd
のみならず、光学的バンドギャップEoptもまた大き
くなる。
P-type a-3 formed by such a forming apparatus IO
The characteristics of the iC film are shown in FIG. In this Figure 2, the horizontal axis shows the above-mentioned mixing ratio (%), and the vertical axis shows the conductivity (Ω-1
cm −1) and optical bandgap (e V)
are shown respectively. As you can see from this figure 2,
As the flow rate ratio of B(CH3)3 as P-type doping gas increases, the conductivity σph and dark conductivity σd
Not only that, but the optical bandgap Eopt also increases.

このように、導電率σphおよびσdならびに光学的バ
ンドギャップEoptが大きい半導体膜は、特に、太陽
電池や光センサすなわち光電変換半導体装置の窓材料と
して好適する。
As described above, a semiconductor film having a large conductivity σph and σd and a large optical band gap Eopt is particularly suitable as a window material for a solar cell or an optical sensor, that is, a photoelectric conversion semiconductor device.

この第2図かられかるように、この発明に従って、P型
ドーピングガスとしてB (CH3)sを用いれば、そ
の主原料ガス、この例では5izH4に対する混入比な
いし流量比が3%程度でも、十分な導電率および光学的
バンドギャップが実現できる。したがって、従来のガス
組成のように、そのような混合ガスの流量比を大きくす
る必要がなく、反応の制御が容易になるばかりでなく、
形成される膜特性もまた改善される。
As can be seen from FIG. 2, if B (CH3)s is used as the P-type doping gas according to the present invention, even a mixing ratio or flow rate ratio of about 3% to the main source gas, 5izH4 in this example, is sufficient. conductivity and optical bandgap can be achieved. Therefore, unlike conventional gas compositions, there is no need to increase the flow rate ratio of such a mixed gas, which not only makes it easier to control the reaction, but also
The properties of the films formed are also improved.

なお、上述の実施例では、P型ドーピングガスB(CH
s)sを単独で用いる場合について説明した。しかしな
がら、P型ドーパントの必要量や、さらに大きいバンド
ギャップが必要な場合には、他のボロン源(たとえばB
x H6など)やカーボン源(たとえばS i H−(
CHs ) a−1l、 CzH2など)を添加するよ
うにしてもよい。このように、他のカーボン源やボロン
源などを混入させることにより、ドーパント量やバンド
ギャップをより精密に調整することができる。
In addition, in the above-mentioned embodiment, P-type doping gas B (CH
s) The case where s is used alone has been explained. However, if the required amount of P-type dopants or a larger bandgap is required, other boron sources (e.g. B
x H6, etc.) and carbon sources (e.g. S i H-(
CHs) a-11, CzH2, etc.) may be added. In this way, by mixing other carbon sources, boron sources, etc., the dopant amount and band gap can be adjusted more precisely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明が適用される光CVD法による半導体
膜形成装置を示す図解図である。 第2図はこの発明にしたがって形成されるP型アモルフ
ァス半導体膜の特性を示すグラフであり、横軸に主原料
ガスに対するP型ドーピングガスの混入率をとり、縦軸
に導電率および光学的バンドギャップをとる。 図において、10は形成装置、12は反応室、20は紫
外線導入窓、22はガス導入口を示す。 特許出願人  三洋電機株式会社 代理人 弁理士 山 1)義 人 (ほか1名)
FIG. 1 is an illustrative diagram showing a semiconductor film forming apparatus using a photo-CVD method to which the present invention is applied. FIG. 2 is a graph showing the characteristics of a P-type amorphous semiconductor film formed according to the present invention, in which the horizontal axis shows the mixing ratio of P-type doping gas to the main raw material gas, and the vertical axis shows the conductivity and optical band. Take the gap. In the figure, 10 is a forming device, 12 is a reaction chamber, 20 is an ultraviolet introduction window, and 22 is a gas introduction port. Patent applicant Sanyo Electric Co., Ltd. agent Patent attorney Yama 1) Yoshito (and 1 other person)

Claims (1)

【特許請求の範囲】 1 原料ガスに光を照射してその光エネルギで原料ガス
を分解させる光CVD法によるP型アモルファス半導体
膜の形成方法において、 主原料ガスをIV族元素ガスとしたとき、P型ドーピング
ガスとして、主として、B(CH_3)、を用い、それ
によって、ドーピングとワイドバンドギャップ化とを同
時に行なうようにしたことを特徴とする、P型アモルフ
ァス半導体膜の形成方法。 2 さらに、ドーピングのために別のボロン源を混入す
る、特許請求の範囲第1項記載のP型アモルファス半導
体膜の形成方法。 3 さらに、ワイドバンドギャップ化のために別のカー
ボン源を混入する、特許請求の範囲第1項または第2項
記載のP型アモルファス半導体膜の形成方法。
[Claims] 1. In a method for forming a P-type amorphous semiconductor film by a photo-CVD method in which a source gas is irradiated with light and the source gas is decomposed by the light energy, when the main source gas is a group IV element gas, A method for forming a P-type amorphous semiconductor film, characterized in that B(CH_3) is mainly used as a P-type doping gas, thereby performing doping and widening the bandgap at the same time. 2. The method for forming a P-type amorphous semiconductor film according to claim 1, further comprising mixing another boron source for doping. 3. The method for forming a P-type amorphous semiconductor film according to claim 1 or 2, further comprising mixing another carbon source to widen the bandgap.
JP18334985A 1985-07-30 1985-08-20 Formation of p-type amorphous semiconductor film Pending JPS6243120A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18334985A JPS6243120A (en) 1985-08-20 1985-08-20 Formation of p-type amorphous semiconductor film
US06/888,474 US4755483A (en) 1985-07-30 1986-07-21 Method for producing semiconductor device with p-type amorphous silicon carbide semiconductor film formed by photo-chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18334985A JPS6243120A (en) 1985-08-20 1985-08-20 Formation of p-type amorphous semiconductor film

Publications (1)

Publication Number Publication Date
JPS6243120A true JPS6243120A (en) 1987-02-25

Family

ID=16134179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18334985A Pending JPS6243120A (en) 1985-07-30 1985-08-20 Formation of p-type amorphous semiconductor film

Country Status (1)

Country Link
JP (1) JPS6243120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411317A (en) * 1987-07-06 1989-01-13 Toshiba Corp Manufacture of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115020A (en) * 1981-12-28 1983-07-08 Sharp Corp Preparation of amorphous silicon film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115020A (en) * 1981-12-28 1983-07-08 Sharp Corp Preparation of amorphous silicon film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411317A (en) * 1987-07-06 1989-01-13 Toshiba Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP2533639B2 (en) Method for producing amorphous silicon doped with P-type carbon
Jadkar et al. Synthesis of highly conductive boron-doped p-type hydrogenated microcrystalline silicon (μc-Si: H) by a hot-wire chemical vapor deposition (HWCVD) technique
JP2692091B2 (en) Silicon carbide semiconductor film and method for manufacturing the same
US4755483A (en) Method for producing semiconductor device with p-type amorphous silicon carbide semiconductor film formed by photo-chemical vapor deposition
JPS6243120A (en) Formation of p-type amorphous semiconductor film
JP3238929B2 (en) Method of forming amorphous silicon carbide film and photovoltaic device
JPS6057617A (en) Manufacture of semiconductor device
JP2966908B2 (en) Photoelectric conversion element
JPS5935016A (en) Preparation of hydrogen-containing silicon layer
JPS58132983A (en) Preparation of solar battery
JPS6233419A (en) Amorphous semiconductor
JP2726676B2 (en) Formation method of silicon carbide microcrystalline thin film
Iftiquar et al. Control of the properties of wide bandgap a-SiC: H films prepared by RF PECVD method by varying methane flow rate
JPS6041453B2 (en) Method for producing microcrystalline amorphous silicon film
JPS6216514A (en) Manufacture of photoelectric conversion element
JPH0429216B2 (en)
JPS62268128A (en) Manufacture of microcrystal silicon carbide film
JPS6229132A (en) Manufacture of semiconductor
JPS6132512A (en) Formation of p type semiconductor thin film
JP3423102B2 (en) Photovoltaic element
JP2575397B2 (en) Method for manufacturing photoelectric conversion element
JPH0370389B2 (en)
JPS5986214A (en) Manufacture of amorphous semiconductor
JP2543498B2 (en) Semiconductor thin film
JPH0554272B2 (en)