JPH0432551B2 - - Google Patents

Info

Publication number
JPH0432551B2
JPH0432551B2 JP57038768A JP3876882A JPH0432551B2 JP H0432551 B2 JPH0432551 B2 JP H0432551B2 JP 57038768 A JP57038768 A JP 57038768A JP 3876882 A JP3876882 A JP 3876882A JP H0432551 B2 JPH0432551 B2 JP H0432551B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
semiconductor
layer
reaction chamber
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57038768A
Other languages
Japanese (ja)
Other versions
JPS58155773A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57038768A priority Critical patent/JPS58155773A/en
Publication of JPS58155773A publication Critical patent/JPS58155773A/en
Publication of JPH0432551B2 publication Critical patent/JPH0432551B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/206Particular processes or apparatus for continuous treatment of the devices, e.g. roll-to roll processes, multi-chamber deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 本発明は非単結晶半導体を用いた半導体装置特
に光照射により電子・ホール対を発生する光起電
力発生用半導体層(以下単に活性半導体層とい
う)を有する真性または人為的にPまたはN型の
不純物を積層的に添加しないいわゆる実質的に真
性の半導体層(以下単にI層または単に真性半導
体層という)およびP型またはN型半導体層を積
層してIN-接合を有せしめた半導体装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device using a non-single crystal semiconductor, particularly an intrinsic or artificial semiconductor device having a photovoltaic generation semiconductor layer (hereinafter simply referred to as an active semiconductor layer) that generates electron/hole pairs upon irradiation with light. An IN - junction is formed by laminating a so-called substantially intrinsic semiconductor layer (hereinafter simply referred to as an I layer or an intrinsic semiconductor layer) to which no P or N type impurity is added in a layered manner and a P type or N type semiconductor layer. The present invention relates to semiconductor devices.

本発明は光電変換装置は光照射面側より
PIN-N接合有せしめ、活性半導体層における少
数キヤリアのライフタイム実質的に長くして、ひ
いては大電流出力を有せしることを目的としてい
る。
In the present invention, the photoelectric conversion device is operated from the light irradiation surface side.
The purpose of the PIN - N junction is to substantially lengthen the lifetime of minority carriers in the active semiconductor layer, thereby providing a large current output.

本発明は第1、第2、第3、第4の非単結晶半
導体層を積層して、PIN-N接合有せしめるにあ
たり、これらの半導体層を同一反応室を用いて作
製するのではなく、それぞれ独立した4個の反応
室を連結して具備せしめ、第1の半導体層を形成
した後、隣の反応室に被形成面を有する基板を大
気にふれさせることなく第1の半導体層上に第2
の半導体層を積層して形成せしめ、かかる工程を
漸次くりかえすことにより第1の半導体層上に第
2の半導体層を、また第2の半導体層上に第3の
半導体層を、第3の半導体層上に第4の半導体層
を形成せしめる半導体装置の作製方法に関する。
In the present invention, when stacking the first, second, third, and fourth non-single crystal semiconductor layers to form a PIN - N junction, these semiconductor layers are not manufactured using the same reaction chamber. After forming a first semiconductor layer by connecting four independent reaction chambers, a substrate having a surface to be formed in an adjacent reaction chamber is placed on the first semiconductor layer without exposing it to the atmosphere. Second
By gradually repeating this process, a second semiconductor layer is formed on the first semiconductor layer, a third semiconductor layer is formed on the second semiconductor layer, and a third semiconductor layer is formed on the second semiconductor layer. The present invention relates to a method for manufacturing a semiconductor device in which a fourth semiconductor layer is formed on a semiconductor layer.

本発明は4つの反応室を連結して有する半導体
装置製造方法に関し、その第1の半導体層を形成
するに先立ち、その半導体層上に水分、空気等の
吸着物を除去し、さらに反応室に大気(空気特に
酸素、水)の混入がないように、大気との遮断用
の第1の予備室と、基板上の吸着物除去用の予備
加熱用の第2の予備室を設けることを目的として
いる。
The present invention relates to a method for manufacturing a semiconductor device having four reaction chambers connected to each other. The purpose is to provide a first preliminary chamber for isolation from the atmosphere and a second preliminary chamber for preliminary heating to remove adsorbed substances on the substrate so that there is no contamination with the atmosphere (air, especially oxygen and water). It is said that

従来プラズマCVD法特にグロー放電法を利用
し、PIN接合を積層法にて有する光電変換装置に
関しては、本発明人の出願になる「光起電力発生
用半導体層」(S49.6.20出願 特開昭51−890 特
願昭49−71739)が知られている。また 半導体
装置(特開昭52−16990)も知られている。しか
しこれらのの半導体装置における活性半導体層と
してのI層は、このI層をはさむPまたはN型半
導体層に比べて低不純物濃度層であることを指摘
しながらも、さらにその細目については全く開示
していない。
Regarding a photoelectric conversion device that utilizes a conventional plasma CVD method, particularly a glow discharge method, and has a PIN junction by a lamination method, there is an application filed by the present inventor entitled "Semiconductor layer for photovoltaic power generation" (filed on June 20, 2013, published in Japanese Patent Application Laid-Open No. 51-890 (Japanese Patent Application No. 49-71739) is known. A semiconductor device (Japanese Unexamined Patent Publication No. 52-16990) is also known. However, although they point out that the I layer as an active semiconductor layer in these semiconductor devices has a lower impurity concentration than the P or N type semiconductor layers that sandwich the I layer, they do not disclose the details at all. I haven't.

本発明は半導体層を被形成面上に積層して作製
する光電変換装置において、この活性半導体層を
さらに検討した結果、その内部を5×1016cm-3
下の不純物濃度しかないI型半導体層と、7×
1016〜1×1018cm-3の濃度の不純物が添加されて
いるPまたはN型半導体層をそれぞれ独立した反
応室で積層して形成し、お互いの不純物が混入し
あわなくせしめたことを特徴としている。この結
果、この活性半導体層を電子またはホールと積層
的に対立させ、かつ光照射により発生したキヤリ
アのうちの少数キヤリアを電極へドリフトさせや
すく、ひいてはそのライフタイムを長くせしめた
ことを特徴とする。
In the present invention, in a photoelectric conversion device manufactured by laminating a semiconductor layer on a surface to be formed, as a result of further study of this active semiconductor layer, the interior of the active semiconductor layer is an I-type semiconductor with an impurity concentration of 5×10 16 cm -3 or less. layer and 7x
P- or N-type semiconductor layers doped with impurities at a concentration of 10 16 to 1 x 10 18 cm -3 are stacked in separate reaction chambers to prevent impurities from mixing with each other. It is a feature. As a result, this active semiconductor layer is stacked against electrons or holes, and a minority of carriers generated by light irradiation can easily drift toward the electrode, which in turn lengthens their lifetime. .

さらに本発明はこの半導体中に添加された酸素
の濃度を第1および第2の予備室をを設け、そこ
で除去することにより、従来知られていた1〜×
1018cm-3の濃度よりさらに1/3以下好ましくは1/1
0〜1/50としたことにより、半導体をその中に酸
化珪素絶縁性成分を除去し、より半導体としキヤ
リアのライフタイムを長くしたことを特徴として
いる。
Furthermore, the present invention removes the concentration of oxygen added to the semiconductor by providing first and second preparatory chambers, thereby reducing the concentration of oxygen added to the semiconductor.
10 18 cm -3 concentration less than 1/3, preferably 1/1
0 to 1/50, the silicon oxide insulating component is removed from the semiconductor, making it more of a semiconductor, and the lifetime of the carrier is extended.

また半導体層をそれぞれ独立に積層する方法は
本発明人により 半導体装置(特願昭53−
152887S53.12.10出願)およびその分割出願 半
導体装置作製方法(特願昭56−55607S56.4.15)
に記されている。しかしこれらは独立連結方式プ
ラズマ気相法が記されていながらも、やはり活性
半導体層をさらに複数層にわけ、そこをIP-
IN-接合、さらにそれを発展させPIN-N接合を
形成することについての記載はない。本発明はこ
れをさらに発展せしめ、光電変換装置としての変
換効率を10〜14%/cm2(AM1100mW/cm2の照射
光における5cmロの真性変換効率)有せしめ、従
来の6〜8%/cm2よりもさらに4〜6%も向上せ
しめたことを特徴としている。
In addition, the method of laminating semiconductor layers independently was developed by the present inventor for a semiconductor device (patent application filed in 1983).
152887S53.12.10 application) and its divisional application Semiconductor device manufacturing method (Patent application 1982-55607S56.4.15)
It is written in However, although these are described as independently connected plasma vapor phase methods, the active semiconductor layer is further divided into multiple layers and then IP - ,
There is no description of the IN -junction and its further development to form the PIN - N junction. The present invention further develops this and provides a photoelectric conversion device with a conversion efficiency of 10 to 14%/cm 2 (intrinsic conversion efficiency of 5 cm in AM 1100 mW/cm 2 irradiation light), compared to the conventional 6 to 8%/cm 2 . It is characterized by an improvement of 4 to 6% over cm2 .

本発明における光電変換装置において、Pまた
はN型半導体層特に入射光側のP型半導体層を活
性半導体層に比べて広いエネルギバンド巾とし、
その半導体層での照射光の吸収損失の増加を防い
でいる。
In the photoelectric conversion device of the present invention, the P or N type semiconductor layer, particularly the P type semiconductor layer on the incident light side, has a wider energy band width than the active semiconductor layer,
This prevents an increase in absorption loss of irradiated light in the semiconductor layer.

このエネルギバンド構造を連続接合し、P型の
半導体層に対し窓構造を設けたものとして、本発
明人の出願になる 半導体装置(米国特許
4239554 1980.12.6発行米国特許 4254429
1981.3.3発行)が知られている。本発明はかかる
本発明人の発明になる出願をさらに発展させたも
のである。
A semiconductor device (U.S. patent application) filed by the present inventor as a device in which this energy band structure is continuously bonded and a window structure is provided for the P-type semiconductor layer
4239554 US Patent issued on December 6, 1980 4254429
Published March 3, 1981) is known. The present invention is a further development of the application resulting from the invention by the present inventor.

本発明はかかる半導体層に再結合中心中和用の
水素、フツ素または塩素の如きハロゲン元素を
0.1〜20モル%の濃度に、またリチユームの如き
アルカリ金属元素を1014〜1017cm-3の濃度に含有
せしめて、不対結合手中和効果を有せしめるとと
もに、5〜2000Å代表的には5〜100Åの大きさ
の結晶性(シヨートレンジオーダ結晶性)を有す
るセミアモルフアス(半非晶質)半導体(以下
SASという)とかかるシヨートレンジオーダの
結晶性を有さないアモルフアス(非晶質)半導体
(以下ASという)とが層状に積層構造を有して設
けられたものである。
The present invention provides such a semiconductor layer with a halogen element such as hydrogen, fluorine or chlorine for neutralizing recombination centers.
By containing an alkali metal element such as lithium at a concentration of 0.1 to 20 mol% and a concentration of 10 14 to 10 17 cm -3 to have a neutralizing effect on dangling bonds, typically 5 to 2000 Å Semi-amorphous semiconductor (semi-amorphous) with crystallinity in the range of 5 to 100 Å (short range crystallinity)
SAS) and an amorphous semiconductor (hereinafter referred to as AS) which does not have crystallinity in the short range order are provided in a layered structure.

本発明は特に光電変換装置における光照射面側
のP型の半導体層がその領域での入射光の吸収性
を少なくするためSASとし、さらにそれに隣接
した真性半導体層をSASとし、入射光側でのキ
ヤリアのライフタイムを長くし、さらにこの
SAS上面に真性の階段状または連続的にASまた
はASを混入させた半導体層を積層して内部電界
を自発的に設け、光−電気変換効率の向上を促し
たものである。
In particular, in the present invention, the P-type semiconductor layer on the light irradiation side of the photoelectric conversion device is made of SAS to reduce the absorption of incident light in that area, and the intrinsic semiconductor layer adjacent to it is made of SAS, and the P-type semiconductor layer on the side of the incident light is made of SAS. This increases the lifetime of the carrier and
By stacking AS or a semiconductor layer mixed with AS in an intrinsic step-like or continuous manner on the top surface of SAS, an internal electric field is spontaneously created to promote improvement in light-to-electricity conversion efficiency.

SASに関しては、本発明人の出願になる特願
昭55−026388,S55.3.3出願(セミアモルフアス
半導体)が知られている。さらにこのSASを利
用してPIN接合型の光電変換装置を設けた発明と
して、本発明人の出願になる特願昭56−008699,
S56.1.22(光電変換装置)が知られている。
Regarding SAS, Japanese Patent Application No. 55-026388, S55.3.3 (semi-amorphous semiconductor) filed by the present inventor is known. Furthermore, as an invention that utilizes this SAS to provide a PIN junction type photoelectric conversion device, patent application No. 56-008699 filed by the present inventor,
S56.1.22 (photoelectric conversion device) is known.

以下図面に従つて説明する。 This will be explained below with reference to the drawings.

第1図は本発明を実施例するのに必要なプラズ
マCVD装置の概要を示す。
FIG. 1 shows an outline of a plasma CVD apparatus necessary for carrying out the present invention.

すなわち基板1は絶縁性ホルダ例えば石英ホル
ダ(ボート)2が保持された反応炉25〜28中
に上方向から下方向への反応性ガスの流れに平行
であり、かつ高周波エネルギ4に対する電極2,
3の放電に対し平行方向に設置させている。反応
性気体は珪化物気体(SixH2x+2x1)を5,
9,13,17より、またP型不純物であるジボ
ラン(B2H6)を6より、N型不純物であるフオ
スヒン(PH3)を18より、キヤリアガスである
水素またはヘリユーム(He)を8,12,16,
20より供給した。また広いエネルギバンド巾と
するための添加材例えばメタン(CH4)を7,1
9より供給する。微量不純物添加用としてシラン
により10〜100PPMに希釈されたジボランを1
0,14よりまた同様のシランまたは水素希釈の
10〜100PPMのフオスヒンを11,15より供給
する。
That is, the substrate 1 is parallel to the flow of reactive gas from above to below in a reactor 25 to 28 in which an insulating holder, e.g., a quartz holder (boat) 2 is held, and an electrode 2 for high frequency energy 4,
It is installed in a direction parallel to the discharge of No. 3. The reactive gas is 5 silicide gas (SixH 2x+2 x1),
From 9, 13, and 17, the P-type impurity diborane (B 2 H 6 ) is from 6, the N-type impurity phosphin (PH 3 ) is from 18, and the carrier gas hydrogen or helium (He) is from 8. 12, 16,
It was supplied from 20. In addition, additives such as methane (CH 4 ) to provide a wide energy band width are added to the
Supplied from 9. 1 diborane diluted to 10-100 PPM with silane for adding trace impurities.
0.14 or similar silane or hydrogen diluted
10 to 100 PPM of phosphin is supplied from 11 and 15.

これら反応性気体の反応室への噴出し口であつ
て、かつプラズマ発生用の電極51,52,5
3,54より反応室25,26,27,28に供
給している。この反応性気体が反応室に放出され
ると、電磁エネルギが加えられ、それらの気体を
活性化、分解して反応生成物が被形成面上に蒸積
される。この反応室では直流〜20MHz例えば直
流、500KHz、13.56MHzの周波数の電磁エネルギ
を電極2,3より加えた。さらに被形成面を有す
る基板1に赤外線加熱炉4により100〜500℃代表
的には200〜300℃に加熱し、多量の基板処理がで
きるようになつた。
Electrodes 51, 52, 5 serve as outlets for ejecting these reactive gases into the reaction chamber and are also used for plasma generation.
3 and 54 to the reaction chambers 25, 26, 27, and 28. Once the reactive gases are released into the reaction chamber, electromagnetic energy is applied to activate and decompose the gases and deposit reaction products onto the surface on which they are formed. In this reaction chamber, electromagnetic energy with a frequency of DC to 20 MHz, for example, DC, 500 KHz, and 13.56 MHz, was applied from electrodes 2 and 3. Furthermore, it has become possible to heat a substrate 1 having a surface to be formed to 100 to 500 DEG C., typically 200 to 300 DEG C., in an infrared heating furnace 4 to process a large number of substrates.

基板1は最初第1の予備室23に挿入され、ロ
ータリーポンプ30にて真空引きされた。この予
備室を大気圧にするには21より窒素を導入し
た。この予備室が真空引された後、その隣りに設
けられた200〜400℃に赤外線ランプにて加熱され
た第2の予備室にゲイト55を開けて移し、移し
た後再びゲイト55を閉め、第1の予備室は21
より窒素を導入して大気圧とした後、別の基板が
導入される。かくの如きくりかえしにより、第1
の予備室の基板は第2の予備室に、第2の予備室
24の基板は第1の反応室25に漸次移相して導
入される。さらにこの第1の予備室で真空引をし
て大気を除去した後、第2の予備室で吸着酸素、
水を真空加熱により除去することは、半導体層中
の酸素の濃度を従来より知られた1〜3×1018cm
-3よりもさらに1/3以下代表的には1/10〜1/30の
1×10〜5×1015cm-3にまで下げることができ
た。
The substrate 1 was first inserted into the first preliminary chamber 23 and evacuated using the rotary pump 30. Nitrogen was introduced from 21 to bring the preliminary chamber to atmospheric pressure. After this preparatory chamber is evacuated, the gate 55 is opened and transferred to a second preparatory chamber heated with an infrared lamp at 200 to 400° C., which is provided next to it, and after the transfer, the gate 55 is closed again. The first spare room is 21
After introducing more nitrogen to reach atmospheric pressure, another substrate is introduced. Through this repetition, the first
The substrate in the preliminary chamber is introduced into the second preliminary chamber, and the substrate in the second preliminary chamber 24 is introduced into the first reaction chamber 25 with a gradual phase shift. Furthermore, after evacuation is performed in this first preliminary chamber to remove the atmosphere, adsorbed oxygen is removed in the second preliminary chamber.
Removing water by vacuum heating lowers the oxygen concentration in the semiconductor layer to the conventionally known level of 1 to 3 x 10 cm.
It was possible to further reduce the value to 1×10 to 5×10 15 cm −3 , typically 1/10 to 1/30, which is less than 1/3 of -3 .

もちろん各反応室においても、外部よりの真空
リークは10-8torr以下を保障できるように務めて
いる。
Of course, in each reaction chamber, efforts are made to ensure that vacuum leaks from the outside are below 10 -8 torr.

以上の如くにして第1の反応室において、被形
成面上に1.6〜2.2eVのエネルギバンド巾を有する
P型の導電型を有するSixC1-x(0<x<1)を
200Å以下代表的には30〜150Åの厚さに形成した
後、第1および第2の反応室を真空引をして、こ
の被形成面を有する基板を第2の反応室26に移
相した。この時第2の反応室に設置された基板は
第3の反応室17に、第3の反応室27の基板は
第4の反応室28に、第4の反応室の基板は第3
の予備室27に移相し、第3の予備室の基板はゲ
イト56を完全閉にした後、他のゲイト57より
外部に出される。
As described above, in the first reaction chamber, SixC 1-x (0<x<1) having a P-type conductivity having an energy band width of 1.6 to 2.2 eV was formed on the surface to be formed.
After forming the substrate to a thickness of 200 Å or less, typically 30 to 150 Å, the first and second reaction chambers were evacuated, and the substrate having the surface to be formed was phase-shifted to the second reaction chamber 26. . At this time, the substrate installed in the second reaction chamber is placed in the third reaction chamber 17, the substrate in the third reaction chamber 27 is placed in the fourth reaction chamber 28, and the substrate in the fourth reaction chamber is placed in the third reaction chamber 17.
After completely closing the gate 56, the substrate in the third preparatory chamber is taken out through another gate 57.

第2の反応室26においては、第2図Aにその
たて断面図が示されているが、P型の第1の半導
体層44が形成した上にI型の第2の半導体層4
5が100〜2000Åの代表的には200〜500Åの厚さ
に形成される。このI層は第2の半導体層を形成
する際、第1の半導体層を生成する不純物が50〜
100Å深さに混入するため、100Å以上形成させ、
P型用の不純物とN型用の不純物とが5×1016cm
-3以上の濃度で直接に混合しないように務めた。
In the second reaction chamber 26, a vertical cross-sectional view is shown in FIG. 2A, a P-type first semiconductor layer 44 is formed and an I-type second semiconductor layer 4 is formed.
5 is formed to a thickness of 100 to 2000 Å, typically 200 to 500 Å. When forming the second semiconductor layer, this I layer contains impurities that form the first semiconductor layer.
Since it is mixed in at a depth of 100 Å, it is formed at least 100 Å.
P-type impurity and N-type impurity are 5×10 16 cm
Do not mix directly at concentrations higher than -3 .

このI型半導体層は空乏層を形成させ、ここで
のキヤリアの電極へのドリフトによる移動を助長
させるためにきわめて重要である。
This I-type semiconductor layer is extremely important for forming a depletion layer and promoting the movement of carriers there by drift toward the electrode.

さらにこの後第3の反応室27にて、第2図A
におけるN型の第3の半導体層46を0.1〜0.6μ
m厚さに形成させた。さらに第4の反応室28に
てN型の第4の半導体層47を100〜500Åの厚さ
に形成させた。この半導体層をもBSF(逆方向の
空乏層電界)を少数キヤリアに与えるため、この
Egを1.8〜2.5eVとしたSixC1-x(0<x1)と
した。またI層45、N-層46は前記した非単
結晶シリコンを用い1.5〜1.8eVとした。
Furthermore, after this, in the third reaction chamber 27,
The thickness of the N-type third semiconductor layer 46 is 0.1 to 0.6μ.
It was formed to a thickness of m. Further, in the fourth reaction chamber 28, an N-type fourth semiconductor layer 47 was formed to a thickness of 100 to 500 Å. This semiconductor layer also applies BSF (reverse depletion field) to minority carriers.
SixC 1-x (0<x1) with Eg of 1.8 to 2.5 eV was used. The I layer 45 and the N layer 46 were made of the above-mentioned non-single crystal silicon and had a voltage of 1.5 to 1.8 eV.

以上の如き4つの半導体層を積層した後、電極
48および耐湿性向上のため、エポキシ、ポリイ
ミド等の有機樹脂モールド49を100〜500μの厚
さにオーバーコートをした。
After the four semiconductor layers as described above were laminated, an organic resin mold 49 made of epoxy, polyimide, etc. was overcoated to a thickness of 100 to 500 μm to improve the electrode 48 and moisture resistance.

第2図Aにおいて、基板は透光性基板40例え
ばガラス、ポリイミド樹脂を用い、そこに3〜
20μの深さのNi,Ni中にB,Pが添加された代表
的またはそのバルクにAl,Cuが設けられ、うめ
こみ補助電極41を設けた。さらにこの上面に透
明導電膜43を形成している。この透明導電膜は
ITO(酸化インジユーム+3〜10%酸化スズ)と
酸化スズ、酸化アンチモンまたはその混合物を積
層して2層膜としていい。
In FIG. 2A, the substrate is a transparent substrate 40 made of glass, polyimide resin, etc.
A typical example in which B and P were added to Ni and Ni at a depth of 20 μm, or Al and Cu were provided in the bulk thereof, and a recessed auxiliary electrode 41 was provided. Furthermore, a transparent conductive film 43 is formed on this upper surface. This transparent conductive film
A two-layer film can be created by laminating ITO (indium oxide + 3 to 10% tin oxide), tin oxide, antimony oxide, or a mixture thereof.

この透明導電膜はこれに接する半導体がこの実
施例の如くP型半導体にあつてはV価の透明導電
膜である酸化アンチモン(Sb2O3またはBb2O5
50〜200Åの厚さにそれに接する如くにして形成
し、ITOはこの導電膜の導電性を向上させる如く
その下地に設けることが光電変換装置の変換効率
の向上特に電流の増大に大きく寄与していた。そ
してITOをP型半導体に接せしめる時、5〜
10mA/cm2の電流密度であつたものが13〜
20mA/cm2ときわめて大きくできた。これはアン
チモンがP型半導体のホールの再結合中心とな
り、この界面での電気的な直列抵抗をを下げるこ
とができた。
This transparent conductive film is made of antimony oxide (Sb 2 O 3 or Bb 2 O 5 ) which is a V-valent transparent conductive film when the semiconductor in contact with it is a P-type semiconductor as in this example.
ITO is formed in a thickness of 50 to 200 Å so as to be in contact with the conductive film, and the ITO is placed on the underlying layer to improve the conductivity of this conductive film, which greatly contributes to improving the conversion efficiency of the photoelectric conversion device, especially increasing the current. Ta. When ITO is brought into contact with a P-type semiconductor, 5~
The one with a current density of 10mA/ cm2 is 13~
The output was extremely large at 20mA/cm 2 . This is because antimony becomes a recombination center for holes in the P-type semiconductor, and the electrical series resistance at this interface can be lowered.

以上の如くにして得られた第2図Aに対応した
エネルギバンド巾を第2図Bにその番号を対応し
て設けている。
The energy band widths corresponding to FIG. 2A obtained as described above are provided in FIG. 2B with corresponding numbers.

この図面より明らかな如く、活性半導体層41
〜46はこの場合の少数キヤリアであるホールを
P型半導体層44に44,46間の高い電位差に
より効率よく供給せしめている。特に照射光近く
にある真性半導体層45で空乏層ひろがりおよび
高い電界強度を有せしめるためN-型半導体層4
6を設け、さらにこの46で光照射により発生し
たキヤリアはBSF効果の助けと含めて少数キヤ
リアをP型半導体層にドリフトさせたものであ
る。その結果、従来より知られた単なるPIN半導
体においては5〜7%/cm2までの効率した得られ
なかつたものが、PIN-N型構造とすることによ
り、10〜12%の高い変換効率をAM1にして得る
ことができた。さらに10cmロの大面積基板におい
ても、41の補助電極の助けを含めて開放電圧
0.9〜0.95V、短絡電流16〜20mA/cm27〜10%の
実用変換効率を得ることができた。
As is clear from this drawing, the active semiconductor layer 41
.about.46 efficiently supplies holes, which are minority carriers in this case, to the P-type semiconductor layer 44 due to the high potential difference between 44 and 46. In particular, in order to make the depletion layer expand and have a high electric field strength in the intrinsic semiconductor layer 45 near the irradiation light, the N - type semiconductor layer 4
6 is provided, and the carriers generated by light irradiation in this 46 are caused by drifting minority carriers into the P-type semiconductor layer, including the aid of the BSF effect. As a result, conventionally known simple PIN semiconductors could not achieve conversion efficiency of 5 to 7%/ cm2 , but with the PIN - N structure, high conversion efficiency of 10 to 12% can be achieved. I was able to get it on AM1. Furthermore, even on a large-area board of 10 cm, the open-circuit voltage can be increased with the help of 41 auxiliary electrodes.
Practical conversion efficiency of 0.9 to 0.95V and short circuit current of 16 to 20 mA/cm 2 and 7 to 10% could be obtained.

第3図は参考例であつて、基板40をを導電性
とし、例えばステンレスとしたものである。この
上面に第2図Aと同様に第1、第2、第3、第4
の半導体層を44,45,46,47と積層して
設け、ITOの透明導電膜43補助電極41樹脂モ
ールド49により設けている。
FIG. 3 shows a reference example in which the substrate 40 is conductive, for example made of stainless steel. On this upper surface, the first, second, third, and fourth marks are placed in the same manner as in Fig. 2A.
The semiconductor layers 44, 45, 46, and 47 are laminated and provided, and are provided by a transparent conductive film 43 of ITO, an auxiliary electrode 41, and a resin mold 49.

A−A′における対応エネルギバンド図を第3
図Bに示している。この場合は第2図Aと異な
り、上方向より光照射のためN47I46P-
5P44としている。この場合P-はその被膜形
成の際その不純物濃度が5×1016〜1×1018cmと
きわめて低いため、ボンベ中で5〜10PPM(水素
希釈)を作ることがジボランとボンベとの反応に
より不可能である。このため本発明においては、
シラン中に10〜100PPMのジボランを添加したボ
ンベを用いていることが他の特徴である。かくし
て制御性を有するP-型半導体層45を作ること
ができた。この中に第1の半導体44よりのオー
トドービングによるP型不純物の混入を禁止する
ため、本発明においては第1図に示す如くP型半
導体層44用の第1の反応室25とP-型半導体
層用の第2の反応室26とを独立にしている。特
にP型半導体層44に炭素を添加した場合、この
炭素が部分的(局部的)にP-の第2の半導体層
に混入し、電気的導電性を防げることを防ぐこと
はきわめて重要である。このため45の第2の半
導体層は珪素、ゲルマニユームまたはその混合体
を主成分とし、炭素、酸素、窒素が3×1017cm-3
以上の濃度に混入して電気的伝導度を悪くしない
ように務めた。
The corresponding energy band diagram at A-A′ is shown in the third diagram.
This is shown in Figure B. In this case, unlike Fig. 2A, the light is irradiated from above, so N47I46P - 4
It is set as 5P44. In this case, since the impurity concentration of P - is extremely low at 5 x 10 16 to 1 x 10 18 cm during film formation, it is possible to make 5 to 10 PPM (hydrogen dilution) in the cylinder due to the reaction between diborane and the cylinder. It's impossible. Therefore, in the present invention,
Another feature is that a cylinder containing 10 to 100 PPM of diborane added to the silane is used. In this way, a controllable P - type semiconductor layer 45 could be produced. In order to prevent P-type impurities from being mixed into this layer by autodoping from the first semiconductor layer 44, in the present invention, a first reaction chamber 25 for the P-type semiconductor layer 44 and a P- The second reaction chamber 26 for the type semiconductor layer is made independent. In particular, when carbon is added to the P-type semiconductor layer 44, it is extremely important to prevent this carbon from being partially (locally) mixed into the P - second semiconductor layer and preventing electrical conductivity. . Therefore, the second semiconductor layer 45 is mainly composed of silicon, germanium, or a mixture thereof, and contains 3×10 17 cm -3 of carbon, oxygen, and nitrogen.
Efforts were made to prevent the electrical conductivity from worsening by mixing with the above concentration.

かくして第3図Bの如き場合においても、第2
図と同様の10%をこえる変換効率を得ることがで
きた。
Thus, even in the case shown in Figure 3B, the second
As shown in the figure, we were able to obtain a conversion efficiency of over 10%.

第3図の他の製造方法については第1図、第2
図において述べたことと同様である。
For other manufacturing methods shown in Figure 3, see Figures 1 and 2.
This is similar to what was stated in the figure.

以上の説明において半導体装置はPIN-N接合
を1つ有せしめた。しかしこれをさらにくりかえ
し、光照射面側よりPIN-NPIN-Nまたは
PIN-NPIN接合と積層した直列接続し、前側の
IN-活性層を非単結晶のSiにより1.6〜1.8eVとし
後側をSixGe1-x(0x1)により1.0〜1.6eV
として開放電圧の増大に務めてもよい。
In the above description, the semiconductor device has one PIN - N junction. However, by repeating this further, PIN - NPIN - N or
PIN - NPIN junction and stacked series connection, front side
IN - The active layer is 1.6 to 1.8 eV with non-single crystal Si, and the back side is 1.0 to 1.6 eV with SixGe 1-x (0x1).
It may also be used to increase the open circuit voltage.

以上の説明より明らかな如く、本発明において
は活性半導体層をIN-とし、従来より単にN半導
体層よりも低不純物濃度としたというのではな
く、その中における電流防害要素である酸素、炭
素、窒素のIMAにて測定した場合の濃度を3×
1017cm-3以下とし、さらに光照射面側でのI層中
での価および価の不純物の混合をさけ、加え
てP-またはN-とすることにより少数キヤリアの
ライフタイムを長くさせたこと、さらにこのI、
P-またはN-をそれぞれ独立に反応室で形成する
等のすべてを一体化することにより、初めて10%
をこえる高い変換効率を有す大面積型光電変換装
置を作ることができる。この点でその工業的価値
は少なくないものと信ずる。
As is clear from the above explanation, in the present invention, the active semiconductor layer is made of IN - , and the impurity concentration is not simply made lower than that of the N semiconductor layer as in the past, but oxygen and carbon, which are current protection elements in the active semiconductor layer, are used. , the concentration when measured by nitrogen IMA is 3×
10 17 cm -3 or less, furthermore, by avoiding the mixing of valence and valence impurities in the I layer on the light irradiation side, and by adding P - or N - , the lifetime of minority carriers was lengthened. Moreover, this I,
For the first time, 10 %
It is possible to create a large-area photoelectric conversion device with high conversion efficiency exceeding . In this respect, I believe that its industrial value is considerable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いられた半導体装置製造装
置の概要を示す。第2図においてAは本発明の光
電変換装置のたて断面図を示し、またBはAに対
応したエネルギバンド図を示している。第3図は
参考例として示した光電変換装置であり、Aはそ
のたて断面図を、BはAに対応したエネルギバン
ド図を示している。
FIG. 1 shows an outline of a semiconductor device manufacturing apparatus used in the present invention. In FIG. 2, A shows a vertical sectional view of the photoelectric conversion device of the present invention, and B shows an energy band diagram corresponding to A. FIG. 3 shows a photoelectric conversion device shown as a reference example, and A shows a vertical sectional view thereof, and B shows an energy band diagram corresponding to A.

Claims (1)

【特許請求の範囲】[Claims] 1 非単結晶半導体層を積層して設けた光電変換
装置であつて、光照射面側から非単結晶半導体層
の導電型をPIN-Nと構成したことを特徴とする
光電変換装置。
1. A photoelectric conversion device provided by laminating non-single-crystal semiconductor layers, characterized in that the conductivity type of the non-single-crystal semiconductor layer is PIN - N from the light irradiation surface side.
JP57038768A 1982-03-11 1982-03-11 Manufacture of semiconductor device Granted JPS58155773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57038768A JPS58155773A (en) 1982-03-11 1982-03-11 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57038768A JPS58155773A (en) 1982-03-11 1982-03-11 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS58155773A JPS58155773A (en) 1983-09-16
JPH0432551B2 true JPH0432551B2 (en) 1992-05-29

Family

ID=12534466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57038768A Granted JPS58155773A (en) 1982-03-11 1982-03-11 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58155773A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391893A (en) * 1985-05-07 1995-02-21 Semicoductor Energy Laboratory Co., Ltd. Nonsingle crystal semiconductor and a semiconductor device using such semiconductor
US4727044A (en) 1984-05-18 1988-02-23 Semiconductor Energy Laboratory Co., Ltd. Method of making a thin film transistor with laser recrystallized source and drain
US7038238B1 (en) 1985-05-07 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a non-single crystalline semiconductor layer
JP2784821B2 (en) * 1989-10-17 1998-08-06 キヤノン株式会社 Photovoltaic element
JP2784820B2 (en) * 1989-10-17 1998-08-06 キヤノン株式会社 Photovoltaic element
JP2784819B2 (en) * 1989-10-17 1998-08-06 キヤノン株式会社 Photovoltaic element
US5849601A (en) * 1990-12-25 1998-12-15 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
KR950013784B1 (en) * 1990-11-20 1995-11-16 가부시키가이샤 한도오따이 에네루기 겐큐쇼 Field effect trasistor and its making method and tft
JP2814161B2 (en) 1992-04-28 1998-10-22 株式会社半導体エネルギー研究所 Active matrix display device and driving method thereof
US6693681B1 (en) 1992-04-28 2004-02-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
JP5010468B2 (en) * 2005-03-24 2012-08-29 京セラ株式会社 Photoelectric conversion element, method for producing the same, and photoelectric conversion module using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125681A (en) * 1979-03-22 1980-09-27 Sanyo Electric Co Ltd Manufacture of photovoltaic device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125681A (en) * 1979-03-22 1980-09-27 Sanyo Electric Co Ltd Manufacture of photovoltaic device

Also Published As

Publication number Publication date
JPS58155773A (en) 1983-09-16

Similar Documents

Publication Publication Date Title
KR102100909B1 (en) Solar cell having an emitter region with wide bandgap semiconductor material
US9231130B2 (en) Photoelectric conversion element and solar cell
GB2339963A (en) Photovoltaic module
US10014432B2 (en) Manufacturing method for solar cell
JPH0432552B2 (en)
JP2007281156A (en) Rear-surface-electrode type semiconductor heterojunction solar battery, and manufacturing method and apparatus thereof
US5556794A (en) Method of manufacturing a semiconductor device having low sodium concentration
JPH0432551B2 (en)
CN113644142A (en) Solar cell with passivation contact and preparation method thereof
CN116914024B (en) Heterojunction battery and preparation method thereof
US4799968A (en) Photovoltaic device
WO1999038216A1 (en) Solar cell device and method of producing the same
US7038238B1 (en) Semiconductor device having a non-single crystalline semiconductor layer
JP5770294B2 (en) Photoelectric conversion device and manufacturing method thereof
US20080308144A1 (en) Integrated thin-layer photovoltaic module
JP3664875B2 (en) Method for manufacturing photovoltaic device
KR101332667B1 (en) Solar cell and method for manufacturing the same
JP2001189474A (en) Manufacturing method of photoelectric transducer
CN85103355A (en) Photocell
JP2010165751A (en) Method of manufacturing thin-film solar cell
JPH0758360A (en) Semiconductor device and its manufacture
KR930011356B1 (en) Amorphous silicon solar battery and making method thereof
JPH0575189B2 (en)
JPS60163429A (en) Manufacture of amorphous silicon solar cell
JP2003218030A (en) Crystalline silicon semiconductor device and its manufacturing method