JPS58115020A - Preparation of amorphous silicon film - Google Patents

Preparation of amorphous silicon film

Info

Publication number
JPS58115020A
JPS58115020A JP21462981A JP21462981A JPS58115020A JP S58115020 A JPS58115020 A JP S58115020A JP 21462981 A JP21462981 A JP 21462981A JP 21462981 A JP21462981 A JP 21462981A JP S58115020 A JPS58115020 A JP S58115020A
Authority
JP
Japan
Prior art keywords
film
amorphous silicon
sih4
glow discharge
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21462981A
Other languages
Japanese (ja)
Inventor
Yoshimi Kojima
小島 義己
Shiyou Ebara
江原 「しよう」
Eiji Imada
今田 英治
Toshiro Matsuyama
松山 外志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP21462981A priority Critical patent/JPS58115020A/en
Publication of JPS58115020A publication Critical patent/JPS58115020A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prepare the titled film for electron devices capable of controlling various characteristics widely, by introducing SiH4 and B(CH3)3 gas into a vacuum reaction vessel, and forming an amorphous silicon carbide semiconductor layer containing B on a substrate. CONSTITUTION:In forming an amorphous Si(a-Si) film from SiH4 by the well- known glow discharge method, B(CH3)3 vapor is introduced into a vacuum reaction vessel for introducing SiH4 thereinto. SiH4 and B(CH3)3 are decomposed and reacted by the glow discharge method to produce the aimed amorphous silicon carbide, containing B, stabilized with H, and expressed by the formula. The resultant film has a two-component composition as compared with an (a-Si: H) film, and the physical properties, e.g. electrical and optical properties, can be changed depending on the ratio of the composition contained therein.

Description

【発明の詳細な説明】 本発明は、アモルファスシリコ/膜の製造方法に関し、
特に能動的機能、非直線的機能或いは変換機能等を備え
た電子デバイスを構成するためのアモルファスシリコン
カーバイド膜の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing amorphous silico/membrane,
In particular, the present invention relates to a method of manufacturing an amorphous silicon carbide film for constructing an electronic device having an active function, a nonlinear function, a conversion function, or the like.

近年アモルファス半導体は新電子材料として注目されて
いる。アモルファス半導体は原子配列に長距離秩序を欠
いているため、アモルファス化する成分元素の組成によ
って電気的性質、光学的性質、及び材料定数等の諸物理
的性質を連続的に制御することができるという利点があ
る。また原子配列が無定形であるため、単結晶のように
結晶面や軸方向による性質の異方性を本質的にもたず、
単結晶のように画一的な融点がなく軟化温度範囲が存在
[2、熱可塑性を呈する。従って圧延や圧縮成型などの
機械的加工はもとより、蒸着やスパッタリングによって
作製された薄膜であってもいわゆる加工性に富み、また
比較的簡単な設備及び省エネルギーによって量産し得る
ため、単結晶半導体と比べて安価な電子デバイス用材料
となり得る。
In recent years, amorphous semiconductors have attracted attention as new electronic materials. Since amorphous semiconductors lack long-range order in their atomic arrangement, various physical properties such as electrical properties, optical properties, and material constants can be continuously controlled by the composition of the component elements that become amorphous. There are advantages. In addition, because the atomic arrangement is amorphous, there is no inherent anisotropy in properties due to crystal planes or axial directions like in single crystals.
Unlike single crystals, it does not have a uniform melting point and has a softening temperature range [2, exhibits thermoplasticity. Therefore, thin films made by not only mechanical processes such as rolling and compression molding but also vapor deposition and sputtering have excellent workability, and can be mass-produced with relatively simple equipment and energy savings, compared to single crystal semiconductors. Therefore, it can be used as an inexpensive material for electronic devices.

また従来の製造方法で得られたアモルファス半導体は、
高密度の局在準位の存在9価電子制御の困難性等に問題
があったが、近年開発されたモノ゛ンランガス(S i
H4)をグロー放電で分解した得られる水素化アモルフ
ァスシリコン膜(以下a−8iと略記する)はこのよう
な問題がなく、構造敏感 ゛性を持たせることができる
ようになった。従って上記の水素化a−F) iは電子
写真感光体用、太陽電池用及び光センサ用等の電子デバ
イス用材料として利用することが試みられている。
In addition, amorphous semiconductors obtained by conventional manufacturing methods are
Although there were problems such as the existence of high-density localized levels and the difficulty of controlling nine valence electrons, the recently developed monoion gas (S i
The hydrogenated amorphous silicon film (hereinafter abbreviated as a-8i) obtained by decomposing H4) by glow discharge does not have such problems and can now be made to have structural sensitivity. Therefore, attempts have been made to utilize the hydrogenated a-F) i as a material for electronic devices such as electrophotographic photoreceptors, solar cells, and optical sensors.

しかし上記a−5iは、安定化のために水素が含まれて
いるとはいえ、シリコンの単一組成によっている。その
ため電気的、光学的等の物理的性質において制限を受け
、応用範囲が狭くなる上、ドーピング法も限定されると
いう欠点があった。
However, the above a-5i has a single composition of silicon, although hydrogen is included for stabilization. Therefore, there are limitations in physical properties such as electrical and optical properties, which narrows the range of application and also limits doping methods.

本発明は上記従来の電子デバイス用アモルファス半導体
の欠点に鑑みてなされたもので、価電子制御が容易にな
り、広範囲の応用性を有する電子デバイス用アモルファ
スシリコンカーバイド膜の製造方法を提供するものであ
る。以下に本発明の詳細な説明する。
The present invention has been made in view of the above-mentioned drawbacks of conventional amorphous semiconductors for electronic devices, and provides a method for manufacturing an amorphous silicon carbide film for electronic devices that facilitates control of valence electrons and has a wide range of applicability. be. The present invention will be explained in detail below.

本発明の特徴は、モノシランガスS I H4を用いた
従来公知のグロー放電法腎よってa−5i膜を形成する
がその際に、モノシランガスS iH4が導入される反
応室内にトリメチル臭素B(CH3)3蒸気を導入する
点にある。同一反応室内に導かれたS s H、sとB
(CH3)3は、グロー放電法により分解反応してa−
5’xC1−x :Hで表わされるアモルファスシリコ
ンカーバイドを生成する。得られたa−5txC,、:
H膜はa−8t:H膜に比べて二元の組成を有するため
、含有された組成物の割合を変えることによって、電気
的、光学的等の物理的性質を変えることができ、電子デ
バイスに要求される機能に応じて調整することができる
。上記カーバイドを含有させる際にB(CH3)3を利
用する仁とにより、生成されたa  5txC+、、、
:H膜中に同時にBが添加される。このB添加量によっ
てP型溝電性を制御し得る。
A feature of the present invention is that the a-5i film is formed by a conventionally known glow discharge method using monosilane gas S I H4, and at that time, trimethylbromine B(CH3)3 is added to the reaction chamber into which monosilane gas S iH4 is introduced. The point is to introduce steam. S s H, s and B led into the same reaction chamber
(CH3)3 is decomposed and reacted by glow discharge method to a-
Amorphous silicon carbide represented by 5'xC1-x:H is produced. Obtained a-5txC,:
Since the H film has a binary composition compared to the a-8t:H film, physical properties such as electrical and optical properties can be changed by changing the proportion of the contained composition, and it can be used for electronic devices. It can be adjusted according to the required functions. A5txC+, which was generated by using B(CH3)3 when incorporating the above carbide,
:B is added into the H film at the same time. The P-type groove conductivity can be controlled by the amount of B added.

上記製法によって得られfC,a −S iXC11:
 H膜は価電子制御が可能になるため導入する不純物の
種類及び濃度を選ぶことによってPN接合を形成するこ
とができる。従って従来のトランジス)と同様に増幅作
用等を行わせ得る能動素子を構成すると ことができ、またダイオードが有するような電流−電圧
に表われる非直線的機能を期待した素子、更には光エネ
ルギーを電気エネルギーに変換する太陽電池の如く変換
機能をもつ素子等を作製するための電子デバイス材料と
して用いることができる 次表に各電子デバイスに用いる場合の好ましいXの値を
示す。
fC,a-S iXC11 obtained by the above production method:
Since the H film allows control of valence electrons, a PN junction can be formed by selecting the type and concentration of impurities introduced. Therefore, it is possible to configure an active element that can perform an amplification function in the same way as a conventional transistor (transistor), and it can also be used as an element that can perform non-linear functions that appear in current-voltage, such as a diode, and even as an element that can perform optical energy. The following table shows the preferable value of X when used in each electronic device, which can be used as an electronic device material for producing an element having a conversion function such as a solar cell that converts into electrical energy.

尚上記組成のアモルファスシリコンカーバイド膜は、必
要に応じてP或いはN型に変換するための不純物が添加
されて、電子デバイスのために供給される。
It should be noted that the amorphous silicon carbide film having the above composition is supplied for electronic devices after being doped with an impurity for converting it to P or N type, if necessary.

次に電子デバイスとして光導電セルを挙げて本発明の具
体的な実施例を説明する。
Next, specific examples of the present invention will be described using a photoconductive cell as an electronic device.

誘電型グロー放電装置の真空に保持された反応槽内に、
図に示すような予め透明導電膜2が被着されたガラス基
板1が設置され、ヒーター加熱によって200℃の温度
に保持される。続いて水素中にモノシランを10%含有
した混合ガスに対して、トリメチル臭素の蒸気を室温で
飽和状態に含ませた水素ガスを8%の割合で混入した混
合ガスを上記反応槽内に導入した。混合ガスが導入され
た反応槽の誘導コイルに18.56MHz200Wの高
周波を印加してグロー放電を起こさせ、透明導電膜が被
着されたガラス基板上にボロンを含有するa−5iC:
H膜3を形成し、該a−5iXC,、c:H1−X 膜8上に必要に応じて所望のパターンにA4電極4を形
成して、図のようなサンドインチ構造の光導電セルを作
製した。
Inside the vacuum-maintained reaction chamber of the dielectric glow discharge device,
A glass substrate 1 on which a transparent conductive film 2 has been previously deposited as shown in the figure is installed and maintained at a temperature of 200° C. by heating with a heater. Next, a mixed gas containing 10% monosilane in hydrogen and 8% hydrogen gas containing trimethylbromine vapor saturated at room temperature was introduced into the reaction tank. . A high frequency of 18.56 MHz 200 W is applied to the induction coil of the reaction tank into which the mixed gas has been introduced to cause a glow discharge, and a-5iC containing boron is placed on a glass substrate coated with a transparent conductive film:
H film 3 is formed, and A4 electrodes 4 are formed on the a-5iXC, c:H1-X film 8 in a desired pattern as necessary to form a photoconductive cell with a sandwich structure as shown in the figure. Created.

上記構造の光導電セルが示す光導電特性は、暗状態の導
電率が〜1O−10(Ω・(1)戸であり、入射光強度
0.1mW/−II!に対して〜10 ’(Ω@cIn
) ’である。
The photoconductive property exhibited by the photoconductive cell having the above structure is that the conductivity in the dark state is ~1O-10(Ω・(1)), and is ~10'( for an incident light intensity of 0.1 mW/-II! Ω@cIn
)' is.

また波長580nm付近に感度のピークを有する光導電
特性を示した。このような特性はファクシミリの読取り
部に使用される密着型の一次元光センサアレイとして用
いることができる。
It also exhibited photoconductive properties with a sensitivity peak around a wavelength of 580 nm. Such characteristics can be used as a contact type one-dimensional optical sensor array used in a facsimile reader.

上記製造工程において、トリメチル臭素のドープ量を増
すことによって暗時の導電率を低くすることができ、こ
のような特性のものは撮像管用センサとして用いること
ができる。
In the above manufacturing process, the conductivity in the dark can be lowered by increasing the amount of trimethylbromine doped, and a product with such characteristics can be used as a sensor for an image pickup tube.

以上のように本発明によれ:ば、グロー放電法ばよるア
モルファスシリコン膜の成膜過程で、モノシランガスに
トリメチル臭素ガスを混入して成長させることにより、
シリコン単一組成からなるアモルファス膜に比べて、物
理的性質の制御が容易になり、緒特性について広い範囲
で制御することができ、能動的機能、非直線的機能、変
換機能等が要求される電子デバイスの材料として利用し
得る0
As described above, according to the present invention, in the process of forming an amorphous silicon film using the glow discharge method, by mixing trimethylbromine gas into monosilane gas and growing it,
Compared to amorphous films made of a single silicon composition, it is easier to control physical properties, and physical properties can be controlled over a wide range, and active functions, nonlinear functions, conversion functions, etc. are required. 0 that can be used as a material for electronic devices

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明による一実施例の断面図である。 1ニガラス基板 2:透明電極 3: a−3iXC1,:H4: Az電極 代理人 弁理士  福 士 愛 彦 The figure is a sectional view of an embodiment according to the present invention. 1. Glass substrate 2: Transparent electrode 3: a-3iXC1,:H4: Az electrode Agent Patent Attorney Aihiko Fuku

Claims (1)

【特許請求の範囲】[Claims] 1、サブストレート上に積層して形成された電子デバイ
ス用アモルファスシリコン膜の製造方法において、真空
槽中にモノシランガス及ヒドリメチル臭素(B(CH8
)3)ガスを導入し、グロー放電によってサブストレー
ト上にボロンを含有L fc a S 1xC11: 
Hで記述されるアモルファスシリコンカーバイド系半導
体層を形成してなることを特徴とするアモルファスシリ
コン膜の製造方法。
1. In a method for manufacturing an amorphous silicon film for electronic devices formed by laminating it on a substrate, monosilane gas and hydromethylbromine (B(CH8
) 3) Introducing gas and depositing boron on the substrate by glow discharge L fca S 1xC11:
1. A method for producing an amorphous silicon film, comprising forming an amorphous silicon carbide semiconductor layer described by H.
JP21462981A 1981-12-28 1981-12-28 Preparation of amorphous silicon film Pending JPS58115020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21462981A JPS58115020A (en) 1981-12-28 1981-12-28 Preparation of amorphous silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21462981A JPS58115020A (en) 1981-12-28 1981-12-28 Preparation of amorphous silicon film

Publications (1)

Publication Number Publication Date
JPS58115020A true JPS58115020A (en) 1983-07-08

Family

ID=16658896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21462981A Pending JPS58115020A (en) 1981-12-28 1981-12-28 Preparation of amorphous silicon film

Country Status (1)

Country Link
JP (1) JPS58115020A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229132A (en) * 1985-07-30 1987-02-07 Sanyo Electric Co Ltd Manufacture of semiconductor
JPS6243120A (en) * 1985-08-20 1987-02-25 Sanyo Electric Co Ltd Formation of p-type amorphous semiconductor film
JPS63284809A (en) * 1987-05-15 1988-11-22 Sanyo Electric Co Ltd Method of forming p-type amorphous silicon carbide layer
WO1996019833A1 (en) * 1994-12-20 1996-06-27 Francis John Clough High voltage thin film semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229132A (en) * 1985-07-30 1987-02-07 Sanyo Electric Co Ltd Manufacture of semiconductor
JPS6243120A (en) * 1985-08-20 1987-02-25 Sanyo Electric Co Ltd Formation of p-type amorphous semiconductor film
JPS63284809A (en) * 1987-05-15 1988-11-22 Sanyo Electric Co Ltd Method of forming p-type amorphous silicon carbide layer
WO1996019833A1 (en) * 1994-12-20 1996-06-27 Francis John Clough High voltage thin film semiconductor device

Similar Documents

Publication Publication Date Title
US4409605A (en) Amorphous semiconductors equivalent to crystalline semiconductors
JP2579900B2 (en) Method for depositing amorphous semiconductor film
US4849797A (en) Thin film transistor
KR100336252B1 (en) Microcrystalline Semiconductor Film Manufacturing Method
US4971832A (en) HR-CVD process for the formation of a functional deposited film on a substrate with application of a voltage in the range of -5 to -100 V
GB2111303A (en) Current enhanced photovoltaic devices and manufacture thereof
JPH084071B2 (en) Deposited film formation method
US4710786A (en) Wide band gap semiconductor alloy material
JPH0514899B2 (en)
US4605941A (en) Amorphous semiconductors equivalent to crystalline semiconductors
US5126169A (en) Process for forming a deposited film from two mutually reactive active species
KR840002468B1 (en) Process for producing a layer containing silicon
JP2537175B2 (en) Functional deposition film manufacturing equipment
JPS58115020A (en) Preparation of amorphous silicon film
JPH0421638B2 (en)
JPS62151572A (en) Deposited film forming device
GB2176052A (en) Photosensor
US5278015A (en) Amorphous silicon film, its production and photo semiconductor device utilizing such a film
JPS58115019A (en) Preparation of amorphous silicon film
US4689645A (en) Current control device
JPS5935016A (en) Preparation of hydrogen-containing silicon layer
JP3099957B2 (en) Photoconductive member
JP3977878B2 (en) Thin film thermistor and manufacturing method thereof
US4677249A (en) Photovoltaic device
JPS5916326A (en) Manufacture of thin film