JPH0793269B2 - Amorphous semiconductor manufacturing method - Google Patents

Amorphous semiconductor manufacturing method

Info

Publication number
JPH0793269B2
JPH0793269B2 JP62261404A JP26140487A JPH0793269B2 JP H0793269 B2 JPH0793269 B2 JP H0793269B2 JP 62261404 A JP62261404 A JP 62261404A JP 26140487 A JP26140487 A JP 26140487A JP H0793269 B2 JPH0793269 B2 JP H0793269B2
Authority
JP
Japan
Prior art keywords
film
amorphous semiconductor
gas
plasma
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62261404A
Other languages
Japanese (ja)
Other versions
JPH01103829A (en
Inventor
吉田  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP62261404A priority Critical patent/JPH0793269B2/en
Publication of JPH01103829A publication Critical patent/JPH01103829A/en
Publication of JPH0793269B2 publication Critical patent/JPH0793269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、シリコンとそのダングリングボンドのターミ
ネータとしての水素のほかに他の原子を含んで構成され
る非晶質半導体の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing an amorphous semiconductor containing silicon and other atoms in addition to hydrogen as a terminator of a dangling bond thereof.

〔従来の技術〕[Conventional technology]

シリコン水素のみからなる非晶質シリコン(以下a−Si
Hと記す)を作成するには、シラン,ジシランおよびそ
の誘導体を原料ガスに用い、グロー放電を利用したプラ
ズマCVD,光CVD,電子サイクロトロン共鳴CVD、マイクロ
波CVDなどにより成膜する方法が知られている。さら
に、光学ギャップなどの特性の改善、あるいはpまたは
n導電形の付与のためには、原料ガスにCnHm,GeH4,B
2H6,PH3などのガスを混合してCVDを行ってシリコン,水
素以外の原子も構成原子とする非晶質シリコンを作成す
る。
Amorphous silicon consisting only of silicon hydrogen (hereinafter a-Si
H) is created by using silane, disilane, and their derivatives as source gases and forming films by glow discharge plasma CVD, photo-CVD, electron cyclotron resonance CVD, microwave CVD, etc. ing. Further, in order to improve characteristics such as an optical gap or to impart p or n conductivity type, CnHm, GeH 4 , B
By mixing gases such as 2 H 6 and PH 3 and performing CVD, amorphous silicon containing atoms other than silicon and hydrogen as constituent atoms is created.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

例えばCnHmを添加してa−SiC:Hを作成したときのガス
中のC濃度による特性変化を第2図に示す。光学ギャッ
プEgoptはC濃度と共に大きくなるが、光伝導度σphが
大きく低下する。第3図はGeH4を混合してa−SiGe:Hを
作成した場合で、ガス中のGe濃度がふえるにつれて暗伝
濃度σdが上昇し、膜中欠陥の増加を示す。第4図は、C
nHmとB2H6をSiH4ガスに混合して成膜した光電変換素子
のp層に用いるa−SiC:HのB2H6のSiH4に対する混合比
による特性変化を示し、a−SiCにほう素をドープして
も、その半分以上が膜中で4配位結合とならず、3配位
結合をするためドーピング効率が悪く、またBを混入す
ることにより膜の光学ギャップEgoptの幅が狭くなるな
どの欠点があった。また活性化エネルギーEaが0.55付近
で一定となる。これは、a−SiC:H中にBが作る欠陥に
よりフェルミ準位の位置が固定していることによる。
For example, FIG. 2 shows the characteristic change due to the C concentration in the gas when CnHm is added to produce a-SiC: H. The optical gap Eg opt increases with the C concentration, but the photoconductivity σph decreases significantly. FIG. 3 shows the case where a-SiGe: H was prepared by mixing GeH 4, and the dark conduction concentration σ d increased as the Ge concentration in the gas increased, showing an increase in defects in the film. Figure 4 shows C
nHm and B 2 H 6 were mixed with SiH 4 gas to form a-SiC: H used for the p-layer of the photoelectric conversion element, and the characteristic change due to the mixing ratio of B 2 H 6 to SiH 4 was shown. Even if boron is doped, more than half of them do not have 4-coordination bonds in the film and do not have 3-coordination bonds, so that the doping efficiency is poor, and the incorporation of B causes the optical gap Eg opt of the film to increase. There were drawbacks such as narrow width. Also, the activation energy Ea becomes constant around 0.55. This is because the position of the Fermi level is fixed by the defect created by B in a-SiC: H.

本発明の目的は、Si,Hのほかの他原子を含んで構成され
る膜を成膜する場合に、形成された膜中の欠陥密度を減
少させ、良質の膜質を得る非晶質半導体の製造方法に関
する。
An object of the present invention is to reduce the defect density in the formed film when forming a film containing other atoms in addition to Si and H, and to obtain an amorphous semiconductor of good quality. It relates to a manufacturing method.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記の目的を達成するために、本発明によれば、シリコ
ン、水素、およびゲルマニウム,ほう素,炭素のうちの
一つまたはそれらの組み合わせの原子、から構成される
非晶質半導体の製造に際し、シリコン、水素以外のゲル
マニウム,ほう素,炭素の原子のうちの少なくとも一つ
を除外した構成原子からなるガスを分解して非晶質半導
体膜を形成したのち、前記の除外した構成原子を含むガ
スをプラズマ分解して該構成原子を前記非晶質半導体膜
の内部に侵入させる非晶質半導体の製造方法であって、
該構成原子の前記非晶質半導体膜内部への侵入がプラズ
マドーピングにより行われることとする。
To achieve the above object, according to the present invention, in the production of an amorphous semiconductor composed of silicon, hydrogen, and atoms of germanium, boron, one of carbon or a combination thereof, A gas containing the excluded constituent atoms after decomposing a gas consisting of constituent atoms excluding at least one of germanium, boron, and carbon atoms other than silicon and hydrogen to form an amorphous semiconductor film. A method for producing an amorphous semiconductor, in which the constituent atoms are plasma decomposed to enter the inside of the amorphous semiconductor film,
The penetration of the constituent atoms into the inside of the amorphous semiconductor film is performed by plasma doping.

〔作用〕[Action]

シリコン,水素以外の構成原子の全部あるいは膜形成に
悪影響を与える一部(ゲルマニウム,ほう素,炭素から
選ばれたもの)を除外して成膜することにより非晶質半
導体膜中の欠陥の発生を抑制でき、その後除外した構成
原子をプラズマドーピングで膜中に導入する際には欠陥
の発生がなく、良好な膜質が維持できる。
Occurrence of defects in an amorphous semiconductor film by removing all constituent atoms other than silicon and hydrogen, or excluding a part (selected from germanium, boron, and carbon) that adversely affects film formation In that case, when the excluded constituent atoms are introduced into the film by plasma doping after that, no defect is generated and good film quality can be maintained.

〔実施例〕〔Example〕

第5図は本発明の実施のためのプラズマCVDおよびプラ
ズマドーピングに用いる装置の一例を示すもので、真空
槽1の内部に上部電極21と下部電極22が対向配置され、
基板3は下部電極22の上に載せて下部電極下側のヒータ
4により所定の温度に加熱される。上部電極21には電源
5が接続され下部電極22は接地されている。真空槽1に
は排気口61およびガス導入口62が備えられている。
FIG. 5 shows an example of an apparatus used for plasma CVD and plasma doping for carrying out the present invention, in which an upper electrode 21 and a lower electrode 22 are arranged to face each other inside a vacuum chamber 1.
The substrate 3 is placed on the lower electrode 22 and heated to a predetermined temperature by the heater 4 below the lower electrode. The power supply 5 is connected to the upper electrode 21, and the lower electrode 22 is grounded. The vacuum chamber 1 is provided with an exhaust port 61 and a gas introduction port 62.

第1図(a)〜(c)は、本発明の一実施例のa−SiG
e:H膜の製造工程を示し、第1図(a)に示す基板3を
第5図に示したものと同様の装置の下部電極22の上に置
き、真空槽1内を排気口61より排気し、ガス導入口62よ
りSiH4とH2の混合ガスを導入し、両電極21,22間に高周
波または直流電界を印加してグロー放電を発生させ、第
1図(b)に示すようにプラズマCVDにより基板3の上
に欠陥の少ないa−Si:H膜7を形成した。次いでH2また
はHeガスを基ガスとして100ppm〜1%のGeH4ガスを混合
したガス中にグロー放電を発生することにより、分解し
て生じたGe原子を膜7の中にドーピングすることによっ
て第1図(c)に示すように膜中に欠陥の少ないa−Si
Ge:H膜71が得られる。第6図は、H2ガスを基ガスとして
Ge1000ppmを含むガスを用いた場合のプラズマドーピン
グ時間による膜特性の変化を示す。Geガスがa−Si:H膜
中に入ることにより光学ギャップEgoptは低下するが、
光伝導度σph,暗伝導度σdは同程度に増加し、膜中の
欠陥が余り増加していないことを示す。第3図と比較す
れば膜質の向上がよく理解できる。
1 (a) to (c) show a-SiG of one embodiment of the present invention.
The manufacturing process of the e: H film is shown, and the substrate 3 shown in FIG. 1 (a) is placed on the lower electrode 22 of the same device as shown in FIG. 5, and the inside of the vacuum chamber 1 is exhausted from the exhaust port 61. Evacuate, introduce a mixed gas of SiH 4 and H 2 from the gas inlet 62, apply a high frequency or DC electric field between both electrodes 21, 22 to generate glow discharge, and as shown in FIG. 1 (b). Then, an a-Si: H film 7 with few defects was formed on the substrate 3 by plasma CVD. Next, glow discharge is generated in a gas in which 100 ppm to 1% GeH 4 gas is mixed with H 2 or He gas as a base gas, so that Ge atoms generated by decomposition are doped in the film 7. As shown in Fig. 1 (c), a-Si has few defects in the film.
A Ge: H film 71 is obtained. Fig. 6 shows H 2 gas as the base gas
Fig. 7 shows changes in film characteristics with plasma doping time when a gas containing Ge 1000ppm is used. Although the optical gap Eg opt is lowered by the Ge gas entering the a-Si: H film,
The photoconductivity σ ph and the dark conductivity σ d increase to the same extent, indicating that the defects in the film do not increase so much. The improvement in film quality can be better understood by comparing with FIG.

第7図は本発明の別の実施例を示し、上の実施例と同様
にまずa−Si:H膜を作成してから、H2ガス基のCH41%
ガスを用いてプラズマドーピングを行った場合のドーピ
ング時間と特性の関係を示す。Egoptが2.1eVと高く、し
かもσphが10-6(Ωcm)-1の良好なa−SiC:H膜が得ら
れた。
FIG. 7 shows another embodiment of the present invention. Similar to the above embodiment, first, an a-Si: H film is formed, and then CH 4 1% of H 2 gas group is prepared.
The relationship between doping time and characteristics when plasma doping is performed using gas is shown. A good a-SiC: H film having a high Eg opt of 2.1 eV and a σ ph of 10 −6 (Ωcm) −1 was obtained.

第8図(a)〜(d)は本発明の実施例としての太陽電
池の製造工程を示し、透光性基板11上に透明導電膜12を
形成し、その上にSiH4とC2H2あるいはCH4とH2の混合ガ
スを用いてプラズマCVDにより欠陥の少ないa−SiC:H膜
13を形成する(図a)。その後に、10ppmから1%程度
のB2H6をH2またはHeに混じたガス中にプラズマ14を発生
させ、それによりa−SiC:H膜13にほう素15をドーピン
グする。その結果、欠陥の少ないp形のa−SiC:H膜16
が得られる(図b)。その後はドープしないa−Si:H膜
7,従来と同様の方法でりんをドープしたn形のa−Si:H
層17を順次形成し(図c)、蒸着,スパッタリングなど
で電極18,19を形成する(図d)。これにより光10によ
り起電力を生ずる非晶質シリコン太陽電池が得られる。
第9図は、上述のように成膜したp形のa−SiC:H膜の
ドーピング時間による膜質変化を示したもので、用いた
ドーピングガスはH2に1000ppmのB2H6を混じたものであ
る。ドーピング時間が長くなるに従って活性化エネルギ
ーEaは低下し、25分で0.38eVとなり、成膜と同時にドー
ピングを行った場合に比して0.1eV以上小さな値を示
す。また光学ギャップEgoptは2.0eVを保ったままで、σ
d,σphは10-4,103(Ωcm)-1の値となり、これも従来
得られなかった高い値となる。
8 (a) to (d) show a manufacturing process of a solar cell as an embodiment of the present invention, in which a transparent conductive film 12 is formed on a transparent substrate 11 and SiH 4 and C 2 H are formed thereon. A -SiC: H film with few defects by plasma CVD using 2 or CH 4 and H 2 mixed gas
13 is formed (Fig. A). After that, plasma 14 is generated in a gas in which 10 ppm to about 1% of B 2 H 6 is mixed with H 2 or He, whereby the a-SiC: H film 13 is doped with boron 15. As a result, p-type a-SiC: H film 16 with few defects
Is obtained (Fig. B). Undoped a-Si: H film after that
7. Phosphorus-doped n-type a-Si: H in the same manner as in the past
Layer 17 is sequentially formed (Fig. C), and electrodes 18 and 19 are formed by vapor deposition, sputtering, etc. (Fig. D). As a result, an amorphous silicon solar cell in which an electromotive force is generated by the light 10 is obtained.
FIG. 9 shows a change in film quality of the p-type a-SiC: H film formed as described above depending on the doping time. The doping gas used was H 2 mixed with 1000 ppm of B 2 H 6 . It is a thing. The activation energy Ea decreases as the doping time increases, reaching 0.38 eV in 25 minutes, which is a value smaller than 0.1 eV as compared with the case where doping is performed simultaneously with film formation. The optical gap Eg opt remains 2.0eV and σ
The values of d and σ ph are 10 −4 and 10 3 (Ωcm) −1 , which are also high values that could not be obtained conventionally.

第10図には従来法でp層を形成した非晶質太陽電池と第
8図を引用して述べた実施例による非晶質太陽電池のAM
/100mW/cm2ソーラシュミレータ光下での光電変換特性を
示すもので、共に面積1cm2で線31で示す実施例による
太陽電池ではp層16の活性化エネルギーが減少したため
にp−i−n接合の拡散電位が増加するためおよびp層
内部の欠陥準位が少ないため、開放電圧Voc,短絡電流J
sc共に線32で示す従来法による太陽電池より増加し、形
状因子も9.3%から11.3%に向上した。
FIG. 10 shows the AM of the amorphous solar cell in which the p-layer is formed by the conventional method and the amorphous solar cell according to the embodiment described with reference to FIG.
/ 100 mW / cm 2 This shows the photoelectric conversion characteristics under solar simulator light, and in the solar cell according to the example shown by the line 31 with an area of 1 cm 2 , the activation energy of the p layer 16 was reduced, so that p-i-n Since the diffusion potential of the junction increases and the number of defect levels inside the p layer is small, the open circuit voltage V oc and short circuit current J
Both sc increased from the conventional solar cell indicated by line 32, and the form factor also improved from 9.3% to 11.3%.

第11図(a)〜(c)はさらに別の実施例での太陽電池
の製造工程を示し、金属基板20上に順次りんをドープし
たn形のa−Si:H層膜17,ドープしないa−Si:H膜7を
積層し、さらにその上にノン・ドープのa−SiC:H膜13
を形成し(図a)、次にこれを第8図(b)と同様にプ
ラズマドープしてp形のa−SiC:H膜16を作成し(図
b)、次に電極18をp層16の上に被着した(図c)。こ
の太陽電池は電極18側からの光10によって起電力を生
じ、第8図に示した実施例の素子と比較すると、p−i
界面を予め欠陥の少ないa−Si:H膜7とa−SiC:H膜13
で形成しておいてからドーピングするので、欠陥の少な
いp−i界面が得られる点が異なる。
11 (a) to 11 (c) show a manufacturing process of a solar cell in still another embodiment, in which an n-type a-Si: H layer film 17, which is sequentially doped with phosphorus on a metal substrate 20, is not doped. An a-Si: H film 7 is laminated, and a non-doped a-SiC: H film 13 is further formed thereon.
(FIG. A), and then plasma-doping the same as in FIG. 8 (b) to form a p-type a-SiC: H film 16 (FIG. B). It was deposited on top of 16 (Fig. C). This solar cell produces an electromotive force by the light 10 from the electrode 18 side, and when compared with the element of the embodiment shown in FIG.
The a-Si: H film 7 and the a-SiC: H film 13 with few defects are formed on the interface in advance.
The difference is that a p-i interface with few defects can be obtained because the doping is performed after the formation.

なお、以上の太陽電池製造の実施例では、プラズマCVD
により成膜したa−SiC:H膜にBをドープしたが、a−S
iC:H膜自体も第7図について述べたようにa−Si:H膜に
Cをプラズマドーピングで添加して成膜したものを用い
れば特性はさらに向上する。さらに、原料ガスを適正に
制御すればa−Si:H膜にCとBの双方をプラズマドーピ
ングすることも可能である。
In the above solar cell manufacturing examples, plasma CVD
The a-SiC: H film formed by
As for the iC: H film itself, the characteristics are further improved by using a film formed by adding C to the a-Si: H film by plasma doping as described in FIG. Further, by appropriately controlling the source gas, it is possible to plasma-dope both C and B into the a-Si: H film.

第12図(a)〜(c)に示す実施例では、ノン・ドープ
a−SiC:H層13を形成することなく、第12図(b)に示
すようにノン・ドープa−Si:H層7の表面層に直接プラ
ズマドーピングしてp形にドープされたa−Si:H層26を
作る点が第11図に示した実施例の場合と異なり、従来法
でa−Si:Hによるp−i−n接合を形成した太陽電池と
開放電圧Vocは大差ないが、欠陥の少ないp層が光電変
換活性領域となるため短絡電流Jscが著しく増加する。
In the embodiment shown in FIGS. 12 (a) to 12 (c), the non-doped a-Si: H layer 13 is not formed and the non-doped a-Si: H is not formed as shown in FIG. 12 (b). Unlike the case of the embodiment shown in FIG. 11 in that the surface layer of the layer 7 is directly plasma-doped to form the p-type doped a-Si: H layer 26, the conventional method uses a-Si: H. Although the open-circuit voltage V oc is not much different from that of the solar cell having the p-i-n junction, the short-circuit current J sc is remarkably increased because the p-layer having few defects becomes the photoelectric conversion active region.

〔発明の効果〕〔The invention's effect〕

本発明によれば、シリコンおよび水素原子から構成され
るa−Si:H膜にさらに他の原子を加えて、a−SiC:H膜,
a−SiGe:H膜のように光学ギャップを広げる場合、もし
くはp形のa−Si:H膜あるいはa−SiC:H膜を成膜する
場合、成膜時に欠陥形成の原因となる構成原子を除い
て、シリコン,水素および悪い影響の少ない構成原子か
らなるガスを用いてのCVDで欠陥の少ない非晶質半導体
膜を形成後、他の必要な構成原子(ゲルマニウム,ほう
素,炭素から選ばれたもの)をプラズマドーピングする
ことにより膜中に導入するため、欠陥の少ない非晶質半
導体を製造でき、CVDとしてプラズマCVD装置を適用すれ
ば同一プラズマ発生装置を用いて製造することができる
ので、特に太陽電池のような光電変換素子の製造に有効
に適用できる。
According to the present invention, another atom is added to the a-Si: H film composed of silicon and hydrogen atoms to form an a-SiC: H film,
When the optical gap is widened like an a-SiGe: H film, or when a p-type a-Si: H film or a-SiC: H film is formed, constituent atoms that cause defects are formed during film formation. Except for forming an amorphous semiconductor film with few defects by CVD using a gas consisting of silicon, hydrogen, and constituent atoms with less adverse effects, other necessary constituent atoms (germanium, boron, or carbon are selected). Since it is introduced into the film by plasma doping, an amorphous semiconductor with few defects can be manufactured, and if a plasma CVD device is applied as CVD, it can be manufactured using the same plasma generation device. In particular, it can be effectively applied to the production of photoelectric conversion elements such as solar cells.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(c)は本発明の一実施例のa−SiGe:H
膜の製造工程を順次示す断面図、第2図,第3図は従来
方法による混合原料ガス使用の成膜時の膜質とガス濃度
の関係をそれぞれ示す線図、第4図は従来方法によるほ
う素ドーピング時の膜質とドーピングガス濃度の関係を
示す線図、第5図は本発明の実施に用いられるプラズマ
発生装置の断面図、第6図,第7図は本発明の二つの実
施例におけるプラズマドーピング時間と膜質の関係をそ
れぞれ示す線図、第8図(a)〜(d)は本発明の実施
例による太陽電池の製造工程を順次示す断面図、第9図
は第8図の実施例におけるp層膜の膜質とプラズマドー
ピング時間との関係を示す線図、第10図は第8図の工程
で製造された太陽電池と従来の方法による太陽電池の光
電変換特性図、第11図(a)〜(c),第12図(a)〜
(c)はそれぞれ本発明の異なる実施例における太陽電
池製造工程を順次示す断面図である。 1:真空槽、21,22:電極、3:基板、61:排気口、62:ガス導
入口、7:a−Si:H膜、71:a−SiGe:H膜、13:a−SiC:H膜、
16:p形a−SiC:H膜、26:p形a−Si:H膜。
1 (a) to (c) show a-SiGe: H of one embodiment of the present invention.
Sectional views showing the film manufacturing process in sequence, FIGS. 2 and 3 are diagrams showing the relationship between film quality and gas concentration during film formation using a mixed source gas by the conventional method, and FIG. 4 is a diagram by the conventional method. FIG. 5 is a diagram showing the relationship between film quality and doping gas concentration during elementary doping, FIG. 5 is a cross-sectional view of a plasma generator used to practice the present invention, and FIGS. 6 and 7 show two examples of the present invention. Diagrams showing the relationship between plasma doping time and film quality, FIGS. 8 (a) to 8 (d) are cross-sectional views sequentially showing a manufacturing process of a solar cell according to an embodiment of the present invention, and FIG. 9 is an implementation of FIG. FIG. 10 is a diagram showing the relationship between the film quality of the p-layer film and the plasma doping time in the example, FIG. 10 is a photoelectric conversion characteristic diagram of the solar cell manufactured by the process of FIG. 8 and the solar cell by the conventional method, FIG. (A)-(c), FIG. 12 (a)-
(C) is sectional drawing which shows the manufacturing process of the solar cell in a different Example of this invention one by one. 1: vacuum chamber, 21, 22: electrode, 3: substrate, 61: exhaust port, 62: gas inlet port, 7: a-Si: H film, 71: a-SiGe: H film, 13: a-SiC: H film,
16: p-type a-SiC: H film, 26: p-type a-Si: H film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シリコン、水素、およびゲルマニウム,ほ
う素,炭素のうちの一つまたはそれらの組み合わせの原
子、から構成される非晶質半導体の製造に際し、シリコ
ン、水素以外のゲルマニウム,ほう素,炭素の原子のう
ちの少なくとも一つを除外した構成原子からなるガスを
分解して非晶質半導体膜を形成したのち、前記の除外し
た構成原子を含むガスをプラズマ分解して該構成原子を
前記非晶質半導体膜の内部に侵入させる非晶質半導体の
製造方法であって、該構成原子の前記非晶質半導体膜内
部への侵入がプラズマドーピングにより行われることを
特徴とする非晶質半導体の製造方法。
1. When manufacturing an amorphous semiconductor composed of silicon, hydrogen, and an atom of germanium, boron, or one or a combination thereof, germanium other than silicon and hydrogen, boron, After forming an amorphous semiconductor film by decomposing a gas composed of constituent atoms excluding at least one of carbon atoms, the gas containing the excluded constituent atoms is plasma decomposed to form the constituent atoms A method of manufacturing an amorphous semiconductor which penetrates into an amorphous semiconductor film, wherein the constituent atoms are introduced into the amorphous semiconductor film by plasma doping. Manufacturing method.
JP62261404A 1987-10-16 1987-10-16 Amorphous semiconductor manufacturing method Expired - Fee Related JPH0793269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62261404A JPH0793269B2 (en) 1987-10-16 1987-10-16 Amorphous semiconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62261404A JPH0793269B2 (en) 1987-10-16 1987-10-16 Amorphous semiconductor manufacturing method

Publications (2)

Publication Number Publication Date
JPH01103829A JPH01103829A (en) 1989-04-20
JPH0793269B2 true JPH0793269B2 (en) 1995-10-09

Family

ID=17361399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62261404A Expired - Fee Related JPH0793269B2 (en) 1987-10-16 1987-10-16 Amorphous semiconductor manufacturing method

Country Status (1)

Country Link
JP (1) JPH0793269B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04299576A (en) * 1991-03-27 1992-10-22 Sanyo Electric Co Ltd Photovoltaic element and its manufacture

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105507B2 (en) * 1982-02-25 1995-11-13 プラズマ・フィジクス・コ−ポレ−ション Photovoltaic device
JPS6189670A (en) * 1984-10-08 1986-05-07 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS61165761A (en) * 1985-01-17 1986-07-26 Sanyo Electric Co Ltd Electrostatic latent image carrier
JPS6331110A (en) * 1986-07-25 1988-02-09 Fujitsu Ltd Manufacture of semiconductor device
JP2758161B2 (en) * 1987-07-06 1998-05-28 株式会社東芝 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPH01103829A (en) 1989-04-20

Similar Documents

Publication Publication Date Title
US4471155A (en) Narrow band gap photovoltaic devices with enhanced open circuit voltage
US6383898B1 (en) Method for manufacturing photoelectric conversion device
US20030168660A1 (en) Photovoltaic device and manufacturing method thereof
JPH11354820A (en) Photoelectric conversion element and manufacture thereof
JPH05243596A (en) Manufacture of laminated type solar cell
JP4093892B2 (en) Photovoltaic device manufacturing method
JPS62234379A (en) Semiconductor device
Desrues et al. Poly-Si/SiO x Passivating Contacts on Both Sides: A Versatile Technology For High Efficiency Solar Cells
JPH0432551B2 (en)
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JP3106810B2 (en) Method for producing amorphous silicon oxide thin film
JPH0793269B2 (en) Amorphous semiconductor manufacturing method
JPH065765B2 (en) Photoelectric conversion device
JP3250573B2 (en) Photovoltaic element, method for manufacturing the same, and power generation system
JPH07297428A (en) Thin film solar battery and its manufacture
JPS6316914B2 (en)
JP2009027160A (en) Silicon multiple solar cell, and method for manufacturing thereof
JP4363877B2 (en) Photovoltaic device and manufacturing method thereof
JPS6132416A (en) Manufacture of semiconductor device
JP2632740B2 (en) Amorphous semiconductor solar cell
JP3245962B2 (en) Manufacturing method of thin film solar cell
JP2744680B2 (en) Manufacturing method of thin film solar cell
JP2644901B2 (en) Method for manufacturing pin type amorphous silicon solar cell
KR102661526B1 (en) Hetero-Junction Solar Cell And The Manufacturing Method Thereof
JPH0542141B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees