JP5502210B2 - Microcrystalline semiconductor thin film manufacturing method - Google Patents

Microcrystalline semiconductor thin film manufacturing method Download PDF

Info

Publication number
JP5502210B2
JP5502210B2 JP2012549654A JP2012549654A JP5502210B2 JP 5502210 B2 JP5502210 B2 JP 5502210B2 JP 2012549654 A JP2012549654 A JP 2012549654A JP 2012549654 A JP2012549654 A JP 2012549654A JP 5502210 B2 JP5502210 B2 JP 5502210B2
Authority
JP
Japan
Prior art keywords
thin film
sih
gas
film
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012549654A
Other languages
Japanese (ja)
Other versions
JPWO2012086242A1 (en
Inventor
睦 津田
謙 今村
正和 滝
知弘 池田
伸夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012549654A priority Critical patent/JP5502210B2/en
Publication of JPWO2012086242A1 publication Critical patent/JPWO2012086242A1/en
Application granted granted Critical
Publication of JP5502210B2 publication Critical patent/JP5502210B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
    • H01L31/1816Special manufacturing methods for microcrystalline layers, e.g. uc-SiGe, uc-SiC

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、微結晶半導体薄膜製造方法に関し、特に、シリコン系薄膜太陽電池の光電変換層等に用いられる微結晶シリコンや微結晶シリコンゲルマニウム等の微結晶半導体薄膜製造方法に関するものである。   The present invention relates to a method for producing a microcrystalline semiconductor thin film, and more particularly to a method for producing a microcrystalline semiconductor thin film such as microcrystalline silicon or microcrystalline silicon germanium used for a photoelectric conversion layer or the like of a silicon-based thin film solar cell.

シリコン系薄膜太陽電池の光電変換層の1つとして、例えば微結晶シリコン薄膜が広く用いられている。この微結晶シリコン膜の製造方法としては、シラン(SiH4)と水素(H2)との混合ガスを用いたプラズマCVD(Chemical Vapor Deposition)法により低温(〜200℃)下でガラス基板上に堆積させるのが一般的である(例えば、特許文献1、非特許文献1参照)。As one of photoelectric conversion layers of silicon-based thin film solar cells, for example, a microcrystalline silicon thin film is widely used. As a method for producing this microcrystalline silicon film, a plasma CVD (Chemical Vapor Deposition) method using a mixed gas of silane (SiH 4 ) and hydrogen (H 2 ) is used on a glass substrate at a low temperature (˜200 ° C.). It is common to deposit (for example, refer patent document 1, nonpatent literature 1).

プラズマCVD装置では、真空容器内に、放電プラズマを発生させるプラズマ電極と基板を設置するステージ電極(電気的に接地されている)とが対向して配置されている。微結晶シリコン薄膜を製造する場合は、この真空容器にシラン(SiH4)と水素(H2)との混合ガスを一定流量で供給し、真空容器内のガス圧力を所望の値に調整する。その後、プラズマ電極にRF(Radio Frequency:10〜30MHz)あるいはVHF(Very High Frequency:30〜300MHz)帯の高周波電圧を印加し、プラズマ電極とステージ電極とのギャップ間(ギャップ長:3〜10mm)に低圧グロー放電を起こさせ、SiH4/H2混合プラズマを発生させる。In a plasma CVD apparatus, a plasma electrode that generates discharge plasma and a stage electrode (electrically grounded) on which a substrate is placed are disposed in a vacuum container so as to face each other. When manufacturing a microcrystalline silicon thin film, a mixed gas of silane (SiH 4 ) and hydrogen (H 2 ) is supplied to the vacuum vessel at a constant flow rate, and the gas pressure in the vacuum vessel is adjusted to a desired value. Thereafter, a high frequency voltage of RF (Radio Frequency: 10 to 30 MHz) or VHF (Very High Frequency: 30 to 300 MHz) band is applied to the plasma electrode, and the gap between the plasma electrode and the stage electrode (gap length: 3 to 10 mm) A low-pressure glow discharge is caused to generate SiH 4 / H 2 mixed plasma.

この時、プラズマ中で生成される化学的に活性なSiH、SiH2、SiH分子、またはSi、H原子が基板にまで輸送され、これらが表面に付着・反応することにより、基板上にはシリコン薄膜が堆積する。At this time, chemically active SiH 3 , SiH 2 , SiH molecules, or Si, H atoms generated in the plasma are transported to the substrate, and these adhere to and react with the surface. A silicon thin film is deposited.

一般的に、このプラズマCVD法で微結晶シリコン薄膜を堆積するには、「高圧枯渇法」と呼ばれる成膜手法が広く用いられている(たとえば、特許文献1、非特許文献1参照)。具体的には、比較的高いガス圧力(〜数100Pa以上)と高い高周波電力(〜数100W以上)の条件下で、供給するSiH4ガス流量F[SiH4]を充分小さくし(言い換えれば、H2ガス流量F[H2]を充分大きくし)、SiH4流量比=F[SiH4]/(F[SiH4]+F[H2])を1〜2%程度にまで下げ、プラズマ中のSiH4を枯渇させることにより、微結晶シリコン薄膜の堆積が可能となる。逆に、SiH4流量比=F[SiH4]/(F[SiH4]+F[H2])が〜2%よりも大きい場合には、堆積した膜は非晶質状態のシリコン薄膜になる。In general, in order to deposit a microcrystalline silicon thin film by this plasma CVD method, a film forming technique called “high pressure depletion method” is widely used (see, for example, Patent Document 1 and Non-Patent Document 1). Specifically, the SiH 4 gas flow rate F [SiH 4 ] to be supplied is made sufficiently small (in other words, under conditions of relatively high gas pressure (up to several hundred Pa or higher) and high high frequency power (up to several hundred W or higher). H 2 gas flow rate F [H 2 ] is increased sufficiently), and the SiH 4 flow rate ratio = F [SiH 4 ] / (F [SiH 4 ] + F [H 2 ]) is lowered to about 1 to 2%, By depleting the SiH 4 , a microcrystalline silicon thin film can be deposited. Conversely, when SiH 4 flow rate ratio = F [SiH 4 ] / (F [SiH 4 ] + F [H 2 ]) is larger than ˜2%, the deposited film becomes an amorphous silicon thin film. .

この方法によって得られた微結晶シリコン薄膜は、粒径が数nm〜数10nm程度のシリコン結晶粒と非晶質状態のシリコンとの混合状態として存在しており、いわゆる非晶質シリコン薄膜に比べ、長波長領域(600nm以上)で分光感度特性が良く、またキャリア移動度が大きいという特徴がある。   The microcrystalline silicon thin film obtained by this method exists as a mixed state of silicon crystal grains having a grain size of several nanometers to several tens of nanometers and silicon in an amorphous state. In the long wavelength region (600 nm or more), the spectral sensitivity characteristics are good and the carrier mobility is high.

この微結晶シリコン薄膜を光電変換層に用いた太陽電池セルにおいては、光電変換効率が〜9%程度の良好なセル特性が得られている。また、光電変換層が微結晶シリコン薄膜から成る太陽電池セルと光電変換層が非晶質シリコン膜から成る太陽電池セルとをそれぞれ直列に接続したタンデム型セル構造も提案されている。このような非晶質シリコン光電変換層と微結晶シリコン光電変換層とを用いたタンデム型の太陽電池では、紫外〜赤外域にかけて広い波長範囲で光吸収があることにより、光電変換効率が12〜15%に達する実用的な太陽電池セル・モジュールが報告されている。   In the solar cell using this microcrystalline silicon thin film for the photoelectric conversion layer, good cell characteristics with a photoelectric conversion efficiency of about 9% are obtained. Also proposed is a tandem cell structure in which a photovoltaic cell whose photoelectric conversion layer is made of a microcrystalline silicon thin film and a solar cell whose photoelectric conversion layer is made of an amorphous silicon film are connected in series. A tandem solar cell using such an amorphous silicon photoelectric conversion layer and a microcrystalline silicon photoelectric conversion layer has a light absorption in a wide wavelength range from ultraviolet to infrared, so that the photoelectric conversion efficiency is 12 to 12%. A practical solar cell module reaching 15% has been reported.

太陽電池の光電変換層として膜厚が2〜3μm程度の微結晶シリコン薄膜を形成しようとすると、上述の何れの成膜手法を用いても、その成膜初期にはインキュベーション層と呼ばれる薄い非晶質状のシリコン膜が形成される。この非晶質シリコン膜の表面近傍で核発生が起こると、この核を起点として微結晶シリコンが成長し続けるようになる。ここで、インキュベーション層の厚みは数10nm〜数100nmであり、光電変換層の膜厚の〜数%程度の割合を占める。   When a microcrystalline silicon thin film having a film thickness of about 2 to 3 μm is formed as a photoelectric conversion layer of a solar cell, a thin amorphous film called an incubation layer is formed at the initial stage of film formation, regardless of which film formation method is used. A quality silicon film is formed. When nucleation occurs near the surface of the amorphous silicon film, microcrystalline silicon continues to grow from this nucleation. Here, the thickness of the incubation layer is several tens nm to several hundreds nm, and occupies a ratio of about several% of the film thickness of the photoelectric conversion layer.

非晶質シリコン薄膜は、微結晶シリコン薄膜に比べて電荷移動度が低く、膜の電気抵抗が大きい。このため、微結晶シリコン薄膜の成膜時にインキュベーション層が厚く形成されると、光電変換層(すなわちインキュベーション層+微結晶シリコン薄膜)の抵抗が大きくなる。このため、このような光電変換層を有する太陽電池セルにおいては、電流−電圧特性のフィル・ファクタ(Fill Factor)の値が大きくなり、光電変換効率の低下を引き起こすという問題点があった。   An amorphous silicon thin film has a lower charge mobility and a higher electric resistance of the film than a microcrystalline silicon thin film. For this reason, if the incubation layer is formed thick when the microcrystalline silicon thin film is formed, the resistance of the photoelectric conversion layer (that is, the incubation layer + microcrystalline silicon thin film) increases. For this reason, in the photovoltaic cell which has such a photoelectric converting layer, the value of the fill factor (Fill Factor) of an electric current-voltage characteristic became large, and there existed a problem of causing the fall of photoelectric conversion efficiency.

また、シリコンの核発生後、微結晶シリコン薄膜は下地膜の上方に柱状に伸びて成長する。堆積したシリコン膜の結晶性は、膜の成長方向、すなわち下地膜の垂線方向に一様ではなく、膜の成長とともに結晶性が増加する傾向がある。このように結晶成長が不均一に起こるため、堆積した微結晶シリコン膜の結晶化率(膜全体の平均値)が光電変換層に適した値であっても、下地膜との界面近傍では膜の結晶性が低すぎる、あるいは膜の表面近傍では結晶性が高すぎることがあり、以下に述べる問題点があった。   Further, after the generation of silicon nuclei, the microcrystalline silicon thin film grows in a columnar shape above the base film. The crystallinity of the deposited silicon film is not uniform in the growth direction of the film, that is, the perpendicular direction of the base film, and the crystallinity tends to increase as the film grows. Since crystal growth occurs unevenly in this way, even if the crystallization rate of the deposited microcrystalline silicon film (average value of the entire film) is a value suitable for the photoelectric conversion layer, the film is not near the interface with the base film. The crystallinity of the film is too low, or the crystallinity may be too high near the surface of the film.

微結晶シリコン膜の結晶性が低すぎる場合には、膜中において非晶質シリコンが占める割合が多いため膜の電気抵抗が大きく、上述したように光電変換効率が低くなる。一方、微結晶シリコン膜の結晶性が高すぎる場合には、膜中の結晶粒界が多数存在するようになる。成膜した微結晶シリコン薄膜の断面を透過型電子顕微鏡を用いて観察すると、微結晶シリコン膜の結晶性が高すぎる場合は、結晶粒界が膜を貫通している箇所や粒界に沿ってクラックが発生している箇所がしばしば見られる。このため、微結晶シリコン薄膜を基板上に堆積した後、基板を真空容器から大気中に取り出すと、大気から酸素、窒素、炭化水素等の不純物が膜の表面から結晶粒界に沿って深部にまで入り込み、膜の内部を汚染するようになる。こうして、従来の方法で得られた微結晶シリコン薄膜では、膜の表面のみならず内部も酸化されていたり、炭素等の不純物に汚染されていたりしており、これらが太陽電池の特性に悪影響を及ぼすという問題点があった。   When the crystallinity of the microcrystalline silicon film is too low, since the proportion of amorphous silicon in the film is large, the electric resistance of the film is large, and the photoelectric conversion efficiency is low as described above. On the other hand, when the crystallinity of the microcrystalline silicon film is too high, many crystal grain boundaries exist in the film. When the cross-section of the deposited microcrystalline silicon thin film is observed using a transmission electron microscope, if the crystallinity of the microcrystalline silicon film is too high, the crystal grain boundary passes through the film or along the grain boundary. There are often places where cracks occur. Therefore, after the microcrystalline silicon thin film is deposited on the substrate, when the substrate is taken out from the vacuum container to the atmosphere, impurities such as oxygen, nitrogen, hydrocarbons, etc. from the atmosphere enter the deep part along the crystal grain boundary from the film surface. Until it becomes contaminated. Thus, in the microcrystalline silicon thin film obtained by the conventional method, not only the surface of the film but also the inside is oxidized or contaminated with impurities such as carbon, which adversely affects the characteristics of the solar cell. There was a problem of affecting.

このような問題点を解決する方法として、SiH4プロファイリング法と呼ばれる微結晶シリコン薄膜の形成手法が知られている(例えば、非特許文献2参照)。本手法では、微結晶シリコン薄膜を堆積する際、供給するSiH4ガスの流量を成膜中一定ではなく、時間的に変化させることを特徴としている。以下、SiH4プロファイリング法を具体的に説明する。As a method for solving such a problem, a technique for forming a microcrystalline silicon thin film called a SiH 4 profiling method is known (for example, see Non-Patent Document 2). This technique is characterized in that when depositing a microcrystalline silicon thin film, the flow rate of the SiH 4 gas to be supplied is not constant during film formation but is changed over time. Hereinafter, the SiH 4 profiling method will be specifically described.

非特許文献2に示されているSiH4プロファイリングの例では、シリコンの成膜時にH2ガス流量をF[H2]=600sccm一定とし、SiH4ガス流量を段階的にF[SiH4]=4sccmから12sccmまで増加させている。なお、通常の成膜方法では、成膜がスタートしてから終了まで、SiH4ガス流量を一定に保つようにするが、本文献では、SiH4ガス流量をF[SiH4]=12sccm(SiH流量比は、F[SiH4]/(F[SiH4]+F[H2])=2%)に設定すると、比較的良好な微結晶シリコン膜が得られることが示されている。In the example of SiH 4 profiling shown in Non-Patent Document 2, the H 2 gas flow rate is kept constant at F [H 2 ] = 600 sccm during the film formation of silicon, and the SiH 4 gas flow rate is gradually changed to F [SiH 4 ] = It is increased from 4 sccm to 12 sccm. In the normal film formation method, the SiH 4 gas flow rate is kept constant from the start to the end of film formation, but in this document, the SiH 4 gas flow rate is F [SiH 4 ] = 12 sccm (SiH It is shown that a relatively good microcrystalline silicon film can be obtained when the 4 flow rate ratio is set to F [SiH 4 ] / (F [SiH 4 ] + F [H 2 ]) = 2%).

SiH4プロファイリング法の一例として、先ずインキュベーション層が形成される成膜初期(0<t<20秒)においては、結晶の核発生を起こしやすくするため、結晶化率が高いSiH4ガス流量条件、すなわち、F[SiH4]=4sccmに設定する。この時、SiH4流量比はF[SiH4]/(F[SiH4]+F[H2])=0.7%となる。次に、これに続く成膜中期(20秒<t<40秒)では、SiH4ガス流量をF[SiH4]=8sccmまで増加させ、SiH4流量比がF[SiH4]/(F[SiH4]+F[H2])=1.3%となる比較的高い結晶性が得られる条件に移行する。これ以降(t>40秒)は、SiH4ガス流量をF[SiH4]=12sccmまで増加させ、通常のSiH4流量比F[SiH4]/(F[SiH4]+F[H2])=2%の条件で最後まで成膜を行う。As an example of the SiH 4 profiling method, in the initial stage of film formation where an incubation layer is formed (0 <t <20 seconds), in order to easily cause nucleation of crystals, a SiH 4 gas flow rate condition with a high crystallization rate, That is, F [SiH 4 ] = 4 sccm is set. At this time, the SiH 4 flow rate ratio is F [SiH 4 ] / (F [SiH 4 ] + F [H 2 ]) = 0.7%. Next, in the subsequent middle stage of film formation (20 seconds <t <40 seconds), the SiH 4 gas flow rate is increased to F [SiH 4 ] = 8 sccm, and the SiH 4 flow rate ratio is F [SiH 4 ] / (F [ SiH 4 ] + F [H 2 ]) = 1.3% The condition shifts to a condition where relatively high crystallinity is obtained. Thereafter (t> 40 seconds), the SiH 4 gas flow rate is increased to F [SiH 4 ] = 12 sccm, and the normal SiH 4 flow rate ratio F [SiH 4 ] / (F [SiH 4 ] + F [H 2 ]) The film is formed to the end under the condition of = 2%.

非特許文献2によると、下地膜との界面近傍においてSiH4流量比F[SiH4]/(F[SiH4]+F[H2])を段階的に増加させることにより、堆積した微結晶シリコン膜特性の再現性が向上し、しかも膜厚方向の結晶化率分布の均一性が改善できることが示されている。また、結晶性の均一性改善に対応し、試作した太陽電池セルの特性が向上することも示されている。According to Non-Patent Document 2, the microcrystalline silicon deposited by increasing the SiH 4 flow rate ratio F [SiH 4 ] / (F [SiH 4 ] + F [H 2 ]) stepwise in the vicinity of the interface with the base film. It has been shown that the reproducibility of film characteristics can be improved and the uniformity of the crystallization rate distribution in the film thickness direction can be improved. It is also shown that the characteristics of the prototyped solar battery cell are improved in response to the improvement in crystallinity uniformity.

特開2001−237187号公報JP 2001-237187 A

T. Matsui, M. Kondo, A. Matsuda, “Origin of the improved performance of high-deposition-rate microcrystalline silicon solar cells by high-pressure glow discharge”, Jpn. J. Appl. Phys., vol.42, pp.L901-903(2003)T. Matsui, M. Kondo, A. Matsuda, “Origin of the improved performance of high-deposition-rate microcrystalline silicon solar cells by high-pressure glow discharge”, Jpn. J. Appl. Phys., Vol.42, pp .L901-903 (2003) A.H.M. Smets, T.Matsui, M. Kondo, “High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime”, J. Appl. Phys., vol.104, 034508(2008)A.H.M. Smets, T. Matsui, M. Kondo, “High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime”, J. Appl. Phys., Vol.104, 034508 (2008)

しかしながら、従来のSiH4プロファイリング法を用いた微結晶シリコン成膜では、成膜の初期〜中期において原料のSiH4ガス流量を比較的低い値に設定する。このため、これらの成膜期間ではシリコンの成膜速度が低下し、結果として太陽電池の製造工程のスループットを低下させ、低コスト化の妨げとなっていた。However, in the microcrystalline silicon film formation using the conventional SiH 4 profiling method, the SiH 4 gas flow rate of the raw material is set to a relatively low value in the initial to intermediate period of the film formation. For this reason, during these film formation periods, the film formation rate of silicon was lowered, resulting in a decrease in the throughput of the manufacturing process of the solar cell, which hindered cost reduction.

また、成膜の途中でSiH流量を急速に変化させようとしても、流量を制御しているマスフローコントローラの時間応答が〜1秒程度あり、またこのマスフローコントローラから真空容器までの配管経路中をガスが輸送される時間が〜数秒程度ある。このことから、短時間での流量調整や短時間毎の流量の切り替えが困難であった。その結果、成膜初期のきめ細かな結晶制御に限界があり、結晶化率の均一性の更なる改善が求められていた。In addition, even if the SiH 4 flow rate is changed rapidly during film formation, the time response of the mass flow controller controlling the flow rate is about 1 second, and in the piping path from the mass flow controller to the vacuum vessel The time for the gas to be transported is about several seconds. This makes it difficult to adjust the flow rate in a short time and to switch the flow rate every short time. As a result, there is a limit to fine crystal control at the initial stage of film formation, and further improvement in uniformity of the crystallization rate has been demanded.

本発明は、上記に鑑みてなされたものであり、微結晶半導体薄膜の成膜時に、膜厚方向に沿って均一な結晶性を維持しつつ成膜速度の低下を防ぐことができる微結晶半導体薄膜製造方法を得ることを目的とする。   The present invention has been made in view of the above, and a microcrystalline semiconductor capable of preventing a decrease in film formation speed while maintaining uniform crystallinity along the film thickness direction when forming a microcrystalline semiconductor thin film It aims at obtaining the thin film manufacturing method.

上述した課題を解決し、目的を達成するために、本発明の微結晶半導体薄膜製造方法は、プラズマCVD法により微結晶半導体薄膜を製造する微結晶半導体薄膜製造方法であって、プラズマ電極を備えた真空容器内に微結晶半導体薄膜を堆積する基板を配置する工程と、前記真空容器内に水素を主成分に含むガスを連続的に供給しながら、少なくともシリコンまたはゲルマニウムを含む半導体材料ガスを断続的に供給するとともに、高周波電力を前記プラズマ電極に給電して前記プラズマ電極と前記基板との間にプラズマを生成して微結晶半導体薄膜を形成する微結晶半導体薄膜形成工程を含み、前記微結晶半導体薄膜形成工程は、前記半導体材料ガスの供給をオン/オフ変調して前記半導体材料ガスを周期的に供給し、前記半導体材料ガスの供給をオンにしているときの前記高周波電力を前記半導体材料ガスの供給をオフにしているときの前記高周波電力よりも小さくし、前記オン/オフ変調の変調周波数または前記オン/オフ変調のデューティ比を経時的に変化させながら薄膜を形成すること、を特徴とする。 In order to solve the above-described problems and achieve the object, a microcrystalline semiconductor thin film manufacturing method of the present invention is a microcrystalline semiconductor thin film manufacturing method for manufacturing a microcrystalline semiconductor thin film by a plasma CVD method, and includes a plasma electrode . and disposing a board of depositing a microcrystalline semiconductor film in the vacuum vessel, while continuously supplying a gas containing a main component of hydrogen into the vacuum chamber, a semiconductor material gas containing at least silicon or germanium with intermittent supply, and a microcrystalline semiconductor film forming step of forming a microcrystalline semiconductor film by generating a plasma between the plasma electrodes by feeding the high frequency power to the plasma electrode and the substrate, wherein the higher the microcrystalline semiconductor film forming Engineering, said semiconductor material gas periodically supplying the supply of the semiconductor material gas is turned on / off modulation, wherein the semiconductor material gas The high-frequency power when the supply of the semiconductor material gas is turned off is smaller than the high-frequency power when the supply of the semiconductor material gas is turned off, and the modulation frequency of the on / off modulation or the duty of the on / off modulation A thin film is formed while changing the ratio with time.

本発明によれば、膜厚方向に均一な結晶化率を有する良好な微結晶半導体薄膜を高速に得ることができ、ひいては薄膜太陽電池の高性能化や低コスト化を実現する、という効果を有する。   According to the present invention, it is possible to obtain a good microcrystalline semiconductor thin film having a uniform crystallization rate in the film thickness direction at high speed, and to achieve high performance and low cost of the thin film solar cell. Have.

図1は、本発明の実施の形態1にかかる微結晶半導体薄膜製造装置の構成の一例を模式的に示す図である。FIG. 1 is a diagram schematically showing an example of the configuration of the microcrystalline semiconductor thin film manufacturing apparatus according to the first embodiment of the present invention. 図2は、薄膜形成中におけるH2ガスとSiH4ガスの流量と高周波電源における高周波電力の時間に対する変化の様子を示す図である。FIG. 2 is a diagram showing how H 2 gas and SiH 4 gas flow during thin film formation and how the high frequency power in the high frequency power supply changes with time. 図3は、成膜速度および結晶化率の変調周波数依存性について説明する図である。FIG. 3 is a diagram for explaining the dependency of the film formation rate and the crystallization rate on the modulation frequency. 図4は、成膜速度および結晶化率の変調デューティ比依存性について説明する図である。FIG. 4 is a diagram for explaining the dependency of the deposition rate and the crystallization rate on the modulation duty ratio. 図5は、実施の形態1にかかる微結晶シリコン薄膜中の不純物濃度プロファイルを示す図である。FIG. 5 is a diagram showing an impurity concentration profile in the microcrystalline silicon thin film according to the first embodiment. 図6は、実施の形態1および2にかかる微結晶シリコン薄膜太陽電池の膜構造の概略を示す断面図である。FIG. 6 is a cross-sectional view schematically showing a film structure of the microcrystalline silicon thin film solar cell according to the first and second embodiments.

以下に、本発明にかかる微結晶半導体薄膜製造方法の好適な実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。   Hereinafter, preferred embodiments of a method for producing a microcrystalline semiconductor thin film according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following description, In the range which does not deviate from the summary of this invention, it can change suitably.

実施の形態1.
図1は、本発明の実施の形態1にかかる微結晶半導体薄膜製造装置の構成の一例を模式的に示す図である。この微結晶半導体薄膜製造装置は、従来のプラズマCVD装置を基本とするものであり、半導体薄膜を形成する雰囲気を内部に形成する真空容器10内に、基板ステージ12と、プラズマ電極13と、を備え、プラズマ電極13と基板ステージ12の対向する面が互いに平行となるように設置されている。真空容器10にはガス排気管11が設けられており、このガス排気管11に接続された図示しない真空ポンプによって、真空容器10内のガスが排気され、真空容器10内が所定の真空度に設定される。
Embodiment 1 FIG.
FIG. 1 is a diagram schematically showing an example of the configuration of the microcrystalline semiconductor thin film manufacturing apparatus according to the first embodiment of the present invention. This microcrystalline semiconductor thin film manufacturing apparatus is based on a conventional plasma CVD apparatus, and a substrate stage 12 and a plasma electrode 13 are provided in a vacuum vessel 10 in which an atmosphere for forming a semiconductor thin film is formed. The plasma electrodes 13 and the substrate stage 12 are arranged so that the opposing surfaces are parallel to each other. A gas exhaust pipe 11 is provided in the vacuum container 10, and the gas in the vacuum container 10 is exhausted by a vacuum pump (not shown) connected to the gas exhaust pipe 11, so that the inside of the vacuum container 10 has a predetermined degree of vacuum. Is set.

基板ステージ12は、電気的に接地されており、成膜処理を施す基板100が載置される構造となっている。また、この基板ステージ12の内部には、加熱ヒータが内蔵されており、成膜処理時には、基板温度を所定の温度、たとえば150〜250℃程度の値に設定される。なお、ここでは、基板ステージ12は、真空容器10の下部側に設けられている。   The substrate stage 12 is electrically grounded and has a structure on which a substrate 100 to be subjected to film formation is placed. In addition, a heater is built in the substrate stage 12, and the substrate temperature is set to a predetermined temperature, for example, about 150 to 250 ° C. during the film forming process. Here, the substrate stage 12 is provided on the lower side of the vacuum vessel 10.

プラズマ電極13は、筒状の側面部131と、筒状構造の一方の端部の上面部133と反対側の底面から構成され、底面には複数の貫通孔が形成されたガスシャワーヘッド132を有する。また、プラズマ電極13は、ガスシャワーヘッド132が基板ステージ12の基板載置面と平行になるように、基板ステージ12の基板載置面から所定の距離上方に配置されるように、真空容器10内に固定される。ここでは、プラズマ電極13の筒状の側面部131や上面部133が、アルミナやテフロン(登録商標)などの絶縁スペーサ14によって真空容器10とは電気的に絶縁されるように、真空容器10に固定されている。   The plasma electrode 13 is composed of a cylindrical side surface portion 131 and a bottom surface opposite to the upper surface portion 133 at one end of the cylindrical structure, and a gas shower head 132 having a plurality of through holes formed on the bottom surface. Have. Further, the vacuum electrode 10 is arranged such that the plasma electrode 13 is disposed above the substrate placement surface of the substrate stage 12 by a predetermined distance so that the gas shower head 132 is parallel to the substrate placement surface of the substrate stage 12. Fixed inside. Here, in the vacuum vessel 10, the cylindrical side surface portion 131 and the upper surface portion 133 of the plasma electrode 13 are electrically insulated from the vacuum vessel 10 by an insulating spacer 14 such as alumina or Teflon (registered trademark). It is fixed.

さらに、プラズマ電極13の筒状の上面部133は、プラズマ電極13設置位置に対応して設けられるシールドボックス20と、図示しないインピーダンス整合器とを介して、高周波電源40と電気的に接続されている。これによって、プラズマ電極13には、高周波電圧が印加される。高周波電源40の発振周波数は、13.56MHzや27.12MHzが一般的であるが、プラズマの密度を増加させて成膜の高速化を図るために、30〜150MHzの周波数、すなわちVHF帯が用いられることもある。このようにプラズマ電極13には高周波電圧が印加されるので、高周波の放射や漏洩を防ぐために、真空容器10の外部でプラズマ電極13を取り囲むように接地されたシールドボックス20が配置される。   Further, the cylindrical upper surface portion 133 of the plasma electrode 13 is electrically connected to the high-frequency power source 40 via a shield box 20 provided corresponding to the position where the plasma electrode 13 is installed and an impedance matching device (not shown). Yes. As a result, a high frequency voltage is applied to the plasma electrode 13. The oscillation frequency of the high frequency power supply 40 is generally 13.56 MHz or 27.12 MHz, but a frequency of 30 to 150 MHz, that is, a VHF band is used in order to increase the plasma density and increase the film formation speed. Sometimes. Since the high-frequency voltage is applied to the plasma electrode 13 in this way, a shield box 20 grounded so as to surround the plasma electrode 13 outside the vacuum vessel 10 is disposed in order to prevent high-frequency radiation and leakage.

プラズマ電極13の上面部133には、SiH4ガスとH2ガスとを供給するためのH2ガス供給口22aとSiH4ガス供給口22bとが別個に設けられており、これらはH2やSiHガスを供給するH2ガス供給管21aやSiH4ガス供給管21bに、それぞれ接続されている。プラズマを生成している時には、プラズマ電極13の上面部133には高周波電圧および直流の自己バイアス電圧が同時に印加されるので、ガス供給管21aや21bが金属(例えば、SUS製)の場合には、プラズマ電極13とガス供給管21a、21bとを電気的に絶縁させるため、ガス供給口22aや22bは、アルミナやテフロン(登録商標)などの絶縁体ブロックの内部にガスの流路を形成したものが用いられる。また、H2ガス供給管21a上には図示しないH2ガスを供給するH2ガス供給部からのH2ガスの流れをオン/オフするエア駆動式あるいは電磁式のガスバルブ23aと、H2ガスの流量をコントロールするマスフローコントローラ24aと、を備える。なお、ガスバルブ23aは、シールドボックス20の外部に配置される。The upper surface portion 133 of the plasma electrode 13, SiH 4 and H 2 gas supply port 22a and the SiH 4 gas supply ports 22b for supplying the gas and H 2 gas are provided separately, they H 2 Ya SiH 4 gas to H 2 gas supply pipe 21a and the SiH 4 gas supply pipe 21b for supplying, are connected. When plasma is being generated, a high-frequency voltage and a direct current self-bias voltage are simultaneously applied to the upper surface portion 133 of the plasma electrode 13, so that the gas supply pipes 21a and 21b are made of metal (for example, made of SUS). In order to electrically insulate the plasma electrode 13 from the gas supply pipes 21a and 21b, the gas supply ports 22a and 22b have gas flow paths formed inside an insulator block such as alumina or Teflon (registered trademark). Things are used. Further, the gas valve 23a of the air-driven type or an electromagnetic type is on the H 2 gas supply pipe 21a for turning on / off the flow of H 2 gas from the H 2 gas supply unit for supplying the H 2 gas, not shown, the H 2 gas A mass flow controller 24a for controlling the flow rate of The gas valve 23a is disposed outside the shield box 20.

SiH4ガス供給管21b上には図示しないSiH4ガスを供給するSiH4ガス供給部からのSiH4ガスの流れをオン/オフするエア駆動式あるいは電磁式のガスバルブ23bと、SiH4ガスの流量をコントロールするマスフローコントローラ24bと、薄膜形成中に真空容器10へのSiH4ガスの供給のオン/オフを行うエア駆動式のガスバルブ25と、を備える。ガスバルブ23bは、シールドボックス20の外部に配置され、エア駆動式のガスバルブ25は、シールドボックス20内のSiH4ガス供給口22bに近い位置に配置されている。ガスバルブ25は、エア駆動式であり、このガスバルブ25に圧縮空気を送るエア供給管30が配置されている。このエア供給管30には、圧縮空気の供給のオン/オフを行う電磁式のガスバルブ31がシールドボックス20の外部に設けられている。SiH 4 and the gas valve 23b of the air-driven type or an electromagnetic type for turning on / off the flow of SiH 4 gas from a SiH 4 gas supply unit for supplying the SiH 4 gas (not shown) on the gas supply pipe 21b, the flow rate of SiH 4 gas And an air-driven gas valve 25 for turning on / off the supply of SiH 4 gas to the vacuum vessel 10 during thin film formation. The gas valve 23 b is disposed outside the shield box 20, and the air-driven gas valve 25 is disposed near the SiH 4 gas supply port 22 b in the shield box 20. The gas valve 25 is an air drive type, and an air supply pipe 30 for sending compressed air to the gas valve 25 is disposed. The air supply pipe 30 is provided with an electromagnetic gas valve 31 for turning on / off the supply of compressed air outside the shield box 20.

ガスバルブ31を開閉することで、圧縮空気のガスバルブ25への供給がオン/オフされる。ガスバルブ31がオンされて開状態となり、ガスバルブ25に圧縮空気が供給されると、ガスバルブ25はオン(開状態)となり、SiH4ガス供給管21bを流れるSiH4ガスを真空容器10内へと供給することができる。また、ガスバルブ31がオフされて閉状態となり、ガスバルブ25への圧縮空気の供給が止められると、ガスバルブ25はオフ(閉状態)となり、SiH4ガス供給管21bを流れるSiH4ガスの真空容器10内への供給は止まる。このように、ガスバルブ25は圧縮空気によって開閉動作がされるので、真空容器10内へのSiH4ガスの供給を高速にオン/オフすることが可能となる。By opening and closing the gas valve 31, the supply of compressed air to the gas valve 25 is turned on / off. When the gas valve 31 is turned on and opened, and compressed air is supplied to the gas valve 25, the gas valve 25 is turned on (opened), and SiH 4 gas flowing through the SiH 4 gas supply pipe 21b is supplied into the vacuum vessel 10. can do. Further, it becomes closed gas valve 31 is turned off, when stopped the supply of compressed air to the gas valve 25, gas valve 25 is OFF (closed state), the SiH 4 gas vacuum vessel 10 through the SiH 4 gas supply pipes 21b Supply to the inside stops. Thus, since the gas valve 25 is opened and closed by the compressed air, the supply of SiH 4 gas into the vacuum vessel 10 can be turned on / off at high speed.

また、薄膜形成中にはプラズマ電極13に高周波電圧が印加されている状態にあるので、シールドボックス20内には高周波が放射される。このため、ガスバルブ25の金属部にも高周波電圧が印加されてしまうが、電磁気的な動作が一切ないエア駆動式のため、ガスバルブ25の誤動作や破損を抑えることができる。また、このガスバルブ25駆動用の圧縮空気の供給は、シールドボックス20の外に置かれた電磁式のガスバルブ31によって高速に行っている。   Further, since a high frequency voltage is applied to the plasma electrode 13 during the formation of the thin film, a high frequency is radiated into the shield box 20. For this reason, although a high-frequency voltage is also applied to the metal part of the gas valve 25, malfunction and damage of the gas valve 25 can be suppressed because of the air-driven type that does not have any electromagnetic operation. Further, the compressed air for driving the gas valve 25 is supplied at high speed by an electromagnetic gas valve 31 placed outside the shield box 20.

基板ステージ12とプラズマ電極13との間のプラズマが生成される空間(プラズマ生成空間)に対応する真空容器10の側面には、プラズマの状態を観測可能な光学窓15が配置されており、この光学窓15に、生成されるプラズマ中のSi原子またはSiH分子からの発光(たとえば、Si:288nm、SiH:414nm)の強度を観測する発光強度観測部50が設けられる。ここでは、発光強度観測部50として、プラズマの発光スペクトルからSi原子またはSiH分子からの発光を選択する干渉フィルタ51と、干渉フィルタ51で選択されたSi原子またはSiH分子の光を電気信号に変換する光電子増倍管52と、を備える。   An optical window 15 capable of observing the state of the plasma is disposed on the side surface of the vacuum vessel 10 corresponding to the space (plasma generation space) in which the plasma between the substrate stage 12 and the plasma electrode 13 is generated. The optical window 15 is provided with a light emission intensity observation unit 50 for observing the intensity of light emission (for example, Si: 288 nm, SiH: 414 nm) from Si atoms or SiH molecules in the generated plasma. Here, as the emission intensity observation unit 50, an interference filter 51 that selects light emission from Si atoms or SiH molecules from the emission spectrum of the plasma, and light of the Si atoms or SiH molecules selected by the interference filter 51 is converted into an electrical signal. A photomultiplier tube 52.

また、この薄膜製造装置は、ガスバルブ31のバルブの開閉と、高周波電源40を制御する制御部60を備える。この制御部60は、所定の周期でSiH4ガスの真空容器10内への導入のオン/オフを切換えるバルブ開閉信号をガスバルブ31に供給するとともに、SiH4ガスの供給のオン/オフに同期してプラズマ電極13に供給される高周波電力の出力を振幅変調させるように、高周波電源40に電力変調信号を供給する。The thin film manufacturing apparatus also includes a control unit 60 that controls the opening and closing of the gas valve 31 and the high-frequency power source 40. The control unit 60 supplies a valve opening / closing signal for switching on / off of introduction of the SiH 4 gas into the vacuum vessel 10 at a predetermined cycle to the gas valve 31 and is synchronized with on / off of the supply of SiH 4 gas. Then, a power modulation signal is supplied to the high frequency power supply 40 so that the output of the high frequency power supplied to the plasma electrode 13 is amplitude-modulated.

なお、発光強度観測部50で観測されたSi原子またはSiH分子からの発光強度を示す発光強度信号は制御部60に送られる。制御部60は、バルブ開信号をガスバルブ31に出力してから、実際にSi原子またはSiH分子の発光強度が増加するまでの遅れ時間と、バルブ閉信号をガスバルブ31に出力してから、実際にSi原子またはSiH分子の発光強度が減少するまでの遅れ時間を求め、この遅れ時間を加味して決定されたSiH4ガスの供給のオン/オフの期間に基づいて電力変調信号を出力する。Note that a light emission intensity signal indicating the light emission intensity from the Si atoms or SiH molecules observed by the light emission intensity observation unit 50 is sent to the control unit 60. The controller 60 outputs the valve open signal to the gas valve 31 and outputs the delay time until the emission intensity of Si atoms or SiH molecules actually increases and the valve close signal to the gas valve 31, and then actually A delay time until the emission intensity of the Si atom or SiH molecule decreases is obtained, and a power modulation signal is output based on the ON / OFF period of the SiH 4 gas supply determined by taking this delay time into account.

つぎに、このような構成の微結晶半導体薄膜製造装置における微結晶半導体薄膜製造方法について説明する。まず、真空容器10内の基板ステージ12上に基板100を設置した後、ガス排気管11を通じて真空容器10内を真空排気し、真空容器10内を所定の真空度にする。また、基板ステージ12の加熱ヒータで基板100が所定の温度となるように加熱する。この状態で、H2ガス供給管21a上に設けられるガスバルブ23aを開け、H2ガス供給口22aから真空容器10内にH2ガスが所定の流量で供給される。このとき、H2ガス供給口22aから真空容器10内に流入したH2ガスは、筒状のプラズマ電極13内を流れ、プラズマ電極13の底部のガスシャワーヘッド132を通じて、プラズマ生成空間に供給される。Next, a microcrystalline semiconductor thin film manufacturing method in the microcrystalline semiconductor thin film manufacturing apparatus having such a configuration will be described. First, after the substrate 100 is set on the substrate stage 12 in the vacuum vessel 10, the inside of the vacuum vessel 10 is evacuated through the gas exhaust pipe 11 to make the inside of the vacuum vessel 10 have a predetermined degree of vacuum. Further, the substrate 100 is heated by the heater of the substrate stage 12 so as to reach a predetermined temperature. In this state, opening the gas valve 23a provided on the H 2 gas supply pipe 21a, the H 2 gas is supplied at a predetermined flow rate from the H 2 gas supply port 22a into the vacuum chamber 10. In this case, H 2 gas flowing from the H 2 gas supply port 22a into the vacuum container 10 flows through the cylindrical plasma electrode 13 through the gas shower head 132 at the bottom of the plasma electrode 13, is supplied to the plasma generating space The

一方、SiH4ガスに関しては、SiH4ガス供給管21b上に設けられるガスバルブ23bを開け、絶えず開いた状態にしておくが、シールドボックス20内のエア駆動式のガスバルブ25を所定の周期で繰返し開閉させて、真空容器10内へのSiH4ガスの供給を高速にオン/オフさせる。具体的には、制御部60からのバルブ開信号を受けて、まずガスバルブ31が動作して開状態となり、圧縮空気がガスバルブ25にまで供給される。この空気圧の作用によりガスバルブ25が開き、SiH4ガスがプラズマ電極13のガスシャワーヘッド132を通じて真空容器10(プラズマ生成空間)内に供給される。また、制御部60からのバルブ閉信号を受けて、まずガスバルブ31が動作して閉状態となり、圧縮空気のガスバルブ25への供給が止まる。この圧縮空気が供給されないことによる空気圧の作用によってガスバルブ25が閉じ、SiH4ガスの真空容器10内への供給が停止する。On the other hand, with respect to SiH 4 gas, the gas valve 23b provided on the SiH 4 gas supply pipe 21b is opened and kept open constantly, but the air-driven gas valve 25 in the shield box 20 is repeatedly opened and closed at a predetermined cycle. Thus, the supply of SiH 4 gas into the vacuum vessel 10 is turned on / off at high speed. Specifically, in response to a valve opening signal from the control unit 60, the gas valve 31 is first operated to be in an open state, and compressed air is supplied to the gas valve 25. The gas valve 25 is opened by the action of the air pressure, and SiH 4 gas is supplied into the vacuum vessel 10 (plasma generation space) through the gas shower head 132 of the plasma electrode 13. In response to the valve closing signal from the control unit 60, the gas valve 31 is first operated to be in a closed state, and the supply of compressed air to the gas valve 25 is stopped. The gas valve 25 is closed by the action of air pressure due to the fact that the compressed air is not supplied, and the supply of SiH 4 gas into the vacuum vessel 10 is stopped.

図2は、薄膜形成中におけるH2ガスとSiH4ガスの流量と高周波電源における高周波電力の時間に対する変化の様子を示す図である。この図に示されるように、H2ガスは時間によらず真空容器10内に常に所定の流量で供給されるが、SiH4ガスは、Tonの期間中に真空容器10内に供給され、Toffの期間中には真空容器10内に供給されない。また、高周波電力は、Tonの期間中、すなわちSiH4ガスのオン中にPonの出力でプラズマ電極13に印加され、Toffの期間中、すなわちSiH4ガスのオフ中にPoff(>Pon)の出力でプラズマ電極13に印加される。FIG. 2 is a diagram showing how H 2 gas and SiH 4 gas flow during thin film formation and how the high frequency power in the high frequency power supply changes with time. As shown in this figure, but always into the vacuum chamber 10 irrespective of the H 2 gas is the time supplied at a predetermined flow rate, SiH 4 gas is supplied into the vacuum chamber 10 during the T on, It is not supplied into the vacuum vessel 10 during the period of Toff . The high-frequency power is applied to the plasma electrode 13 with a P on output during the period of T on , that is, while the SiH 4 gas is on, and P off (> during the period of T off , that is, when the SiH 4 gas is off. P on ) is applied to the plasma electrode 13.

SiH4ガスはプラズマ中で電子衝突により容易に解離するため、プラズマの電子密度が高すぎると、シリコン薄膜の前駆体であるSiH3のみならず、ガス粒子との衝突によりパーティクルの発生を引き起こすSiH2,SiH,Siも多量に生成されてしまい、気相中でパーティクルの発生が起こり、欠陥の多いシリコン膜が成膜されてしまう。よって、好ましいSiH3分子をより選択的に生成するため、SiH4のガス供給をオンにしているときには、高周波電力を低く設定してプラズマ密度を低く抑えることが有効である。一方、H2ガスは比較的解離しにくいガス種であることが知られている。これは、プラズマ中で電子衝突解離によって発生したH原子は、気相中または真空容器10の壁や電極表面で容易に再結合するため、H2分子に戻ってしまうからである。このため、プラズマ中のH原子の密度を高めるには、プラズマ中の電子密度を大きくする必要がある。Since SiH 4 gas is easily dissociated by electron collision in the plasma, if the plasma electron density is too high, not only SiH 3 that is a precursor of the silicon thin film but also SiH that causes generation of particles due to collision with gas particles. 2 , SiH and Si are also produced in large amounts, generating particles in the gas phase and forming a silicon film with many defects. Therefore, in order to generate preferable SiH 3 molecules more selectively, it is effective to set the high frequency power low to keep the plasma density low when the SiH 4 gas supply is turned on. On the other hand, H 2 gas is known to be a gas species that is relatively difficult to dissociate. This is because H atoms generated by electron impact dissociation in plasma easily recombine in the gas phase or on the wall of the vacuum vessel 10 or the electrode surface, and thus return to H 2 molecules. For this reason, in order to increase the density of H atoms in the plasma, it is necessary to increase the electron density in the plasma.

既に述べたように、非晶質のシリコン薄膜をH2プラズマに曝すことによって、膜を結晶化させることができる。また、プラズマ中のH原子の密度の増加に伴い、結晶化に要する時間が短くて済むことが知られている。したがって、H2プラズマを用いて非晶質のシリコン膜を素早く結晶化させるためには、H原子の密度を増加させる必要があり、プラズマを生成する高周波電力を可能な限り高くすればよい。よって、SiH4ガスの供給をオフにし、H2プラズマによって膜表面の結晶化を行う時間Toff(図2では、T1<t<T2,T3<t<T4,・・・)では、高周波電力を高く設定する(Pon<Poff)。以上の理由によって、薄膜形成中には、図2に示されるようにSiH4ガスの流量と高周波電力の出力を制御している。As already mentioned, the film can be crystallized by exposing the amorphous silicon thin film to H 2 plasma. It is also known that the time required for crystallization can be shortened as the density of H atoms in the plasma increases. Therefore, in order to quickly crystallize an amorphous silicon film using H 2 plasma, it is necessary to increase the density of H atoms, and the high-frequency power for generating plasma should be as high as possible. Therefore, the time T off when the supply of SiH 4 gas is turned off and the film surface is crystallized by H 2 plasma (in FIG. 2, T 1 <t <T 2 , T 3 <t <T 4 ,...) Then, the high frequency power is set high (P on <P off ). For the above reason, during the thin film formation, the flow rate of SiH 4 gas and the output of high frequency power are controlled as shown in FIG.

ここで、期間Tonでは、SiH4ガスとH2ガスが真空容器10内に供給され、高周波電力PonによってSiH3分子を多く含む電子密度の低いSiH4/H2混合プラズマが生成され、基板ステージ12上の基板100の表面には、非晶質シリコン薄膜が形成される。そして、期間Tonが終了し、期間Toffになると、H2ガスのみが真空容器10内に供給され、高周波電力Poff(>Pon)によって電子密度の高いH2プラズマが生成され、基板100上に形成された非晶質シリコン薄膜を短時間で結晶化させる。Here, in the period T on, SiH 4 gas and H 2 gas is supplied into the vacuum chamber 10, the high frequency power P low SiH 4 / H 2 mixed plasma electron density containing many SiH 3 molecules by on is generated, An amorphous silicon thin film is formed on the surface of the substrate 100 on the substrate stage 12. Then, the period T on is completed, at a time T off, only H 2 gas is supplied into the vacuum chamber 10, a high H 2 plasma electron density by the high frequency power P off (> P on) are generated, the substrate The amorphous silicon thin film formed on 100 is crystallized in a short time.

このように、シリコンの堆積に適した低密度のSiH4/H2混合プラズマとシリコンの結晶化に適した高密度のH2プラズマの発生を交互に高速に切換えて行うことができる。そして、SiH4ガスの供給をオンにする期間Ton(=T1=T3−T2=・・・)とオフにする期間Toff(=T2−T1=T4−T3=・・・)を調整することによって、従来の成膜法では、高速成膜が可能だが非晶質のシリコン膜になってしまう成膜条件(すなわち高SiH4流量比)においても、微結晶シリコン薄膜を堆積することが可能になる。As described above, generation of a low density SiH 4 / H 2 mixed plasma suitable for silicon deposition and a high density H 2 plasma suitable for silicon crystallization can be alternately performed at high speed. Then, a period T on (= T 1 = T 3 −T 2 =...) For turning on the supply of SiH 4 gas and a period T off (= T 2 −T 1 = T 4 −T 3 =) for turning off the supply. ..)) Is adjusted so that microcrystalline silicon can be formed even under film formation conditions (ie, high SiH 4 flow rate ratio) that enable high-speed film formation by the conventional film formation method but become an amorphous silicon film. A thin film can be deposited.

ここで、実施の形態1にかかる微結晶半導体薄膜製造方法では、SiH4/H2混合プラズマを用いて微結晶シリコン薄膜を基板に堆積させる際に、SiH4ガスの供給のオン/オフ変調と高周波電力の供給(給電)とに時間変調を加えるとともに双方の時間変調を同期させ、かつオン/オフ変調の変調周波数またはデューティ比を成膜中において経時的に変化させる。オン/オフ変調のデューティ比は、Ton/(Ton+Toff)である。実施の形態1では、圧縮空気によって開閉動作がされるガスバルブ25を用いて真空容器10内へのSiH4ガスの供給のオン/オフ変調を行うため、オン/オフ変調の変調周波数またはオン/オフ変調のデューティ比を高速に且つ正確に行うことができる。これにより、成膜速度を殆ど変化させずに膜の結晶性を制御することができ、膜厚方向に均一な結晶化率を有する微結晶シリコン薄膜を高速に堆積することが可能となる。その結果、微結晶シリコン薄膜の製造工程のスループットを向上させることができ、例えば光電変換層として用いる太陽電池の製造工程のスループットを向上させることができる。Here, in the microcrystalline semiconductor thin film manufacturing method according to the first embodiment, when the microcrystalline silicon thin film is deposited on the substrate using the SiH 4 / H 2 mixed plasma, on / off modulation of the supply of SiH 4 gas is performed. Time modulation is applied to the supply (feeding) of high-frequency power, both time modulations are synchronized, and the modulation frequency or duty ratio of on / off modulation is changed over time during film formation. The duty ratio of the on / off modulation is T on / (T on + T off ). In the first embodiment, the on / off modulation of the supply of SiH 4 gas into the vacuum chamber 10 is performed using the gas valve 25 that is opened and closed by compressed air, so that the modulation frequency of the on / off modulation or the on / off modulation is performed. The modulation duty ratio can be accurately performed at high speed. Thereby, the crystallinity of the film can be controlled with almost no change in the film forming speed, and a microcrystalline silicon thin film having a uniform crystallization rate in the film thickness direction can be deposited at a high speed. As a result, the throughput of the manufacturing process of the microcrystalline silicon thin film can be improved. For example, the throughput of the manufacturing process of the solar cell used as the photoelectric conversion layer can be improved.

また、SiH4ガス供給のオン/オフ時間が比較的短くなると、これに正確に同期させて高周波電力に変調を加えることが困難になる。そのため、制御部60がガスバルブ31にバルブ開閉信号を発した時点から、実際に真空容器10内へのSiH4ガスの流入量が増加/減少する時間遅れを正しく知り、その時間遅れを考慮して高周波電力を振幅変調させるタイミングを決定することが望ましい。そこで、図1に示したように、SiH4に起因するSi原子あるいはSiH分子の発光強度の時間変化を発光強度観測部50でモニタする。Further, when the on / off time of the SiH 4 gas supply becomes relatively short, it becomes difficult to modulate the high-frequency power in synchronization with this accurately. Therefore, from the time when the control unit 60 issues a valve opening / closing signal to the gas valve 31, the time delay in which the flow rate of SiH 4 gas actually increases / decreases into the vacuum vessel 10 is correctly known, and the time delay is taken into consideration. It is desirable to determine the timing for amplitude modulation of the high frequency power. Therefore, as shown in FIG. 1, the emission intensity observation unit 50 monitors the temporal change in the emission intensity of the Si atoms or SiH molecules caused by SiH 4 .

SiH4に起因するSi原子あるいはSiH分子の発光強度の時間変化をモニタすることにより、例えばバルブ開信号がt=0で制御部60から出力された後、SiH発光強度が増加し始める時点t1から、実際にプラズマ中にSiH4ガスが流入するまでの時間遅れ(=t1)を正しく知ることができる。逆に、例えばバルブ閉信号がt=t2で制御部60から出力された後、SiH発光強度が減少し始める時点t3から、SiH4ガスの供給オフの時間遅れ(=t3−t2)を正しく知ることができる。このように、発光強度観測部50によるモニタ結果を用いて、時間遅れを正確に知ることができ、その時間遅れを考慮して高周波電力を振幅変調させるタイミングを決定することができる。By monitoring the temporal change in the light emission intensity of Si atoms or SiH molecules caused by SiH 4 , for example, when the valve opening signal is output from the control unit 60 at t = 0, the time point t 1 when the SiH light emission intensity starts increasing. From this, it is possible to correctly know the time delay (= t 1 ) until the SiH 4 gas actually flows into the plasma. Conversely, for example, after the valve closing signal is output from the control unit 60 at t = t 2 , the time when the supply of SiH 4 gas is turned off (= t 3 −t 2) from the time point t 3 at which the SiH emission intensity starts to decrease. ) Correctly. As described above, it is possible to accurately know the time delay using the monitoring result by the light emission intensity observation unit 50, and it is possible to determine the timing for amplitude-modulating the high-frequency power in consideration of the time delay.

以上のようにして、所定の厚さの微結晶シリコン薄膜が形成された後、H2ガス供給管21a上に設けられるガスバルブ23aと、SiH4ガス供給管21b上に設けられるガスバルブ23bとを閉じ、基板ステージ12の加熱ヒータをオフにし、真空容器10内を十分に排気した後、大気圧に戻し、基板ステージ12から基板100を真空容器10外に搬送して、薄膜形成処理が終了する。After the microcrystalline silicon thin film having a predetermined thickness is formed as described above, the gas valve 23a provided on the H 2 gas supply pipe 21a and the gas valve 23b provided on the SiH 4 gas supply pipe 21b are closed. Then, after the heater of the substrate stage 12 is turned off and the inside of the vacuum vessel 10 is sufficiently evacuated, the pressure is returned to atmospheric pressure, the substrate 100 is transferred from the substrate stage 12 to the outside of the vacuum vessel 10, and the thin film forming process is completed.

次に、上述した微結晶半導体薄膜製造方法(SiHガスパルス法)を用いてガラス基板上に成膜した微結晶シリコン膜の特性(成膜速度DR、結晶化率I/I)の変調周波数依存性および変調デューティ比依存性の評価について、図3と図4とを用いて説明する。図3は、成膜速度および結晶化率の変調周波数依存性について説明する図である。図3の(a)は、変調周波数Fと膜の成膜速度DRとの関係を示す特性図である。図3の(b)は、変調周波数Fと結晶化率I/Iとの関係を示す特性図である。図4は、成膜速度および結晶化率の変調デューティ比依存性について説明する図である。変調デューティ比Rと、膜の成膜速度DRおよび結晶化率I/Iとの関係を示す特性図である。図4の(a)は、変調デューティ比Rと膜の成膜速度DRとの関係を示す特性図である。図4の(b)は、変調デューティ比Rと結晶化率I/Iとの関係を示す特性図である。Next, modulation of characteristics (deposition rate DR, crystallization rate I c / I a ) of the microcrystalline silicon film formed on the glass substrate using the above-described microcrystalline semiconductor thin film manufacturing method (SiH 4 gas pulse method) Evaluation of frequency dependency and modulation duty ratio dependency will be described with reference to FIGS. FIG. 3 is a diagram for explaining the dependency of the film formation rate and the crystallization rate on the modulation frequency. FIG. 3A is a characteristic diagram showing the relationship between the modulation frequency F and the film formation rate DR. FIG. 3B is a characteristic diagram showing the relationship between the modulation frequency F and the crystallization rate I c / I a . FIG. 4 is a diagram for explaining the dependency of the deposition rate and the crystallization rate on the modulation duty ratio. FIG. 6 is a characteristic diagram showing a relationship between a modulation duty ratio R, a film formation rate DR, and a crystallization rate I c / I a . FIG. 4A is a characteristic diagram showing the relationship between the modulation duty ratio R and the film deposition rate DR. FIG. 4B is a characteristic diagram showing the relationship between the modulation duty ratio R and the crystallization rate I c / I a .

成膜条件は、SiH4ガス流量をF[SiH]=20sccm、H2ガス流量をF[H]=980sccm(すなわち、SiH4流量比をF[SiH]/(F[SiH]+F[H])=2%)とし、圧力を1000Paとし、またSiH4ガス供給がオン時の高周波電力(周波数60MHz)をPon=100W、オフ時の電力をPoff=300Wとし、プラズマ電極13と基板100との距離を6mmとし、基板ステージ12の温度を200℃に設定して、基板上にシリコン薄膜を堆積した。The film forming conditions are as follows: the SiH 4 gas flow rate is F [SiH 4 ] = 20 sccm, the H 2 gas flow rate is F [H 2 ] = 980 sccm (that is, the SiH 4 flow rate ratio is F [SiH 4 ] / (F [SiH 4 ] + F [H 2 ]) = 2%), the pressure is 1000 Pa, the high frequency power when the SiH 4 gas supply is on (frequency 60 MHz) is P on = 100 W, the power when off is P off = 300 W, and the plasma The distance between the electrode 13 and the substrate 100 was 6 mm, the temperature of the substrate stage 12 was set to 200 ° C., and a silicon thin film was deposited on the substrate.

また、周波数依存性の評価においては、SiH4ガス供給のオン/オフ変調の周波数FをF=1〜5Hzの範囲(図3参照)で変化させた。このときの変調のデューティ比Rは、R=50%に固定した。一方、デューティ比依存性の評価については、SiH4ガス供給のオン/オフ変調のデューティ比RをR=10〜80%の範囲(図4参照)で変化させた。このときの変調周波数は、F=2Hzに固定した。なお、SiH4ガス流量F[SiH]=20sccmは時間平均値である。Further, in the evaluation of the frequency dependence, the frequency F of the on / off modulation of the SiH 4 gas supply was changed in the range of F = 1 to 5 Hz (see FIG. 3). The modulation duty ratio R at this time was fixed to R = 50%. On the other hand, for the evaluation of the duty ratio dependency, the duty ratio R of the on / off modulation of the SiH 4 gas supply was changed in the range of R = 10 to 80% (see FIG. 4). The modulation frequency at this time was fixed at F = 2 Hz. The SiH 4 gas flow rate F [SiH 4 ] = 20 sccm is a time average value.

以上の条件でシリコン成膜を行うと、図3(a)および図4(a)に示すように、SiH4ガス供給のオン/オフ変調の周波数Fやデューティ比Rを変化させても成膜速度は殆ど一定であり、DR=1.4〜1.8nm/sの範囲であった。これはSiH4ガスを連続的に供給する通常の連続波プラズマ(Continuous Wave:CW)成膜時の成膜速度値(DR=1.5nm/s)とほぼ同じである。ここで、CW成膜の場合には高周波電力をPon=100W一定とした。When the silicon film is formed under the above conditions, the film is formed even if the on / off modulation frequency F and the duty ratio R of the SiH 4 gas supply are changed as shown in FIGS. 3 (a) and 4 (a). The speed was almost constant and DR was in the range of 1.4 to 1.8 nm / s. This is almost the same as the film formation rate value (DR = 1.5 nm / s) at the time of normal continuous wave (CW) film formation in which SiH 4 gas is continuously supplied. Here, in the case of CW film formation, the high-frequency power is set to P on = 100 W constant.

一方、膜の結晶性に関しては、CW成膜時に堆積した膜は完全に非晶質の状態であったが、SiHガス供給や高周波電力に変調を加えると、堆積した膜は非晶質から微結晶シリコンに変化し、またその結晶性は、変調の周波数Fやデューティ比Rに強く依存することが分かった。On the other hand, regarding the crystallinity of the film, the film deposited at the time of CW film formation was in a completely amorphous state. However, when the SiH 4 gas supply or high-frequency power was modulated, the deposited film became amorphous. It turned out to be microcrystalline silicon, and its crystallinity was strongly dependent on the modulation frequency F and the duty ratio R.

ラマン分光法により測定される480cm-1における非晶質シリコンのピークIaに対する520cm-1における結晶シリコンのピークIcのピーク強度比Ic/Ia(これを結晶化率と定義する)を用いて膜の結晶性を評価すると、図3(b)および図4(b)に示すように、CW成膜時の非晶質シリコン膜の結晶化率はIc/Ia=0.44であったが、変調周波数をF=1.5Hz、デューティ比をR=50%に設定すると、微結晶シリコン膜が得られ、その結晶化率は図3(b)に示すようにIc/Ia〜11にまで達した。なお、このピーク強度比Ic/Iaは、シリコン薄膜中の結晶化の度合いを表すものであり、この値が5以上10以下である場合に、太陽電池として使用する際に十分な結晶化率を有すると考えられている。The peak intensity ratio I c / I a (which is defined as the crystallization rate) of the crystalline silicon peak I c at 520 cm −1 to the amorphous silicon peak I a at 480 cm −1 measured by Raman spectroscopy. As shown in FIGS. 3B and 4B, the crystallinity of the amorphous silicon film during the CW film formation is I c / I a = 0.44. However, when the modulation frequency is set to F = 1.5 Hz and the duty ratio is set to R = 50%, a microcrystalline silicon film is obtained, and the crystallization rate is I c / Ia ~ 11 has been reached. The peak intensity ratio I c / I a represents the degree of crystallization in the silicon thin film. When this value is 5 or more and 10 or less, sufficient crystallization is possible when used as a solar cell. Is believed to have a rate.

また、図3(b)に示すように、変調のデューティ比RをR=50%に固定し、変調の周波数FをF=1.5Hzから5Hzにまで増加させると、シリコン膜の結晶化率は、I/I〜11から〜0.5まで単調に減少し、F=5HzでCW成膜時とほぼ同じ値になった。Further, as shown in FIG. 3B, when the modulation duty ratio R is fixed to R = 50% and the modulation frequency F is increased from F = 1.5 Hz to 5 Hz, the crystallization rate of the silicon film is increased. Decreased monotonically from I c / I a ˜11 to ˜0.5, and was almost the same value as that during CW film formation at F = 5 Hz.

また、図4(b)に示すように、変調の周波数をF=2Hzに固定し、変調のデューティ比RをR=10%から80%にまで増加させると、R=10〜30%までは結晶化率I/Iは〜10程度で殆ど変化しないが、Rがそれ以上になると結晶化率I/Iは〜0.5まで単調に減少し、R=80%でCW成膜時とほぼ同じ値になった。Further, as shown in FIG. 4B, when the modulation frequency is fixed to F = 2 Hz and the modulation duty ratio R is increased from R = 10% to 80%, R = 10-30% The crystallization rate I c / I a hardly changes at about -10, but when R exceeds that, the crystallization rate I c / I a decreases monotonously to ˜0.5, and CW formation is achieved at R = 80%. The value was almost the same as the film.

以上のように、SiHガスパルス法を用いた微結晶シリコン成膜では、SiHやHガス流量を固定しているにもかかわらず、SiH4ガス供給のオン/オフ変調の変調周波数やデューティ比を調整することにより、シリコンの成膜速度には殆ど影響を与えず、膜の結晶性のみを制御できると言える。そして、変調周波数Fは、1Hzより大であり5Hz以下の範囲であることが好ましい。また、デューティ比Rは、10%〜80%の範囲にあることが好ましい。As described above, in the microcrystalline silicon film formation using the SiH 4 gas pulse method, the SiH 4 gas supply on / off modulation modulation frequency and duty are fixed even though the SiH 4 and H 2 gas flow rates are fixed. By adjusting the ratio, it can be said that only the crystallinity of the film can be controlled without substantially affecting the silicon deposition rate. The modulation frequency F is preferably greater than 1 Hz and less than or equal to 5 Hz. The duty ratio R is preferably in the range of 10% to 80%.

次に、上述した実施の形態1にかかる微結晶半導体薄膜製造方法、すなわち成膜時にオン/オフ変調の変調周波数を経時的に変化させるSiH4ガスパルス法による微結晶シリコン薄膜の一実施例について説明する。上記のSiH4ガスパルス法による微結晶シリコン成膜において、高周波電力をt=0秒にオンし、成膜がスタートしてからt=5秒までの間はSiHガス供給のオン/オフ変調の変調周波数FをF=1.5Hzとし(ステップ1)、その後、5秒<t<15秒の間はF=2.0Hz(ステップ2)、15秒<t<60秒の間はF=2.5Hz(ステップ3)、t=60秒以降はF=3.0Hz(ステップ4)にして成膜を行った。ここで、オン/オフ変調のデューティ比RはR=50%一定とした。また、SiH4ガス供給がオン時の高周波電力をPon=100W、オフ時の電力をPoff=300Wとした。Next, an example of the microcrystalline semiconductor thin film manufacturing method according to the first embodiment described above, that is, an example of the microcrystalline silicon thin film by the SiH 4 gas pulse method that changes the modulation frequency of on / off modulation with time during film formation will be described. To do. In the microcrystalline silicon film formation by the SiH 4 gas pulse method described above, the high frequency power is turned on at t = 0 seconds, and the on / off modulation of the SiH 4 gas supply is performed until t = 5 seconds after the film formation starts. The modulation frequency F is set to F = 1.5 Hz (step 1), and then F = 2.0 Hz (step 2) for 5 seconds <t <15 seconds and F = 2 for 15 seconds <t <60 seconds. The film was formed at .5 Hz (step 3) and after t = 60 seconds, F = 3.0 Hz (step 4). Here, the duty ratio R of the on / off modulation is constant at R = 50%. Further, the high frequency power when the SiH 4 gas supply is on is P on = 100 W, and the power when the SiH 4 gas supply is off is P off = 300 W.

このように、成膜がスタートしてから60秒間の間に変調周波数FをF=1.5Hzから3.0Hzまで段階的に増加させているが、実施の形態1にかかる微結晶半導体薄膜製造装置では変調周波数Fや高周波電力の値は瞬時に変更することができる。また、各ステップを切り替えるのに要する時間は、プラズマ電極13と基板100との間のプラズマ生成領域でのSiH4ガスの滞在時間であり、これはおよそ〜数10msと見積もることができる。よって、本成膜法では、成膜の各ステップの間で切り替えに要する時間(〜数10ms)はステップ時間(最小5秒)よりも充分小さく、切り替え時間は無視することができる。As described above, the modulation frequency F is increased stepwise from F = 1.5 Hz to 3.0 Hz in 60 seconds after the film formation starts, but the microcrystalline semiconductor thin film manufacturing according to the first embodiment is performed. In the apparatus, the values of the modulation frequency F and the high frequency power can be changed instantaneously. Further, the time required to switch each step is the residence time of the SiH 4 gas in the plasma generation region between the plasma electrode 13 and the substrate 100, which can be estimated to be approximately ˜tens of ms. Therefore, in this film formation method, the time required for switching between each step of film formation (up to several tens of ms) is sufficiently smaller than the step time (minimum 5 seconds), and the switching time can be ignored.

成膜の他の条件は、図3の場合と同じく、SiH4ガス流量F[SiH4]=20sccm、H2ガス流量F[H2]=980sccm(SiH4流量比はF[SiH4]/[F[SiH4]+F[H2]]=2%)、圧力:1000Pa、SiH4ガス供給がオン時の高周波電力:Pon=100W、オフ時の電力:Poff=300W、プラズマ電極と基板との距離:6mm、基板温度:200℃とした。Other conditions for film formation are the same as in the case of FIG. 3, SiH 4 gas flow rate F [SiH 4 ] = 20 sccm, H 2 gas flow rate F [H 2 ] = 980 sccm (the SiH 4 flow rate ratio is F [SiH 4 ] / [F [SiH 4 ] + F [H 2 ]] = 2%), pressure: 1000 Pa, high frequency power when SiH 4 gas supply is on: P on = 100 W, power when off : P off = 300 W, plasma electrode The distance from the substrate was 6 mm, and the substrate temperature was 200 ° C.

ところで、本実施例では、成膜条件やパルス条件を以上のように決定したので、結晶化率Ic/Iaと変調周波数Fとの関係(図3の(b)参照)より、ステップ1(0<t<5秒)ではIc/Ia〜11、ステップ2(5秒<t<15秒)ではIc/Ia〜10、ステップ3(15秒<t<60秒)ではIc/Ia〜8、ステップ4(60秒<t)ではIc/Ia〜7、となることが期待される。このように、成膜初期のステップ1やステップ2では、インキュベーション層の発生を極力抑えるために、膜表面で結晶の核発生や結晶成長が起こりやすい条件に設定している。By the way, in the present embodiment, since the film forming conditions and the pulse conditions are determined as described above, from the relationship between the crystallization rate I c / I a and the modulation frequency F (see FIG. 3B), step 1 is performed. (0 <t <5 seconds), I c / I a ˜11, step 2 (5 seconds <t <15 seconds), I c / I a -10, step 3 (15 seconds <t <60 seconds), I c / I a ˜8, step 4 (60 seconds <t) is expected to be I c / I a ˜7. As described above, in step 1 and step 2 in the initial stage of film formation, conditions are set such that crystal nucleation and crystal growth are likely to occur on the film surface in order to suppress the generation of the incubation layer as much as possible.

以上の条件でトータル1200秒間の成膜を行ったところ、膜厚が〜2.0μmのシリコン薄膜が得られた。膜厚から1200秒間の平均成膜速度を算出すると、成膜速度DR=1.67nm/s(=2μm/1200s)であった。この値は、SiHガスを連続で供給するCW成膜時の成膜速度(成膜速度DR=1.5nm/s)より大きく、成膜処理のスループットを向上させる上で都合が良い。本実施例では、成膜中に変調周波数FをF=1.5Hzから3.0Hzまで増加させているが、図3の(a)に示したように、各ステップの周波数Fの値に対応する成膜速度は、CW成膜時の値よりも僅かに大きく、成膜速度DR=1.7〜1.5nm/sの範囲である。このため、成膜中の平均成膜速度がCW成膜の場合よりも僅かに大きくなったと考えられる。When film formation was performed for a total of 1200 seconds under the above conditions, a silicon thin film having a thickness of ˜2.0 μm was obtained. When the average film formation rate for 1200 seconds was calculated from the film thickness, the film formation rate DR = 1.67 nm / s (= 2 μm / 1200 s). This value is larger than the film formation speed (film formation speed DR = 1.5 nm / s) at the time of CW film formation in which SiH 4 gas is continuously supplied, which is convenient for improving the throughput of the film formation process. In this embodiment, the modulation frequency F is increased from F = 1.5 Hz to 3.0 Hz during the film formation, but corresponds to the value of the frequency F at each step as shown in FIG. The film forming speed is slightly larger than the value at the time of CW film forming, and the film forming speed DR is in the range of 1.7 to 1.5 nm / s. For this reason, it is considered that the average film formation rate during film formation is slightly higher than that in the case of CW film formation.

また、ラマン分光法により求めたシリコン膜全体の結晶化率、すなわち480cm-1における非晶質シリコンのピークに対する520cm-1における結晶シリコンのピークのピーク強度比の値は、Ic/Ia=7.2であり、太陽電池として使用できる良質な微結晶シリコン薄膜を成膜することができた。Further, the crystallization rate of the entire silicon film obtained by Raman spectroscopy, that is, the value of the peak intensity ratio of a peak of crystalline silicon in 520 cm -1 to the peak of the amorphous silicon at 480cm -1, I c / I a = It was 7.2, and a good-quality microcrystalline silicon thin film that could be used as a solar cell could be formed.

膜厚方向の結晶性の均一性に関しては、これを直接評価することが困難なため、膜中の不純物(酸素および炭素)の濃度プロファイルをSIMS(Secondary Ion Mass Spectrometry)分析により調べた。既に述べたように、微結晶シリコン薄膜は下地膜の上方に柱状に伸びて成長するので、膜の成長とともに結晶性が増加する傾向がある。表面付近の結晶性が高すぎる場合には、表面近傍に多数存在する結晶粒界に沿って、大気から酸素、窒素、炭化水素等の不純物が膜の深部にまで入り込み、膜の内部を汚染するようになる。よって、酸素等の不純物の濃度プロファイルから膜の結晶性の均一性を間接的に知ることができる。   Since it is difficult to directly evaluate the uniformity of crystallinity in the film thickness direction, the concentration profile of impurities (oxygen and carbon) in the film was examined by SIMS (Secondary Ion Mass Spectrometry) analysis. As already described, since the microcrystalline silicon thin film grows in a columnar shape above the base film, the crystallinity tends to increase as the film grows. When the crystallinity near the surface is too high, impurities such as oxygen, nitrogen, hydrocarbons, etc. enter the deep part of the film from the atmosphere along the crystal grain boundaries that exist near the surface and contaminate the inside of the film. It becomes like this. Therefore, the uniformity of crystallinity of the film can be indirectly known from the concentration profile of impurities such as oxygen.

本実施例の成膜方法により得られた微結晶シリコン薄膜のSIMS分析結果を図5に示す。図5は、実施の形態1にかかる微結晶シリコン薄膜中の不純物濃度プロファイルを示す図である。図5より、不純物の酸素(O)や炭素(C)濃度は膜中でほぼ一定であり、かつ、膜中で検出された値(酸素濃度[O]=4×1018cm−3、炭素濃度[C]〜1017cm−3)は充分に低い。なお、デバイスグレードの微結晶シリコン薄膜では、酸素濃度[O]〜1018cm−3、炭素濃度[C]〜1017cm−3であると言われている。このように、本実施例で得られた微結晶シリコン薄膜では、膜表面からの酸素等の不純物の侵入が充分に抑えられており、膜の表面から内部にかけての結晶性の分布は均一であると言える。すなわち、本発明で得られた微結晶シリコン薄膜は太陽電池セルの光電変換層に適していると言える。FIG. 5 shows the SIMS analysis results of the microcrystalline silicon thin film obtained by the film forming method of this example. FIG. 5 is a diagram showing an impurity concentration profile in the microcrystalline silicon thin film according to the first embodiment. From FIG. 5, the oxygen (O) and carbon (C) concentrations of impurities are almost constant in the film, and the values detected in the film (oxygen concentration [O] = 4 × 10 18 cm −3 , carbon The concentration [C] to 10 17 cm −3 ) is sufficiently low. Note that it is said that a device grade microcrystalline silicon thin film has an oxygen concentration [O] of 10 18 cm −3 and a carbon concentration [C] of 10 17 cm −3 . Thus, in the microcrystalline silicon thin film obtained in this example, intrusion of impurities such as oxygen from the film surface is sufficiently suppressed, and the distribution of crystallinity from the film surface to the inside is uniform. It can be said. That is, it can be said that the microcrystalline silicon thin film obtained by the present invention is suitable for a photoelectric conversion layer of a solar battery cell.

この微結晶シリコン薄膜を用いて太陽電池セルを作製して実施例1の太陽電池セルとした。図6は、上述した方法で形成した微結晶シリコン薄膜を光電変換層として用いて作製した実施例1の薄膜太陽電池セルの構造を示す概略断面図である。   Using this microcrystalline silicon thin film, a solar battery cell was produced and used as the solar battery cell of Example 1. FIG. 6 is a schematic cross-sectional view showing the structure of the thin-film solar cell of Example 1 manufactured using the microcrystalline silicon thin film formed by the above-described method as a photoelectric conversion layer.

図6において、受光面側に位置するガラス基板201上には、透光性を有する透明の表面電極202が形成されている。この表面電極202は、酸化錫(SnO)膜202aの表面にアルミニウムをドープした酸化亜鉛(AZO:Aluminum-doped Zinc Oxide)膜202bが堆積されて構成されている。AZO膜202bは、DCスパッタリング法で堆積し、その膜厚を45nmとした。表面電極202上には、いわゆるp−i−n電池セル部である光電変換ユニット203が形成されている。光電変換ユニット203は、表面電極202側から、ボロン(B)がドープされたp型微結晶シリコン(p層)203a、光電変換層であるi型微結晶シリコン(i層)203b、リン(P)がドープされたn型微結晶シリコン(n層)203cとが順次積層されて構成されている。In FIG. 6, a transparent surface electrode 202 having translucency is formed on a glass substrate 201 positioned on the light receiving surface side. The surface electrode 202 is formed by depositing an aluminum-doped zinc oxide (AZO) film 202b on the surface of a tin oxide (SnO 2 ) film 202a. The AZO film 202b was deposited by DC sputtering, and the film thickness was 45 nm. On the surface electrode 202, a photoelectric conversion unit 203 which is a so-called pin battery cell unit is formed. The photoelectric conversion unit 203 includes, from the surface electrode 202 side, p-type microcrystalline silicon (p layer) 203a doped with boron (B), i-type microcrystalline silicon (i layer) 203b that is a photoelectric conversion layer, phosphorus (P ) Doped n-type microcrystalline silicon (n layer) 203c.

ガラス基板201および表面電極202を通過して入射した光によりi層203b内で発生したキャリアは、内部電界によって電子はn層203c側に、ホールはp層203a側に、それぞれドリフトしていく。その結果、p層203aとn層203cとの間に起電力が発生する。   Carriers generated in the i layer 203b by light incident through the glass substrate 201 and the surface electrode 202 drift to the n layer 203c side and holes to the p layer 203a side by an internal electric field. As a result, an electromotive force is generated between the p layer 203a and the n layer 203c.

光電変換ユニット203上には、該光電変換ユニット203を通過した光を反射させて再び光電変換ユニット203に戻し、かつn層203cにドリフトしてきた電子を集めるための裏面電極204が形成されている。裏面電極204は、光電変換ユニット203側から、透光性を有するAZO薄膜204aと銀(Ag)薄膜204bとが順次積層されて構成されている。ここで、AZO薄膜204aの膜厚は90nmとした。   On the photoelectric conversion unit 203, a back electrode 204 is formed to reflect the light that has passed through the photoelectric conversion unit 203 and return it to the photoelectric conversion unit 203 again, and collect electrons drifting to the n layer 203c. . The back electrode 204 is configured by sequentially laminating a translucent AZO thin film 204a and a silver (Ag) thin film 204b from the photoelectric conversion unit 203 side. Here, the film thickness of the AZO thin film 204a was 90 nm.

光電変換ユニット203のp層203aやn層203cの成膜では、通常のプラズマCVD法(すなわち、SiHガスや高周波電力の供給は全てCWで行なう)を用いて、p層203aの膜厚は15nm、n層203cの膜厚は40nmとした。ここで、p層203aの成膜では、SiH/Hガス(F[SiH]/F[H]=10/1000sccm)にBガスを微量に添加し(濃度〜0.002%程度)、全圧力:800Pa、高周波電力:200W、基板温度:200℃の条件下でp層203aを形成した。In the film formation of the p layer 203a and the n layer 203c of the photoelectric conversion unit 203, the film thickness of the p layer 203a is set by using a normal plasma CVD method (that is, supplying all SiH 4 gas and high frequency power by CW). The film thickness of 15 nm and the n layer 203c was 40 nm. Here, in the formation of the p-layer 203a, a small amount of B 2 H 6 gas is added to SiH 4 / H 2 gas (F [SiH 4 ] / F [H 2 ] = 10/1000 sccm) (concentration˜0. The p layer 203a was formed under the conditions of about 002%), total pressure: 800 Pa, high frequency power: 200 W, and substrate temperature: 200 ° C.

また、n層203cの成膜では、SiH/Hガス(F[SiH]/F[H]=10/1000sccm)にPHガスを微量に添加し(濃度〜0.002%程度)、全圧力:1000Pa、高周波電力:200W、基板温度:200℃の条件下でn層203cを形成した。Further, in forming the n layer 203c, a small amount of PH 3 gas is added to SiH 4 / H 2 gas (F [SiH 4 ] / F [H 2 ] = 10/1000 sccm) (concentration of about 0.002%). ), N layer 203c was formed under the conditions of total pressure: 1000 Pa, high frequency power: 200 W, substrate temperature: 200 ° C.

一方、光電変換層であるi層203bの成膜では、上述したSiHガスパルス法を用いて、成膜中にオン/オフ変調の変調周波数をF=1.5Hzから3.0Hzまで変化させながら、膜厚〜2μmの微結晶シリコン薄膜を形成した。On the other hand, in the film formation of the i layer 203b that is a photoelectric conversion layer, the above-described SiH 4 gas pulse method is used while changing the modulation frequency of on / off modulation from F = 1.5 Hz to 3.0 Hz during film formation. A microcrystalline silicon thin film having a thickness of ˜2 μm was formed.

また、成膜がスタートしてから終了するまでの間(1200秒間)、SiHガス供給のオン/オフ変調の変調周波数FをF=3Hz、デューティ比RをR=50%に固定すること以外は、上記の実施例と同様にして比較例の微結晶シリコン薄膜を作製した。そして、得られた比較例の微結晶シリコン薄膜を用いて太陽電池セルを作製して比較例1の太陽電池セルとした。そして、このようにして得られた実施例1および比較例1の太陽電池セルの特性として、AM1.5の疑似太陽光(光量:100mW/cm)を照射した時の短絡電流密度Jsc(mA/cm)、開放電圧Voc(V)、フィル・ファクタF.F.(%)、光電変換効率η(%)を測定した。その結果を表1に示す。Further, during the period from the start to the end of film formation (1200 seconds), except that the modulation frequency F of the on / off modulation of the SiH 4 gas supply is fixed to F = 3 Hz and the duty ratio R is fixed to R = 50%. Produced a microcrystalline silicon thin film of a comparative example in the same manner as in the above example. And the photovoltaic cell was produced using the microcrystalline silicon thin film of the obtained comparative example, and it was set as the photovoltaic cell of the comparative example 1. And as a characteristic of the photovoltaic cell of Example 1 and Comparative Example 1 obtained in this way, the short circuit current density Jsc (mA) when irradiated with artificial sunlight of AM1.5 (light amount: 100 mW / cm 2 ). / Cm 2 ), open circuit voltage Voc (V), fill factor F.V. F. (%) And photoelectric conversion efficiency η (%) were measured. The results are shown in Table 1.

Figure 0005502210
Figure 0005502210

表1に示されるように、実施例1の太陽電池セルは、短絡電流密度Jsc、開放電圧Voc、フィル・ファクタF.F.および光電変換効率ηがともに比較例1に比べ大きく、良好なセル特性が得られており、良好な太陽電池セルが実現されているのが分かる。特に、フィル・ファクタF.F.が比較例1に比べて大きく改善されているのは、成膜初期に形成される非晶質状態のインキュベーション層の厚みが低減し、微結晶シリコン層の直列抵抗値が減少した結果であると考えられる。   As shown in Table 1, the solar cell of Example 1 has a short circuit current density Jsc, an open circuit voltage Voc, a fill factor F.V. F. It can be seen that the photoelectric conversion efficiency η is larger than that of Comparative Example 1, good cell characteristics are obtained, and good solar cells are realized. In particular, the fill factor F.I. F. Is greatly improved as compared with Comparative Example 1 because the thickness of the amorphous incubation layer formed in the initial stage of film formation is reduced and the series resistance value of the microcrystalline silicon layer is reduced. Conceivable.

上述したように、この実施の形態1によれば、SiH4/H2混合プラズマを用いて微結晶シリコン薄膜を基板に堆積させる際に、SiH4ガスの供給のオン/オフ変調と高周波電力の供給とに時間変調を加えるとともに双方の時間変調を同期させ、かつオン/オフ変調の変調周波数またはデューティ比を成膜中において経時的に変化させる。これにより、成膜速度を殆ど変化させずに膜の結晶性を制御することができ、膜厚方向に均一な結晶化率を有する微結晶シリコン薄膜を高速に堆積することが可能となる。その結果、微結晶シリコン薄膜の製造工程のスループットを向上させることができ、例えば光電変換層として用いる太陽電池の製造工程のスループットを向上させることができるという効果を有する。As described above, according to the first embodiment, when the microcrystalline silicon thin film is deposited on the substrate using the SiH 4 / H 2 mixed plasma, the on / off modulation of the supply of SiH 4 gas and the high-frequency power are controlled. Time modulation is applied to the supply, both time modulations are synchronized, and the modulation frequency or duty ratio of the on / off modulation is changed over time during film formation. Thereby, the crystallinity of the film can be controlled with almost no change in the film forming speed, and a microcrystalline silicon thin film having a uniform crystallization rate in the film thickness direction can be deposited at a high speed. As a result, the throughput of the manufacturing process of the microcrystalline silicon thin film can be improved. For example, the throughput of the manufacturing process of the solar cell used as the photoelectric conversion layer can be improved.

従来のSiHプロファイリング法では、SiH流量の変更に要する時間はガス流量を制御しているマスフローコントローラの応答時間およびマスフローコントローラから真空容器までのガスの輸送時間により決まり、〜数秒程度の時間が必要とされる。このため、成膜プロファイリングの各ステップ時間は少なくとも〜5秒以上、より好ましくは〜10秒以上の時間に設定しなければならなかった。そのため、成膜速度が大きく短時間でも相当量の膜が堆積する場合には、結晶化率の分布を精密に制御するために成膜プロファイリングのステップ数を増やすことが困難であった。In the conventional SiH 4 profiling method, the time required to change the SiH 4 flow rate is determined by the response time of the mass flow controller that controls the gas flow rate and the transport time of the gas from the mass flow controller to the vacuum vessel. Needed. For this reason, each step time of film formation profiling has to be set to a time of at least ˜5 seconds or more, more preferably ˜10 seconds or more. Therefore, when the film formation rate is high and a considerable amount of film is deposited even in a short time, it is difficult to increase the number of film formation profiling steps in order to precisely control the distribution of the crystallization rate.

一方、本発明の薄膜製造方法では、ガス供給や高周波電力供給の変調周波数およびデューティ比は高速に変化させることができ、ガス供給をオン/オフ変調する変調周波数の切り替えに要する時間はおよそ〜数10msである。このため、成膜プロファイリングの各ステップ時間は〜1秒以下にまで短くすることができ、高精度な結晶制御が求められる成膜初期において、より多段階の成膜プロファイリングが可能となる。これにより、膜厚方向の結晶性の均一性をより向上させることができるという効果も有する。   On the other hand, in the thin film manufacturing method of the present invention, the modulation frequency and duty ratio of the gas supply and the high-frequency power supply can be changed at high speed, and the time required for switching the modulation frequency for on / off modulation of the gas supply is approximately ˜several. 10 ms. For this reason, each step time of film formation profiling can be shortened to ˜1 second or less, and more stages of film formation profiling can be performed at the initial stage of film formation in which high-precision crystal control is required. Thereby, it has the effect that the uniformity of the crystallinity of a film thickness direction can be improved more.

なお、上記においては、ガス流量、圧力、電力などのパラメータを固定しているが、微結晶シリコン膜の成膜条件は、これらの値に限られるものではない。   Note that in the above, parameters such as gas flow rate, pressure, and power are fixed, but the deposition conditions for the microcrystalline silicon film are not limited to these values.

また、上記においては、結晶化促進ガスとしてH、半導体材料ガスとしてSiHを用いた微結晶シリコン膜の製造方法について述べたが、HガスにHe、Ne、Ar等の不活性ガスなどを添加していてもよい。また、材料ガスとしてはSiHに限定されるものではなく、Siを含む他のガス、例えばSiでも良く、また、ジボラン(B)、ホスフィン(PH)、アルシン(AsH)に代表されるドーパントガスを添加してもよい。In the above description, a method for manufacturing a microcrystalline silicon film using H 2 as a crystallization promoting gas and SiH 4 as a semiconductor material gas has been described. However, an inert gas such as He, Ne, or Ar is used as the H 2 gas. May be added. Further, the material gas is not limited to SiH 4 but may be other gas containing Si, for example, Si 2 H 6 , diborane (B 2 H 6 ), phosphine (PH 3 ), arsine (AsH). A dopant gas represented by 3 ) may be added.

また、微結晶シリコン以外に微結晶シリコンゲルマニウム(SiGe1−x)の成膜においても同様の効果がある。この場合には、半導体材料ガスとしてはSiHとGeHとの混合ガスを用いればよい。また、発光強度観測部50では、プラズマ内のSiもしくはSiH、またはGeもしくはGeHからの発光を観測すればよい。In addition to the microcrystalline silicon, the same effect can be obtained in the formation of microcrystalline silicon germanium (Si x Ge 1-x ). In this case, a mixed gas of SiH 4 and GeH 4 may be used as the semiconductor material gas. Further, the emission intensity observation unit 50 may observe light emission from Si or SiH or Ge or GeH in the plasma.

実施の形態2.
上述した実施例1では、微結晶シリコン薄膜の成膜初期において、SiH4ガス供給のオン/オフ変調のデューティ比Rは一定としてSiH4ガス供給のオン/オフ変調の周波数Fを経時的に変化させて成膜を行う場合について説明したが、逆にSiH4ガス供給のオン/オフ変調の周波数Fを一定としてSiH4ガス供給のオン/オフ変調のデューティ比Rを経時的に変化させても、結晶性の均一性を改善することができる。実施の形態2では、図1に示す微結晶半導体薄膜製造装置を用いた微結晶シリコン薄膜の成膜の成膜初期においてデューティ比Rを変化させる実施例について具体的に説明する。
Embodiment 2. FIG.
In the first embodiment described above, in the initial stage of deposition of the microcrystalline silicon thin film, the duty ratio R of the on / off modulation of the SiH 4 gas supply time varying the frequency F of the SiH 4 gas supply on / off modulation as constant has described the case where not a film is formed is, even over time changing the duty ratio R of the SiH 4 gas supply on / off modulation frequency F on / off modulation of the SiH 4 gas supply a constant reversed The uniformity of crystallinity can be improved. In the second embodiment, an example in which the duty ratio R is changed at the initial stage of film formation of a microcrystalline silicon thin film using the microcrystalline semiconductor thin film manufacturing apparatus shown in FIG. 1 will be specifically described.

上述した実施の形態1にかかる微結晶半導体薄膜製造方法(SiH4ガスパルス法)による微結晶シリコン薄膜において、例えば高周波電力をt=0秒にオンし、成膜がスタートしてからt=5秒までの間はSiHガス供給のオン/オフ変調のデューティ比をR=20%とし(ステップ1)、その後、5秒<t<15秒の間はR=50%(ステップ2)、15秒<t<60秒の間はR=60%(ステップ3)、t=60秒以降はR=70%(ステップ4)として成膜を行った。ここで、SiHガス供給のオン/オフ変調の変調周波数FをF=2Hz一定とした。その他の成膜条件は、実施例1と同じであり、ここでは説明を省略する。In the microcrystalline silicon thin film by the microcrystalline semiconductor thin film manufacturing method (SiH 4 gas pulse method) according to the first embodiment described above, for example, t = 5 seconds after the high frequency power is turned on at t = 0 seconds and the film formation starts. The duty ratio of ON / OFF modulation of the SiH 4 gas supply is set to R = 20% during the period up to R = 20% (step 1), and then R = 50% (step 2) for 5 seconds <t <15 seconds, 15 seconds Film formation was performed with R = 60% (step 3) for <t <60 seconds and R = 70% (step 4) after t = 60 seconds. Here, the modulation frequency F of the on / off modulation of the SiH 4 gas supply was constant at F = 2 Hz. Other film forming conditions are the same as those in the first embodiment, and a description thereof is omitted here.

ところで、本実施例では、成膜条件やパルス条件を以上のように決定したので、結晶化率Ic/Iaとデューティ比Rとの関係(図4の(b)参照)より、ステップ1(0<t<5秒)ではIc/Ia〜10、ステップ2(5<秒t<15秒)ではIc/Ia〜8、ステップ3(15秒<t<60秒)ではIc/Ia〜7、ステップ4(60秒<t)ではIc/Ia〜6、となることが期待される。実施例1と同様に、成膜初期のステップ1や2では、インキュベーション層の発生を極力抑えるために、膜表面で結晶の核発生や結晶成長が起こりやすい条件に設定している。By the way, in this embodiment, since the film forming conditions and the pulse conditions are determined as described above, from the relationship between the crystallization rate I c / I a and the duty ratio R (see FIG. 4B), step 1 is performed. (0 <t <5 seconds) I c / I a -10, step 2 (5 <second t <15 seconds) I c / I a -8, step 3 (15 seconds <t <60 seconds) I c / I a ˜7, step 4 (60 seconds <t) is expected to be I c / I a ˜6. As in the first embodiment, in steps 1 and 2 at the initial stage of film formation, in order to suppress the generation of the incubation layer as much as possible, conditions are set such that crystal nucleation and crystal growth are likely to occur on the film surface.

また、成膜速度DRとデューティ比Rとの関係(図4の(a)参照)より、各ステップのデューティ比Rの値(R=20〜70%)に対応する成膜速度は、DR=1.7〜1.5nm/sの範囲であり、CW成膜時の値よりも僅かに大きい。   Further, from the relationship between the film formation speed DR and the duty ratio R (see FIG. 4A), the film formation speed corresponding to the value of the duty ratio R of each step (R = 20 to 70%) is DR = The range is 1.7 to 1.5 nm / s, which is slightly larger than the value at the time of CW film formation.

以上の条件で膜厚が〜2μmの微結晶シリコン薄膜を成膜した。そして、この微結晶シリコン薄膜を光電変換層に用いた太陽電池セルを作製して実施例2の太陽電池セルとした。電池セルの膜構造および成膜方法は実施例1で述べたものと同じであり、ここでは省略する。また、光電変換層であるi層203bの成膜では、成膜がスタートしてから終了するまでの間(1200秒間)、SiHガス供給のオン/オフ変調の変調周波数FをF=2Hz、デューティ比RをR=70%に固定すること以外は、上記の実施例2と同様にして比較例の微結晶シリコン薄膜を作製した。そして、得られた比較例の微結晶シリコン薄膜を用いて太陽電池セルを作製して比較例2の太陽電池セルとした。そして、このようにして得られた実施例2および比較例2の太陽電池セルの特性として、AM1.5の疑似太陽光(光量:100mW/cm)を照射した時の短絡電流密度Jsc(mA/cm)、開放電圧Voc(V)、フィル・ファクタF.F.(%)、光電変換効率η(%)を測定した。その結果を表2に示す。Under the above conditions, a microcrystalline silicon thin film having a thickness of ˜2 μm was formed. And the solar cell using this microcrystalline silicon thin film for the photoelectric converting layer was produced, and it was set as the solar cell of Example 2. The film structure of the battery cell and the film formation method are the same as those described in Example 1, and are omitted here. Further, in the film formation of the i layer 203b which is a photoelectric conversion layer, the modulation frequency F of the on / off modulation of the SiH 4 gas supply is set to F = 2 Hz until the film formation starts and ends (1200 seconds). A microcrystalline silicon thin film of a comparative example was manufactured in the same manner as in Example 2 except that the duty ratio R was fixed to R = 70%. And the photovoltaic cell was produced using the microcrystalline silicon thin film of the obtained comparative example, and it was set as the photovoltaic cell of the comparative example 2. Then, as the characteristics of the solar cells of Example 2 and Comparative Example 2 obtained in this way, the short-circuit current density Jsc (mA) when irradiated with AM1.5 pseudo-sunlight (light amount: 100 mW / cm 2 ). / Cm 2 ), open circuit voltage Voc (V), fill factor F.V. F. (%) And photoelectric conversion efficiency η (%) were measured. The results are shown in Table 2.

Figure 0005502210
Figure 0005502210

表2に示されるように、実施例2の太陽電池セルは、短絡電流密度Jsc、開放電圧Voc、フィル・ファクタF.F.および光電変換効率ηがともに比較例2に比べ大きく、良好なセル特性が得られており、良好な太陽電池セルが実現されているのが分かる。特に、フィル・ファクタF.F.が比較例2に比べて大きく改善されているのは、成膜初期に形成される非晶質状態のインキュベーション層の厚みが低減し、微結晶シリコン層の直列抵抗値が減少した結果であると考えられる。   As shown in Table 2, the solar cell of Example 2 has a short circuit current density Jsc, an open circuit voltage Voc, a fill factor F.I. F. It can be seen that the photoelectric conversion efficiency η is larger than that of Comparative Example 2 and good cell characteristics are obtained, and a favorable solar cell is realized. In particular, the fill factor F.I. F. Is significantly improved as compared with Comparative Example 2 because the thickness of the amorphous incubation layer formed in the initial stage of film formation is reduced and the series resistance value of the microcrystalline silicon layer is reduced. Conceivable.

なお、上記においては、ガス流量、圧力、電力などのパラメータを固定しているが、微結晶シリコン膜の成膜条件は、これらの値に限られるものではない。   Note that in the above, parameters such as gas flow rate, pressure, and power are fixed, but the deposition conditions for the microcrystalline silicon film are not limited to these values.

また、上記においては、結晶化促進ガスとしてH、半導体材料ガスとしてSiHを用いた微結晶シリコン膜の製造方法について述べたが、HガスにHe、Ne、Ar等の不活性ガスなどを添加していてもよい。また、材料ガスとしてはSiHに限定されるものではなく、Siを含む他のガス、例えばSiでも良く、また、ジボラン(B)、ホスフィン(PH)、アルシン(AsH)に代表されるドーパントガスを添加してもよい。In the above description, a method for manufacturing a microcrystalline silicon film using H 2 as a crystallization promoting gas and SiH 4 as a semiconductor material gas has been described. However, an inert gas such as He, Ne, or Ar is used as the H 2 gas. May be added. Further, the material gas is not limited to SiH 4 but may be other gas containing Si, for example, Si 2 H 6 , diborane (B 2 H 6 ), phosphine (PH 3 ), arsine (AsH). A dopant gas represented by 3 ) may be added.

また、微結晶シリコン以外に微結晶シリコンゲルマニウム(SiGe1−x)の成膜においても同様の効果がある。この場合には、半導体材料ガスとしてはSiHとGeHとの混合ガスを用いればよい。また、発光強度観測部50では、プラズマ内のSiもしくはSiH、またはGeもしくはGeHからの発光を観測すればよい。In addition to the microcrystalline silicon, the same effect can be obtained in the formation of microcrystalline silicon germanium (Si x Ge 1-x ). In this case, a mixed gas of SiH 4 and GeH 4 may be used as the semiconductor material gas. Further, the emission intensity observation unit 50 may observe light emission from Si or SiH or Ge or GeH in the plasma.

以上のように、本発明にかかる微結晶半導体薄膜製造方法は、微結晶シリコンや微結晶シリコンゲルマニウム等の結晶性半導体薄膜を光電変換層に有する太陽電池の製造に有用である。また、薄膜太陽電池の高性能化や低コスト化にも貢献することができる。   As described above, the method for producing a microcrystalline semiconductor thin film according to the present invention is useful for producing a solar cell having a crystalline semiconductor thin film such as microcrystalline silicon or microcrystalline silicon germanium in a photoelectric conversion layer. Moreover, it can contribute to the performance improvement and cost reduction of a thin film solar cell.

10 真空容器
11 ガス排気管
12 基板ステージ
13 プラズマ電極
14 絶縁スペーサ
15 光学窓
20 シールドボックス
21a,21b ガス供給管
22a,22b ガス供給口
23a,23b,31 ガスバルブ
24a,24b マスフローコントローラ
25 ガスバルブ
30 エア供給管
40 高周波電源
50 発光強度観測部
51 干渉フィルタ
52 光電子増倍管
60 制御部
100 基板
131 側面部
132 ガスシャワーヘッド
133 上面部
201 ガラス基板
202 表面電極
202a 酸化錫膜
202b アルミニウムをドープした酸化亜鉛(AZO)膜
203a p型微結晶シリコン膜(p層)
203b i型微結晶シリコン膜(i層)
203c n型微結晶シリコン膜(n層)
204 裏面電極
204a AZO膜
204b 銀(Ag)薄膜
DESCRIPTION OF SYMBOLS 10 Vacuum vessel 11 Gas exhaust pipe 12 Substrate stage 13 Plasma electrode 14 Insulating spacer 15 Optical window 20 Shield box 21a, 21b Gas supply pipe 22a, 22b Gas supply port 23a, 23b, 31 Gas valve 24a, 24b Mass flow controller 25 Gas valve 30 Air supply Tube 40 High-frequency power supply 50 Emission intensity observation unit 51 Interference filter 52 Photomultiplier tube 60 Control unit 100 Substrate 131 Side surface 132 Gas shower head 133 Upper surface portion 201 Glass substrate 202 Surface electrode 202a Tin oxide film 202b Zinc oxide doped with aluminum ( AZO) film 203a p-type microcrystalline silicon film (p layer)
203b i-type microcrystalline silicon film (i layer)
203c n-type microcrystalline silicon film (n layer)
204 Back electrode 204a AZO film 204b Silver (Ag) thin film

Claims (7)

プラズマCVD法により微結晶半導体薄膜を製造する微結晶半導体薄膜製造方法であって、
プラズマ電極を備えた真空容器内に微結晶半導体薄膜を堆積する基板を配置する工程と、
前記真空容器内に水素を主成分に含むガスを連続的に供給しながら、少なくともシリコンまたはゲルマニウムを含む半導体材料ガスを断続的に供給するとともに、高周波電力を前記プラズマ電極に給電して前記プラズマ電極と前記基板との間にプラズマを生成して微結晶半導体薄膜を形成する微結晶半導体薄膜形成工程を含み、
前記微結晶半導体薄膜形成工程は、前記半導体材料ガスの供給をオン/オフ変調して前記半導体材料ガスを周期的に供給し、前記半導体材料ガスの供給をオンにしているときの前記高周波電力を前記半導体材料ガスの供給をオフにしているときの前記高周波電力よりも小さくし、前記オン/オフ変調の変調周波数または前記オン/オフ変調のデューティ比を経時的に変化させながら薄膜を形成すること、
を特徴とする微結晶半導体薄膜製造方法。
A microcrystalline semiconductor thin film manufacturing method for manufacturing a microcrystalline semiconductor thin film by a plasma CVD method,
Disposing a board of depositing a microcrystalline semiconductor film in a vacuum vessel having a plasma electrode,
While continuously supplying a gas containing a main component of hydrogen into the vacuum container, thereby intermittently supplying the semiconductor material gas containing at least silicon or germanium, the plasma by feeding high frequency power to the plasma electrode and a microcrystalline semiconductor film forming step of forming a microcrystalline semiconductor thin film by generating plasma between the electrode substrate,
The higher the microcrystalline semiconductor film forming Engineering, the high frequency power when the supply of the semiconductor material gas on / off modulating the semiconductor material gas periodically supplied, and to turn on the supply of the semiconductor material gas Is made smaller than the high-frequency power when the semiconductor material gas supply is turned off, and the thin film is formed while changing the modulation frequency of the on / off modulation or the duty ratio of the on / off modulation over time about,
A method for producing a microcrystalline semiconductor thin film.
前記変調周波数は、1Hzより大であること、The modulation frequency is greater than 1 Hz;
を特徴とする請求項1に記載の微結晶半導体薄膜製造方法。The method for producing a microcrystalline semiconductor thin film according to claim 1.
前記変調周波数を経時的に増加させること、
を特徴とする請求項1または2に記載の微結晶半導体薄膜製造方法。
Increasing the modulation frequency over time;
The method for producing a microcrystalline semiconductor thin film according to claim 1 or 2 .
前記変調周波数は、1Hzより大であり5Hz以下の範囲にあること、The modulation frequency is greater than 1 Hz and in the range of 5 Hz or less;
を特徴とする請求項3に記載の微結晶半導体薄膜製造方法。The method for producing a microcrystalline semiconductor thin film according to claim 3.
前記デューティ比を経時的に増加させること、
を特徴とする請求項1または2に記載の微結晶半導体薄膜製造方法。
Increasing the duty ratio over time;
The method for producing a microcrystalline semiconductor thin film according to claim 1 or 2 .
前記デューティ比は、10%〜80%の範囲にあること、The duty ratio is in the range of 10% to 80%;
を特徴とする請求項5に記載の微結晶半導体薄膜製造方法。The method for producing a microcrystalline semiconductor thin film according to claim 5.
前記微結晶半導体薄膜形成工程に先立って、前記半導体材料ガスの供給のオン/オフ変調制御の切り替えのタイミングと、前記真空容器内への前記半導体材料ガスの供給のオン/オフ変調のタイミングのずれを求めるずれ検出工程をさらに含み、
前記微結晶半導体薄膜形成工程では、前記ずれに基づいて前記プラズマ電極に印加する高周波電力の強度変調のタイミングと前記半導体材料ガスの供給のオン/オフ変調制御の切り替えのタイミングとに時間的なずれを設定すること、
を特徴とする請求項1〜のいずれか1つに記載の微結晶半導体薄膜製造方法。
Prior to the microcrystalline semiconductor thin film formation step, the timing of switching on / off modulation control of the semiconductor material gas supply and the timing of on / off modulation of the semiconductor material gas supply into the vacuum chamber are shifted. Further including a deviation detecting step for obtaining
In the microcrystalline semiconductor thin film forming step, there is a time lag between the intensity modulation timing of the high frequency power applied to the plasma electrode and the switching timing of the on / off modulation control of the semiconductor material gas supply based on the deviation. Setting
The method for producing a microcrystalline semiconductor thin film according to any one of claims 1 to 6 .
JP2012549654A 2010-12-24 2011-07-12 Microcrystalline semiconductor thin film manufacturing method Expired - Fee Related JP5502210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012549654A JP5502210B2 (en) 2010-12-24 2011-07-12 Microcrystalline semiconductor thin film manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010288703 2010-12-24
JP2010288703 2010-12-24
PCT/JP2011/065878 WO2012086242A1 (en) 2010-12-24 2011-07-12 Microcrystalline semiconductor thin film production process
JP2012549654A JP5502210B2 (en) 2010-12-24 2011-07-12 Microcrystalline semiconductor thin film manufacturing method

Publications (2)

Publication Number Publication Date
JPWO2012086242A1 JPWO2012086242A1 (en) 2014-05-22
JP5502210B2 true JP5502210B2 (en) 2014-05-28

Family

ID=46313529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012549654A Expired - Fee Related JP5502210B2 (en) 2010-12-24 2011-07-12 Microcrystalline semiconductor thin film manufacturing method

Country Status (3)

Country Link
JP (1) JP5502210B2 (en)
CN (1) CN103250233B (en)
WO (1) WO2012086242A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6035606B2 (en) * 2013-04-09 2016-11-30 株式会社日立ハイテクノロジーズ Plasma processing method and plasma processing apparatus
CN104716221A (en) * 2013-12-11 2015-06-17 中国电子科技集团公司第十八研究所 Method for preparing selenium vapor radio frequency cracking device
JP6670791B2 (en) * 2017-03-30 2020-03-25 東京エレクトロン株式会社 Method of inspecting flow controller and method of treating object

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110054A (en) * 1997-06-19 1999-01-19 Dainippon Screen Mfg Co Ltd Coating liquid coating device
JP2006295060A (en) * 2005-04-14 2006-10-26 Toppan Printing Co Ltd Non-monocrystal semiconductor material, method for manufacturing the same, photoelectric transfer element, and light emitting element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2284869B9 (en) * 2008-05-26 2015-10-21 Mitsubishi Electric Corporation Thin film formation device and semiconductor film manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110054A (en) * 1997-06-19 1999-01-19 Dainippon Screen Mfg Co Ltd Coating liquid coating device
JP2006295060A (en) * 2005-04-14 2006-10-26 Toppan Printing Co Ltd Non-monocrystal semiconductor material, method for manufacturing the same, photoelectric transfer element, and light emitting element

Also Published As

Publication number Publication date
CN103250233B (en) 2016-01-20
JPWO2012086242A1 (en) 2014-05-22
WO2012086242A1 (en) 2012-06-28
CN103250233A (en) 2013-08-14

Similar Documents

Publication Publication Date Title
US8474403B2 (en) Apparatus for forming thin film and method of manufacturing semiconductor film
KR101484152B1 (en) Method for forming a film with a graded bandgap by deposition of an amorphous material from a plasma
van den Donker et al. Highly efficient microcrystalline silicon solar cells deposited from a pure SiH4 flow
JP4484886B2 (en) Manufacturing method of stacked photoelectric conversion device
US20100024872A1 (en) Semiconductor layer manufacturing method, semiconductor layer manufacturing apparatus, and semiconductor device manufactured using such method and apparatus
US20100258169A1 (en) Pulsed plasma deposition for forming microcrystalline silicon layer for solar applications
US20100163100A1 (en) Photovoltaic Device and Process for Producing Same
US20130112264A1 (en) Methods for forming a doped amorphous silicon oxide layer for solar cell devices
JP2009152265A (en) Apparatus and method for manufacturing photoelectric converting element, and photoelectric converting element
Dornstetter et al. Deposition of high-efficiency microcrystalline silicon solar cells using SiF 4/H 2/Ar mixtures
JP5502210B2 (en) Microcrystalline semiconductor thin film manufacturing method
Van den Donker et al. Deposition of highly efficient microcrystalline silicon solar cells under conditions of low H2 dilution: the role of the transient depletion induced incubation layer
Lien et al. Deposition and characterization of high-efficiency silicon thin-film solar cells by HF-PECVD and OES technology
JP4761322B2 (en) Method for forming semiconductor film and method for manufacturing photoelectric conversion device
JP2008004813A (en) Silicon-based thin film photoelectric conversion element and manufacturing method and manufacturing apparatus therefor
JP5084784B2 (en) Microcrystalline silicon film manufacturing apparatus and microcrystalline silicon film manufacturing method
Van den Donker et al. Hidden parameters in the plasma deposition of microcrystalline silicon solar cells
JP2005317855A (en) Method of forming microcrystalline silicon film and photovoltaic element
KR20120060572A (en) Method for controlling the crystallinity of micro-crystal silicon thin film deposited by atmospheric pressure plasma cvd apparatus
JPH06204518A (en) Photovoltaic element, manufacture thereof and generator system
US20110275200A1 (en) Methods of dynamically controlling film microstructure formed in a microcrystalline layer
TWI407578B (en) Chemical vapor deposition process
JP5193981B2 (en) Multilayer photoelectric conversion device and manufacturing method thereof
JP2004087932A (en) Method of manufacturing photovoltaic element and photovoltaic element
Geng et al. Research Progresses on High Efficiency Amorphous and Microcrystalline Silicon-Based Thin Film Solar Cells

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140312

R150 Certificate of patent or registration of utility model

Ref document number: 5502210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees