JPH07297428A - Thin film solar battery and its manufacture - Google Patents

Thin film solar battery and its manufacture

Info

Publication number
JPH07297428A
JPH07297428A JP6091033A JP9103394A JPH07297428A JP H07297428 A JPH07297428 A JP H07297428A JP 6091033 A JP6091033 A JP 6091033A JP 9103394 A JP9103394 A JP 9103394A JP H07297428 A JPH07297428 A JP H07297428A
Authority
JP
Japan
Prior art keywords
thin film
type
solar cell
phase
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6091033A
Other languages
Japanese (ja)
Other versions
JP2699867B2 (en
Inventor
Shinichi Muramatsu
信一 村松
Hiroshi Kajiyama
博司 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6091033A priority Critical patent/JP2699867B2/en
Publication of JPH07297428A publication Critical patent/JPH07297428A/en
Application granted granted Critical
Publication of JP2699867B2 publication Critical patent/JP2699867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To take out even such a carrier that is generated in an amorphous phase by forming at least one of semiconductor thin films in a mixed phase of an amorphous phase and crystalline phase, with the crystal phase containing a columnar or conic phase nearly perpendicular to the main surface of a substrate. CONSTITUTION:After forming an n-type microcrystalline silicon film 3 on a metallic substrate 2, the crystallinity of the film 3 is improved by irradiating the filnt 3 with X rays and a semiconductor thin film 4 is formed on the filnt 3 by using the plasma CVD method. Then the thin film 4 is irradiated with X rays by using a mask for X rays having openings at 3-mum intervals in both the longitudinal and transversal directions. As a result, n-type crystal areas 43 having diameters of <=1mumphi are formed in the amorphous area 41 which is substantially formed in i-type of the thin film 4 at the positions corresponding to the pattern of the mask. Carriers generated in the amorphous phase 41 having a high carrier generating rate can be run by selectively guiding the carriers to the crystalline phase 43 having a good carrier running property by forming an electric field between the amorphous phase 41 and crystalline phase 43.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光電変換素子の一つで
ある太陽電池及びその製造方法に係り、特に、単結晶シ
リコン太陽電池に匹敵する高効率、低コストの薄膜太陽
電池及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell which is one of photoelectric conversion elements and a method for manufacturing the same, and more particularly to a thin film solar cell having high efficiency and low cost comparable to a single crystal silicon solar cell and a method for manufacturing the same. Regarding the method.

【0002】[0002]

【従来の技術】一般に、単結晶シリコン太陽電池は光電
変換効率が高いが、高温プロセスを必要とし、また、吸
収係数が小さいために100μm程度の厚さを必要とし、比
較的高価である。一方、非晶質太陽電池は高温プロセス
を必要とせず、また、吸収係数が大きいために1μm程
度以下の厚さしか必要とせず、比較的安価であることが
知られている。しかし、非晶質太陽電池では、p層及び
n層中で少数キャリヤの寿命が極めて短く、ドーパント
層はキャリヤ生成層として用いることが全くできない。
このような問題点を解消する方法の一つとして、多結晶
相と非晶質相とを混相として有する太陽電池が特公平4
‐58193号に開示されている。
2. Description of the Related Art Generally, a single crystal silicon solar cell has a high photoelectric conversion efficiency, but it requires a high temperature process, and since it has a small absorption coefficient, it requires a thickness of about 100 μm and is relatively expensive. On the other hand, it is known that an amorphous solar cell does not require a high temperature process, and since it has a large absorption coefficient, it only requires a thickness of about 1 μm or less and is relatively inexpensive. However, in an amorphous solar cell, the minority carrier lifetime in the p and n layers is extremely short, and the dopant layer cannot be used as a carrier generation layer at all.
As one of the methods for solving such a problem, a solar cell having a mixed phase of a polycrystalline phase and an amorphous phase has been proposed.
-58193.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ように単に多結晶相と非晶質相とを混相として有するだ
けでは、高効率の太陽電池は得られていない。その原因
としては、一つは結晶相がイントリンシックでは良好な
キャリヤの走行性が得られないこと、また、単に成膜方
法の工夫のみでは良好な結晶部分と非晶質部分とを同時
に形成することができないことが挙げられる。
However, a high-efficiency solar cell cannot be obtained by merely having a mixed phase of a polycrystalline phase and an amorphous phase as described above. One of the reasons for this is that if the crystal phase is intrinsic, good carrier mobility cannot be obtained, and if only the film forming method is devised, a good crystalline portion and an amorphous portion are simultaneously formed. There are things that you cannot do.

【0004】本発明の目的は、上記従来技術の有してい
た課題を解決して、単結晶シリコン太陽電池に匹敵する
高効率、低コストの薄膜太陽電池及びその製造方法を提
供することにある。
An object of the present invention is to solve the problems of the prior art and to provide a high efficiency and low cost thin film solar cell comparable to a single crystal silicon solar cell and a manufacturing method thereof. .

【0005】[0005]

【課題を解決するための手段】上記目的は、少なくとも
基板の主面上にシリコンを主成分とする半導体薄膜と電
極とを備えてなる薄膜太陽電池において、上記半導体薄
膜の少なくとも一つの層が実質的にイントリンシックな
非晶質相とn型あるいはp型の結晶相とからなる混合層
であり、かつ、上記結晶相が上記基板の主表面と概略垂
直な柱状もしくは錐状の相を含むことを特徴とする薄膜
太陽電池とすること、および、上記の混合層の形成にお
いて、非晶質層もしくは微結晶層に全面もしくは部分的
にX線を照射することによって形成することを特徴とす
る薄膜太陽電池の製造方法とすることによって達成する
ことができる。すなわち、本発明は、半導体薄膜を非晶
質状態で形成し、その後、部分的に柱状もしくは錐状
の、キャリヤの走行性の良いp型あるいはn型の多結晶
もしくは単結晶シリコンを生成させることを骨子とす
る。
The above object is to provide a thin-film solar cell comprising a semiconductor thin film containing silicon as a main component and an electrode on at least the main surface of a substrate, and at least one layer of the semiconductor thin film is substantially formed. A mixed layer consisting of an intrinsic amorphous phase and an n-type or p-type crystal phase, and the crystal phase includes a columnar or pyramidal phase substantially perpendicular to the main surface of the substrate. And a thin film formed by irradiating the amorphous layer or the microcrystalline layer with X-rays in whole or in part in the formation of the above mixed layer. This can be achieved by using a method for manufacturing a solar cell. That is, according to the present invention, a semiconductor thin film is formed in an amorphous state, and then, a columnar or conical pyramid or n-type polycrystalline or single crystal silicon having good carrier mobility is produced. Is the main point.

【0006】[0006]

【作用】本発明の作用について図1、2によって説明す
る。従来の混相系薄膜太陽電池は、図2に示すように、
タイプの異なる二つのドーピング層3と5に挟まれ、発
電層4はイントリンシックの非晶質相41とイントリンシ
ックの結晶相42とからなっていた。しかし、この構造で
は、電界は上下のドーピング層3と5とによって形成さ
れ、キャリヤは本質的に非晶質相41と結晶相42のそれぞ
れの中を通って取り出される。このため、キャリヤ走行
性の良くない非晶質相41で発生したキャリヤは十分に取
り出すことができない状態にあった。これを改善するに
は、図1に示すように、イントリンシックの結晶相42を
ドーピングした結晶相43に代えれば良い。これによっ
て、非晶質相41と結晶相43との間に電界を形成し、キャ
リヤ発生率の良い非晶質相41で発生したキャリヤを、キ
ャリヤ走行性の良い結晶相43に選択的に誘導して走行さ
せることができる。
The operation of the present invention will be described with reference to FIGS. A conventional multi-phase thin film solar cell is, as shown in FIG.
The power generation layer 4 was sandwiched between two different types of doping layers 3 and 5, and the power generation layer 4 consisted of an intrinsic amorphous phase 41 and an intrinsic crystalline phase 42. However, in this structure, the electric field is formed by the upper and lower doping layers 3 and 5, and the carriers are extracted essentially through each of the amorphous phase 41 and the crystalline phase 42. Therefore, the carriers generated in the amorphous phase 41, which has a poor carrier running property, cannot be sufficiently taken out. To improve this, as shown in FIG. 1, the intrinsic crystal phase 42 may be replaced with a doped crystal phase 43. As a result, an electric field is formed between the amorphous phase 41 and the crystalline phase 43, and the carriers generated in the amorphous phase 41 with a good carrier generation rate are selectively induced to the crystalline phase 43 with a good carrier running property. Can be run.

【0007】また、従来、混相系薄膜シリコンの形成方
法としては、500℃以上の高温で形成し、その後プラズ
マ処理により非晶質相を高品質化する方法と、300℃程
度の比較的低温でプラズマ CVD 法により形成する方法
とが知られていたが、前者では非晶質相の品質が良くな
いことが、また、後者では結晶相が多結晶ではなく、結
晶粒径のより小さな(5〜15nm)微結晶しか形成できず、
この部分では少数キャリヤの走行性が極端に悪いことが
問題となっていた。特に、非晶質シリコンについては、
300℃以上の熱処理では大きく品質劣化することが、Y.L
aaziz,A.Bennouna and E.L.Ameziane,“The Effect of
Annealing on the Optical and Electrical Properties
of a‐Si:H Sputtered Films”: Solar Energy Mate
rials and Solar Cells,31 (1993) pp.23‐32 に示され
ており、300℃以上の熱処理工程を用いることは実用的
でない。これに対して、本発明では、X線照射による非
晶質相の低温結晶化を行うことによって、微結晶ではな
く、結晶粒径のより大きな多結晶相を高品質なイントリ
ンシック非晶質相の中に形成する。これによって、高効
率の混相系薄膜太陽電池の形成が可能になった。
Conventionally, as a method of forming a mixed phase thin film silicon, a method of forming it at a high temperature of 500 ° C. or higher and then improving the quality of an amorphous phase by plasma treatment, and a relatively low temperature of about 300 ° C. The method of forming by the plasma CVD method has been known, but in the former, the quality of the amorphous phase is not good, and in the latter, the crystalline phase is not polycrystalline and the crystal grain size is smaller (5 to 5). (15 nm) only fine crystals can be formed,
In this part, the traveling performance of minority carriers was extremely poor, which was a problem. Especially for amorphous silicon,
YL can cause significant quality deterioration in heat treatment at 300 ° C or higher.
aaziz, A.Bennouna and ELAmeziane, “The Effect of
Annealing on the Optical and Electrical Properties
of a‐Si: H Sputtered Films ”: Solar Energy Mate
rials and Solar Cells, 31 (1993) pp.23-32, it is not practical to use a heat treatment step of 300 ° C or higher. On the other hand, in the present invention, by performing low-temperature crystallization of the amorphous phase by X-ray irradiation, not a fine crystal but a polycrystalline phase having a larger crystal grain size can be used as a high-quality intrinsic amorphous phase. To form in. This has made it possible to form highly efficient mixed-phase thin-film solar cells.

【0008】[0008]

【実施例】以下、本発明の構成について実施例によって
具体的に説明する。
EXAMPLES The constitution of the present invention will be specifically described below with reference to examples.

【0009】〈実施例1〉本発明の一実施例について図
1によって説明する。まず、プラズマ CVD 法により、
金属基板2上にn型の微結晶シリコン3を30nm形成し
た。成膜にはモノシラン及びn型のドーピングガスとし
て水素希釈のホスフィンを用いた。次に、400℃でX線
照射を7分間行い、微結晶シリコンの結晶度向上を行っ
た。X線は凡そ3keVに強度分布のピークを有する連続
X線である。また、試料表面に照射されたフォトン数
は、ピークエネルギー付近で1×1017/cm2であった。こ
の試料についてラマン分光法により結晶評価を行ったと
ころ、Si‐Si結合による結晶特有のピークしか見られ
ず、結晶化が進んでいることが確認された。また、この
ときの薄膜の結晶粒径は平均100nmであり、導電率は0.5
(Ωcm)-1であった。
<Embodiment 1> An embodiment of the present invention will be described with reference to FIG. First, by the plasma CVD method,
An n-type microcrystalline silicon 3 having a thickness of 30 nm was formed on the metal substrate 2. For film formation, monosilane and phosphine diluted with hydrogen as an n-type doping gas were used. Next, X-ray irradiation was performed at 400 ° C. for 7 minutes to improve the crystallinity of the microcrystalline silicon. The X-ray is a continuous X-ray having a peak of intensity distribution at about 3 keV. The number of photons irradiated on the sample surface was 1 × 10 17 / cm 2 near the peak energy. Crystallographic evaluation of this sample was conducted by Raman spectroscopy, and it was confirmed that only a peak peculiar to the crystal due to the Si-Si bond was observed and that crystallization proceeded. The crystal grain size of the thin film at this time is 100 nm on average, and the conductivity is 0.5.
It was (Ωcm) -1 .

【0010】次に、プラズマ CVD 法により半導体薄膜
4を300nm形成した。成膜には、モノシラン及びドーピ
ングガスとして100ppmのホスフィン(水素希釈)を用い
た。このとき、ガス中での Si : P が1:2×10-6
なるようにガス流量を設定した。次に、0.3μmφの開口
部を縦横何れにも3μm間隔で有するX線用マスクを用
いて、300℃で5分間のX線照射を行った。該照射後、
顕微ラマン分光法によりマッピング測定を行ったとこ
ろ、非晶質領域41中に1μmφ以下の結晶領域43がマス
クパターン通りの位置に形成されていることが確認され
た。このとき、結晶領域43はn型、非晶質領域41は実質
的にi型であった。すなわち、縦方向にはn型結晶、横
方向にはi型非晶質としての性質を示す薄膜となった。
縦、横方向の導電率の評価から、結晶領域43は0.3(Ωc
m)-1、非晶質領域41は2×10-10(Ωcm)-1程度の導電率
を有しているものと推定される。
Next, a semiconductor thin film 4 having a thickness of 300 nm was formed by the plasma CVD method. For film formation, monosilane and 100 ppm phosphine (diluted with hydrogen) as a doping gas were used. At this time, the gas flow rate was set so that Si: P in the gas was 1: 2 × 10 −6 . Next, X-ray irradiation was carried out at 300 ° C. for 5 minutes using an X-ray mask having 0.3 μmφ openings at 3 μm intervals in the vertical and horizontal directions. After the irradiation,
Mapping measurement by microscopic Raman spectroscopy confirmed that a crystalline region 43 of 1 μmφ or less was formed in the amorphous region 41 at a position according to the mask pattern. At this time, the crystalline region 43 was n-type and the amorphous region 41 was substantially i-type. That is, a thin film having the properties of n-type crystal in the vertical direction and i-type amorphous in the horizontal direction was obtained.
From the evaluation of the electrical conductivity in the vertical and horizontal directions, the crystalline region 43 was 0.3 (Ωc
It is estimated that m) −1 and the amorphous region 41 have a conductivity of about 2 × 10 −10 (Ωcm) −1 .

【0011】次に、プラズマ CVD 法により、p型非晶
質シリコンカーバイド5を20nm形成した。成膜には、モ
ノシラン、メタン及びp型のドーピングガスとして水素
希釈のジボランを用いた。その後、蒸着法によって、透
明電極層6として In2O3+ SnO2(以下、ITO と称する)
を80nm、集電電極7としてアルミニウムを800nm形成し
た。
Next, a p-type amorphous silicon carbide 5 having a thickness of 20 nm was formed by the plasma CVD method. For the film formation, monosilane, methane, and diborane diluted with hydrogen as a p-type doping gas were used. Then, In 2 O 3 + SnO 2 (hereinafter referred to as ITO) is formed as the transparent electrode layer 6 by the vapor deposition method.
Of 80 nm and aluminum of 800 nm as the collecting electrode 7 were formed.

【0012】得られた試料に太陽光照射1を行い、短絡
電流19mA/cm2、開放端電圧0.75V、曲線因子0.71の太陽
電池特性を確認した。また、1か月間の太陽光照射後に
おいても、短絡電流、曲線因子の低下は8%以下であ
り、通常の非晶質太陽電池に比べて劣化の少ないことが
確認された。素子特性において短絡電流が比較的大きい
ことは、混合層中のバンドギャップの小さな結晶相での
キャリヤの発生が寄与しているものと考えられる。この
ことは、開放端電圧が若干低いことから裏付けられる。
The obtained sample was irradiated with sunlight 1 and the solar cell characteristics of a short circuit current of 19 mA / cm 2 , an open end voltage of 0.75 V and a fill factor of 0.71 were confirmed. Further, even after irradiation of sunlight for one month, the short-circuit current and the reduction of the fill factor were 8% or less, and it was confirmed that the deterioration was less than that of a normal amorphous solar cell. The relatively large short-circuit current in the device characteristics is considered to be due to the generation of carriers in the crystal phase having a small band gap in the mixed layer. This is supported by the fact that the open circuit voltage is slightly low.

【0013】〈実施例2〉実施例1の場合と全く同様に
してn層形成までを行い、次に、プラズマ CVD法により
半導体薄膜4を300nm形成した。成膜にはモノシランの
みを用いた。次に、0.5μmφの開口部を縦横何れにも5
μm間隔で有するX線用マスクを用い、リンイオンの注
入をピーク位置で1017/cm3となるように行い、引続き、
300℃で5分間のX線照射を行った。このとき、水素ガ
スを導入した。これにより膜質が改善された。照射後、
顕微ラマン分光法によりマッピング測定を行ったとこ
ろ、1μmφ以下の結晶領域43がマスクパターン通りの
位置に形成されていることが確認された。次に、実施例
1の場合と同様にして、p層形成を行った。最後に、蒸
着法によって、透明電極層6として ITO を80nm、集電
電極7としてアルミニウムを800nm形成した。以上のよ
うにして得られた試料については、さらに曲線因子の向
上が認められた。
Example 2 The n layer was formed in the same manner as in Example 1, and then the semiconductor thin film 4 was formed to 300 nm by the plasma CVD method. Only monosilane was used for film formation. Next, make 0.5μmφ opening 5
Using an X-ray mask having an interval of μm, phosphorus ions were implanted at a peak position of 10 17 / cm 3, and then,
X-ray irradiation was performed at 300 ° C. for 5 minutes. At this time, hydrogen gas was introduced. This improved the film quality. After irradiation,
Mapping measurement by microscopic Raman spectroscopy confirmed that a crystal region 43 of 1 μmφ or less was formed at a position according to the mask pattern. Then, a p-layer was formed in the same manner as in Example 1. Finally, ITO was formed to a thickness of 80 nm as the transparent electrode layer 6 and aluminum was formed to a thickness of 800 nm as the collector electrode 7 by the vapor deposition method. For the samples obtained as described above, the fill factor was further improved.

【0014】〈実施例3〉本発明のさらに他の実施例に
ついて図3によって説明する。集電電極として部分的に
金属層を有する(図では省略)ガラス基板8上に、化学気
相成長法によって透明電極9として Sb ドープの SnO2
を1μm形成した。これによって、サブミクロンオーダ
ーの凹凸のある表面形状を得た。
<Embodiment 3> Still another embodiment of the present invention will be described with reference to FIG. On a glass substrate 8 having a metal layer partially as a collector electrode (not shown), Sb-doped SnO 2 was used as a transparent electrode 9 by a chemical vapor deposition method.
Of 1 μm was formed. As a result, a surface shape having irregularities on the order of submicrons was obtained.

【0015】次に、熱 CVD 法によりn型の多結晶シリ
コン10を20nm形成した。成膜にはモノシラン及びn型の
ドーピングガスとして水素希釈のホスフィンを用いた。
次に、プラズマ CVD 法によって半導体薄膜11を300nm形
成した。成膜には、モノシラン及びドーピングガスとし
て10ppmのジボラン(水素希釈)を用いた。このとき、ガ
ス中での Si : B が1:7×10-6となるようにガス流
量を設定した。次に、全面でのX線照射を250℃で5分
間行った。このとき、水素ガスを導入し、1Torrの圧力
下でプラズマ処理を行った。これによって、結晶粒界が
パッシベーションされ、膜質が大きく改善された。上記
X線照射後顕微ラマン分光法によりマッピング測定を行
ったところ、非晶質領域110中にサブミクロンの間隔で
1μmφ以下の結晶領域111が SnO2結晶の突起部分に選
択的に形成されていることが確認された。このとき、結
晶領域111はp型、非結晶領域110は実質的にi型であっ
た。次に、熱 CVD 法によりp型の多結晶シリコン12を
厚さ10nm形成した。このとき、成膜にはモノシラン及び
p型のドーピングガスとして水素希釈のジボランを用い
た。最後に、真空蒸着法により、裏面電極13としてAl
を1μm厚さに形成した。
Next, an n-type polycrystalline silicon 10 having a thickness of 20 nm was formed by the thermal CVD method. For film formation, monosilane and phosphine diluted with hydrogen as an n-type doping gas were used.
Next, a semiconductor thin film 11 having a thickness of 300 nm was formed by the plasma CVD method. For film formation, monosilane and 10 ppm diborane (diluted with hydrogen) as a doping gas were used. At this time, the gas flow rate was set so that Si: B in the gas was 1: 7 × 10 −6 . Next, the entire surface was irradiated with X-rays at 250 ° C. for 5 minutes. At this time, hydrogen gas was introduced and plasma treatment was performed under a pressure of 1 Torr. As a result, the grain boundaries were passivated and the film quality was greatly improved. Mapping measurement by microscopic Raman spectroscopy after the above X-ray irradiation revealed that crystalline regions 111 of 1 μmφ or less were formed selectively in the protrusions of the SnO 2 crystal in the amorphous region 110 at submicron intervals. It was confirmed. At this time, the crystalline region 111 was p-type and the non-crystalline region 110 was substantially i-type. Next, p-type polycrystalline silicon 12 was formed to a thickness of 10 nm by the thermal CVD method. At this time, monosilane and diborane diluted with hydrogen were used as a p-type doping gas for the film formation. Finally, the back electrode 13 is made of Al by vacuum deposition.
Was formed to a thickness of 1 μm.

【0016】このようにして得られた試料は、凹凸形状
による光の散乱閉じ込め効果が顕著であり、短絡電流22
mA/cm2、開放端電圧0.72V、曲線因子0.70の太陽電池特
性が確認された。
The sample thus obtained has a remarkable light confinement effect due to the uneven shape, and the short circuit current 22
The solar cell characteristics of mA / cm 2 , open-ended voltage 0.72V and fill factor 0.70 were confirmed.

【0017】〈実施例4〉本発明のさらに他の実施例に
ついて図4によって説明する。プラズマ CVD 法によ
り、金属基板14上にn型の微結晶シリコン15を30nm形成
した。形成方法は実施例1のn層形成時と全く同様とし
た。次に、プラズマ CVD法により、半導体薄膜16を900n
m形成した。成膜には、モノシラン及びドーピングガス
として10ppmのホスフィン(水素希釈)を用いた。このと
き、Si : P が1:2×10-6となるようにガス流量を設
定した。次に、0.5μmφの開口部を、縦、横何れにも10
μm間隔で有するX線用マスクを用い、X線照射を300℃
で5分間行った。さらに、上記のX線用マスクを、先の
X線照射時の開口部からX、Y軸何れも5μm移動し、
ボロンイオンの注入を最高濃度で1017/cm3となるように
行い、引続き、X線照射を300℃で5分間行った。照射
後、顕微ラマン分光法によりマッピング測定を行ったと
ころ、非晶質領域161中に1μmφ以下のn型結晶領域16
2とp型結晶領域163とがマスクパターン通りの位置に形
成されていることが確認された。すなわち、縦方向のみ
でなく横方向にもpin接合としての性質を示す薄膜で
あることが確認された。
<Embodiment 4> Still another embodiment of the present invention will be described with reference to FIG. 30 nm of n-type microcrystalline silicon 15 was formed on the metal substrate 14 by the plasma CVD method. The formation method was exactly the same as in forming the n-layer of Example 1. Next, the semiconductor thin film 16 is deposited to 900n by plasma CVD.
m formed. For film formation, monosilane and 10 ppm phosphine (diluted with hydrogen) as a doping gas were used. At this time, the gas flow rate was set so that Si: P was 1: 2 × 10 −6 . Next, make a 0.5 μmφ opening 10
X-ray irradiation is performed at 300 ° C using an X-ray mask with μm intervals.
For 5 minutes. Furthermore, the above X-ray mask is moved by 5 μm in both the X and Y axes from the opening during the previous X-ray irradiation,
Boron ions were implanted so that the maximum concentration was 10 17 / cm 3, and then X-ray irradiation was performed at 300 ° C. for 5 minutes. After irradiation, a mapping measurement was performed by microscopic Raman spectroscopy. As a result, the n-type crystal region 16 of 1 μmφ or less was formed in the amorphous region 161.
It was confirmed that 2 and the p-type crystal region 163 were formed at the positions according to the mask pattern. That is, it was confirmed that the thin film has properties as a pin junction not only in the vertical direction but also in the horizontal direction.

【0018】次に、プラズマ CVD 法により、p型の非
晶質シリコンカーバイド17を20nm形成した。成膜には、
モノシラン、メタン及びp型のドーピングガスとして水
素希釈のジボランを用いた。その後、真空蒸着法によ
り、透明電極18として ITO を80nm、及び集電電極19と
してアルミニウムを1μm厚さに形成した。
Next, a p-type amorphous silicon carbide 17 having a thickness of 20 nm was formed by the plasma CVD method. For film formation,
Monosilane, methane, and diborane diluted with hydrogen were used as a p-type doping gas. After that, ITO was formed to a thickness of 80 nm as the transparent electrode 18 and aluminum was formed to a thickness of 1 μm as the collector electrode 19 by the vacuum deposition method.

【0019】得られた試料に太陽光照射1を行い、実施
例1の場合とほぼ同様の太陽電池特性を得た。また、1
か月の太陽光照射後の光電変換効率の低下は5%以下で
あり、劣化が極めて小さいことを確認した。これは、横
方向にpn接合が形成されていることが寄与しているも
のと考えられる。
The obtained sample was irradiated with sunlight 1 to obtain almost the same solar cell characteristics as in Example 1. Also, 1
It was confirmed that the deterioration in photoelectric conversion efficiency after 5 months of solar irradiation was 5% or less, and the deterioration was extremely small. It is considered that this is attributed to the fact that the pn junction is formed in the lateral direction.

【0020】〈実施例5〉本発明のさらに他の実施例に
ついて図5によって説明する。プラズマ CVD 法によ
り、金属基板20上にn型の微結晶21を30nm形成した。形
成方法は、実施例1のn層形成時と全く同様とした。次
に、プラズマ CVD 法により半導体薄膜22を900nm形成し
た。成膜には、モノシラン及びドーピングガスとして10
ppmのホスフィン(水素希釈)を用いた。このとき、ガス
中の Si : P が1:2×10-6となるようにガス流量を
設定した。さらに、成膜中、500nm成膜時でドーピング
ガスの導入を止め、その後、モノシランのみで成膜し
た。次に、0.5μmφの開口部を縦、横何れにも10μm間
隔で有するマスクを用い、ボロンイオンの注入を最高濃
度で1017/cm3、かつ、注入領域がn型の微結晶シリコン
21まで達しないように行った。その後、0.5μmφの開口
部を縦、横何れにも5μm間隔で有するマスクを用い、
X線照射を200℃で3分間行った。上記照射後、顕微ラ
マン分光法によりマッピング測定を行ったところ、非晶
質領域221中に1μmφ以下のn型結晶領域222とp型結
晶領域223がマスクパターン通りの位置に形成されてい
ることが確認された。すなわち、縦方向のみでなく横方
向にもpin接合としての性質を示す薄膜となっている
ことが知られた。
<Embodiment 5> Still another embodiment of the present invention will be described with reference to FIG. An n-type microcrystal 21 having a thickness of 30 nm was formed on the metal substrate 20 by the plasma CVD method. The formation method was exactly the same as in forming the n-layer of Example 1. Next, a semiconductor thin film 22 having a thickness of 900 nm was formed by the plasma CVD method. For film formation, monosilane and a doping gas of 10
ppm phosphine (diluted with hydrogen) was used. At this time, the gas flow rate was set so that Si: P in the gas was 1: 2 × 10 −6 . Further, during the film formation, the introduction of the doping gas was stopped at the time of forming the film with a thickness of 500 nm, and then the film was formed only with monosilane. Next, using a mask having 0.5 μmφ openings vertically and horizontally at intervals of 10 μm, boron ions are implanted at a maximum concentration of 10 17 / cm 3 , and the implantation region is n-type microcrystalline silicon.
I went so as not to reach 21. After that, using a mask having 0.5 μmφ openings at 5 μm intervals vertically and horizontally,
X-ray irradiation was performed at 200 ° C. for 3 minutes. After the above-mentioned irradiation, mapping measurement was performed by microscopic Raman spectroscopy. As a result, it was found that an n-type crystal region 222 and a p-type crystal region 223 having a diameter of 1 μmφ or less were formed in the amorphous region 221 at the positions according to the mask pattern. confirmed. That is, it has been known that the thin film has a property as a pin junction not only in the vertical direction but also in the horizontal direction.

【0021】次に、プラズマ CVD 法により、p型の非
晶質シリコンカーバイド23を20nm形成した。成膜には、
モノシラン、メタン及びp型のドーピングガスとして水
素希釈のジボランを用いた。その後、真空蒸着法によ
り、透明電極として ITO を80nm、集電電極25としてア
ルミニウムを1μm厚さに形成した。
Next, a p-type amorphous silicon carbide 23 having a thickness of 20 nm was formed by the plasma CVD method. For film formation,
Monosilane, methane, and diborane diluted with hydrogen were used as a p-type doping gas. After that, ITO was formed to a thickness of 80 nm as a transparent electrode and aluminum was formed to a thickness of 1 μm as a collector electrode 25 by a vacuum evaporation method.

【0022】上記により得られた試料に太陽光照射1を
行ったところ、太陽電池特性は、短絡電流は実施例1の
場合とほぼ同一であったが、開放端電圧、曲線因子はそ
れぞれ向上し、0.82V、0.77の値を得た。
When the sample obtained as described above was irradiated with sunlight 1, the solar cell characteristics were the same as in Example 1 in terms of short-circuit current, but the open-ended voltage and fill factor were improved. , 0.82V and 0.77 were obtained.

【0023】なお、混相領域における結晶相としては、
上記実施例中で説明したもののみでなく、サブミクロン
領域から100μm程度まで膜質に応じて変化させてもよい
し、あるいは、結晶相を5μmφ程度に大きくしてもよ
いし、さらに、p型相、n型相を場所的にランダムに分
散させてもよいことは言うまでもない。また、上記例に
おいては薄膜太陽電池の例として非晶質 Si 系について
のみ示したが、シリコンを主体とする合金系、例えば S
iC、SiGe でもよい。また、単接合型のみでなく、タン
デム型やマルチジャンクション型にも適用でき、例えば
結晶シリコン太陽電池上に形成しても有効であることは
言うまでもない。
As the crystal phase in the mixed phase region,
Not only the ones described in the above embodiments, but may be changed from the submicron region to about 100 μm depending on the film quality, or the crystal phase may be increased to about 5 μmφ, and further, the p-type phase may be used. Needless to say, the n-type phase may be randomly dispersed in places. In the above example, only an amorphous Si type is shown as an example of a thin film solar cell, but an alloy type mainly containing silicon, such as S
It may be iC or SiGe. Further, it is needless to say that the present invention can be applied not only to the single-junction type, but also to the tandem type and the multi-junction type, and is effective even if formed on a crystalline silicon solar cell, for example.

【0024】[0024]

【発明の効果】以上述べてきたように、薄膜太陽電池及
びその製造方法を本発明構成の太陽電池及びその製造方
法とすることによって、従来技術の有していた課題を解
決して、単結晶シリコン太陽電池に匹敵する高効率、低
コストの薄膜太陽電池及びその製造方法を提供すること
ができた。
As described above, the thin film solar cell and the method for producing the same are used as the solar cell having the constitution of the present invention and the method for producing the same, thereby solving the problems of the prior art, and thereby producing a single crystal. It was possible to provide a high-efficiency, low-cost thin-film solar cell comparable to a silicon solar cell and a method for manufacturing the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明薄膜太陽電池の一実施例の概略構成を示
す断面図。
FIG. 1 is a cross-sectional view showing a schematic configuration of an embodiment of the thin film solar cell of the present invention.

【図2】従来技術の薄膜太陽電池の概略構成を示す断面
図。
FIG. 2 is a cross-sectional view showing a schematic configuration of a conventional thin film solar cell.

【図3】本発明薄膜太陽電池の他の実施例の概略構成を
示す断面図。
FIG. 3 is a sectional view showing a schematic configuration of another embodiment of the thin film solar cell of the present invention.

【図4】本発明薄膜太陽電池のさらに他の実施例の概略
構成を示す断面図。
FIG. 4 is a sectional view showing a schematic configuration of still another embodiment of the thin film solar cell of the present invention.

【図5】本発明薄膜太陽電池のさらに他の実施例の概略
構成を示す断面図。
FIG. 5 is a sectional view showing a schematic configuration of still another embodiment of the thin film solar cell of the present invention.

【符号の説明】[Explanation of symbols]

1…太陽光照射、2…金属基板、3…微結晶シリコン、
4…半導体薄膜、5…非晶質シリコンカーバイド、6…
透明電極層、7…集電電極、8…ガラス基板、9…透明
電極、10…n型多結晶シリコン、11…半導体薄膜、12…
p型多結晶シリコン、13…裏面電極、14…金属基板、15
…微結晶シリコン、16…半導体薄膜、17…非晶質シリコ
ンカーバイド、18…透明電極層、19…集電電極、20…金
属基板、21…微結晶シリコン、22…半導体薄膜、23…非
晶質シリコンカーバイド、24…透明電極層、25…集電電
極、41…非晶質領域、42…結晶領域、43…結晶領域、11
0…非晶質領域、111…結晶領域、161…非晶質領域、162
…n型結晶領域、163…p型結晶領域、221…非晶質領
域、222…n型結晶領域、223…p型結晶領域。
1 ... Sunlight irradiation, 2 ... Metal substrate, 3 ... Microcrystalline silicon,
4 ... Semiconductor thin film, 5 ... Amorphous silicon carbide, 6 ...
Transparent electrode layer, 7 ... Current collecting electrode, 8 ... Glass substrate, 9 ... Transparent electrode, 10 ... N-type polycrystalline silicon, 11 ... Semiconductor thin film, 12 ...
p-type polycrystalline silicon, 13 ... back electrode, 14 ... metal substrate, 15
... microcrystalline silicon, 16 ... semiconductor thin film, 17 ... amorphous silicon carbide, 18 ... transparent electrode layer, 19 ... collector electrode, 20 ... metal substrate, 21 ... microcrystalline silicon, 22 ... semiconductor thin film, 23 ... amorphous Silicon carbide, 24 ... Transparent electrode layer, 25 ... Current collecting electrode, 41 ... Amorphous region, 42 ... Crystal region, 43 ... Crystal region, 11
0 ... Amorphous region, 111 ... Crystal region, 161 ... Amorphous region, 162
... n-type crystal region, 163 ... p-type crystal region, 221 ... amorphous region, 222 ... n-type crystal region, 223 ... p-type crystal region.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】少なくとも基板の主面上にシリコンを主成
分とする半導体薄膜と電極とを備えてなる薄膜太陽電池
において、上記半導体薄膜の少なくとも一つの層が実質
的にイントリンシックな非晶質相とn型あるいはp型の
結晶相とからなる混合層であり、かつ、上記結晶相が上
記基板の主表面と概略垂直な柱状もしくは錐状の相を含
むことを特徴とする薄膜太陽電池。
1. A thin-film solar cell comprising a semiconductor thin film containing silicon as a main component and an electrode on at least a main surface of a substrate, wherein at least one layer of the semiconductor thin film is substantially intrinsic amorphous. A thin-film solar cell, which is a mixed layer of a phase and an n-type or p-type crystal phase, and the crystal phase includes a columnar or pyramidal phase substantially perpendicular to the main surface of the substrate.
【請求項2】少なくとも基板の主面上に、シリコンを主
成分とするn型あるいはp型の多結晶もしくは微結晶の
半導体層、上記の混合層、シリコンを主成分とするp型
あるいはn型の多結晶もしくは微結晶の半導体層を順次
積層してなることを特徴とする薄膜太陽電池。
2. An n-type or p-type polycrystalline or microcrystalline semiconductor layer containing silicon as a main component, the above-mentioned mixed layer, and p-type or n type containing silicon as a main component on at least the main surface of the substrate. 2. A thin-film solar cell comprising a polycrystalline or microcrystalline semiconductor layer of 1.
【請求項3】上記半導体薄膜に接する少なくとも一方
に、凹凸形状化した表面を有する金属薄膜もしくは導電
性酸化物からなる電極層を形成してなることを特徴とす
る請求項1記載の薄膜太陽電池。
3. The thin film solar cell according to claim 1, wherein an electrode layer made of a metal thin film or a conductive oxide having an uneven surface is formed on at least one of the semiconductor thin films in contact with the semiconductor thin film. .
【請求項4】半導体薄膜中の上記混合層が、面内方向に
おいて部分的にn型あるいはp型のドーパントを導入し
た混合層であることを特徴とする請求項1記載の薄膜太
陽電池。
4. The thin-film solar cell according to claim 1, wherein the mixed layer in the semiconductor thin film is a mixed layer in which an n-type or p-type dopant is partially introduced in the in-plane direction.
【請求項5】半導体薄膜中の上記混合層が、n型もしく
はp型の両タイプの結晶相を有する層であることを特徴
とする請求項1記載の薄膜太陽電池。
5. The thin film solar cell according to claim 1, wherein the mixed layer in the semiconductor thin film is a layer having both n-type and p-type crystal phases.
【請求項6】半導体薄膜中の上記混合層が、n型もしく
はp型の両タイプの結晶相を有し、該層内に概略横方向
のpnまたはpin接合が形成されている層であること
を特徴とする請求項1記載の薄膜太陽電池。
6. The mixed layer in a semiconductor thin film is a layer having both n-type and p-type crystal phases, in which a substantially lateral pn or pin junction is formed. The thin film solar cell according to claim 1, wherein
【請求項7】上記請求項1記載の混合層の形成におい
て、非晶質層もしくは微結晶層に全面もしくは部分的に
X線を照射することによって形成することを特徴とする
薄膜太陽電池の製造方法。
7. A method of manufacturing a thin film solar cell, wherein the mixed layer according to claim 1 is formed by irradiating an amorphous layer or a microcrystalline layer with X-rays in whole or in part. Method.
【請求項8】上記X線の照射が、基板を300℃以下に保
ちながら行う照射であることを特徴とする請求項7記載
の薄膜太陽電池の製造方法。
8. The method of manufacturing a thin-film solar cell according to claim 7, wherein the X-ray irradiation is performed while the substrate is kept at 300 ° C. or lower.
【請求項9】上記X線の照射が、水素ガス、ヘリウムガ
ス、ハロゲンガス、ハロゲン水素化物の何れかもしくは
その混合物を導入しながら行う照射であることを特徴と
する請求項7記載の薄膜太陽電池の製造方法。
9. The thin-film sun according to claim 7, wherein the X-ray irradiation is performed while introducing any one of hydrogen gas, helium gas, halogen gas, halogen hydride or a mixture thereof. Battery manufacturing method.
【請求項10】上記のガスを導入しながら行うX線照射
が、上記導入ガスをプラズマ放電しながら行う照射であ
ることを特徴とする請求項9記載の薄膜太陽電池の製造
方法。
10. The method for manufacturing a thin-film solar cell according to claim 9, wherein the X-ray irradiation performed while introducing the gas is irradiation performed while plasma-discharging the introduced gas.
JP6091033A 1994-04-28 1994-04-28 Thin film solar cell and method of manufacturing the same Expired - Fee Related JP2699867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6091033A JP2699867B2 (en) 1994-04-28 1994-04-28 Thin film solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6091033A JP2699867B2 (en) 1994-04-28 1994-04-28 Thin film solar cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07297428A true JPH07297428A (en) 1995-11-10
JP2699867B2 JP2699867B2 (en) 1998-01-19

Family

ID=14015207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6091033A Expired - Fee Related JP2699867B2 (en) 1994-04-28 1994-04-28 Thin film solar cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2699867B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078300A1 (en) * 2002-03-18 2003-09-25 Ki Bang Lee Microbattery and systems using microbattery
JP2009054907A (en) * 2007-08-29 2009-03-12 Mitsubishi Electric Corp Hetero-junction element
JP2010010667A (en) * 2008-05-30 2010-01-14 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and method for manufacturing the same
WO2009126943A3 (en) * 2008-04-11 2010-01-14 Thin Film Devices, Inc. Flexible photovoltaic device
KR100975506B1 (en) * 2008-06-18 2010-08-11 경북대학교 산학협력단 Method for producing solar battery
WO2013038768A1 (en) * 2011-09-12 2013-03-21 三洋電機株式会社 Solar cell and method for manufacturing same
KR101303471B1 (en) * 2009-09-09 2013-09-05 엘지디스플레이 주식회사 Thin Film Solar Cells And Manufacturing Method For The Same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184073A (en) * 1984-10-01 1986-04-28 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPH0346377A (en) * 1989-07-14 1991-02-27 Sanyo Electric Co Ltd Solar cell
JPH0458193A (en) * 1990-06-26 1992-02-25 Toshiba Corp Neutron absorbing element for reactor control rod

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184073A (en) * 1984-10-01 1986-04-28 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPH0346377A (en) * 1989-07-14 1991-02-27 Sanyo Electric Co Ltd Solar cell
JPH0458193A (en) * 1990-06-26 1992-02-25 Toshiba Corp Neutron absorbing element for reactor control rod

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078300A1 (en) * 2002-03-18 2003-09-25 Ki Bang Lee Microbattery and systems using microbattery
JP2009054907A (en) * 2007-08-29 2009-03-12 Mitsubishi Electric Corp Hetero-junction element
WO2009126943A3 (en) * 2008-04-11 2010-01-14 Thin Film Devices, Inc. Flexible photovoltaic device
JP2010010667A (en) * 2008-05-30 2010-01-14 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and method for manufacturing the same
KR100975506B1 (en) * 2008-06-18 2010-08-11 경북대학교 산학협력단 Method for producing solar battery
KR101303471B1 (en) * 2009-09-09 2013-09-05 엘지디스플레이 주식회사 Thin Film Solar Cells And Manufacturing Method For The Same
WO2013038768A1 (en) * 2011-09-12 2013-03-21 三洋電機株式会社 Solar cell and method for manufacturing same
JPWO2013038768A1 (en) * 2011-09-12 2015-03-23 三洋電機株式会社 Solar cell and manufacturing method thereof

Also Published As

Publication number Publication date
JP2699867B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
Suemasu et al. Exploring the potential of semiconducting BaSi2 for thin-film solar cell applications
US9812599B2 (en) Method of stabilizing hydrogenated amorphous silicon and amorphous hydrogenated silicon alloys
Shah et al. Material and solar cell research in microcrystalline silicon
KR100965778B1 (en) Polycrystalline Silicon Solar Cell Having High Efficiency
Schropp et al. Amorphous silicon, microcrystalline silicon, and thin-film polycrystalline silicon solar cells
US20080121280A1 (en) Method for the production of photovoltaic cells
CN102804392A (en) Semiconductor optical detector structure
US4398054A (en) Compensated amorphous silicon solar cell incorporating an insulating layer
KR20090065895A (en) Hetero-junction silicon solar cell and fabrication method thereof
JP2006319335A (en) Surface passivated photovoltaic device
JP2001267611A (en) Thin-film solar battery and its manufacturing method
US4520380A (en) Amorphous semiconductors equivalent to crystalline semiconductors
US4396793A (en) Compensated amorphous silicon solar cell
JP2918345B2 (en) Photovoltaic element
US4710786A (en) Wide band gap semiconductor alloy material
US4415760A (en) Amorphous silicon solar cells incorporating an insulating layer in the body of amorphous silicon and a method of suppressing the back diffusion of holes into an N-type region
JP2699867B2 (en) Thin film solar cell and method of manufacturing the same
TWI608629B (en) Solar cells and methods of fabrication thereof
JP2675754B2 (en) Solar cell
JPH04290274A (en) Photoelectric transducer
JPS6050972A (en) Thin film solar battery
Shekhar CHARACTERIZATION OF SILICON SOLAR CELL
JP3753556B2 (en) Photoelectric conversion element and manufacturing method thereof
Kale Passivated Contacts for High Efficiency Monocrystalline Silicon Solar Cells
Salimi et al. Silicon heterojunction solar cell efficiency improvement with wide optical band gap amorphous silicon carbide emitter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370