KR20120060572A - Method for controlling the crystallinity of micro-crystal silicon thin film deposited by atmospheric pressure plasma cvd apparatus - Google Patents

Method for controlling the crystallinity of micro-crystal silicon thin film deposited by atmospheric pressure plasma cvd apparatus Download PDF

Info

Publication number
KR20120060572A
KR20120060572A KR1020100122148A KR20100122148A KR20120060572A KR 20120060572 A KR20120060572 A KR 20120060572A KR 1020100122148 A KR1020100122148 A KR 1020100122148A KR 20100122148 A KR20100122148 A KR 20100122148A KR 20120060572 A KR20120060572 A KR 20120060572A
Authority
KR
South Korea
Prior art keywords
substrate
thin film
electrode
silicon thin
crystallinity
Prior art date
Application number
KR1020100122148A
Other languages
Korean (ko)
Other versions
KR101181411B1 (en
Inventor
권정대
남기석
정용수
김종국
나종주
김도근
강재욱
이건환
이성훈
윤정흠
김동호
이규환
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR20100122148A priority Critical patent/KR101181411B1/en
Publication of KR20120060572A publication Critical patent/KR20120060572A/en
Application granted granted Critical
Publication of KR101181411B1 publication Critical patent/KR101181411B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/453Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating passing the reaction gases through burners or torches, e.g. atmospheric pressure CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: A method for controlling the crystallinity of a micro-crystal silicon thin film deposited by atmospheric pressure plasma CVD is provided to gently linearly change the crystallinity of a silicon thin film, thereby simplifying crystallinity control. CONSTITUTION: A method for controlling the crystallinity of a micro-crystal silicon thin film deposited by atmospheric pressure plasma CVD is as follows. Reaction gas for forming silicon and inert gas are injected into a CVD(Chemical Vapor Deposition) chamber(10) in which an electrode(20) is arranged on a substrate(30). Plasma, which is generated between the substrate and the electrode by applying power to the electrode, induces chemical reaction of the reaction gas so that a silicon thin film is formed on the substrate. During the silicon thin film forming process, the crystallinity of a micro-crystal silicon thin film is controlled by regulating the moving speed of the substrate to the electrode.

Description

대기압 플라즈마 화학기상증착법을 이용한 미세결정질 실리콘 박막의 결정화도 조절방법 {METHOD FOR CONTROLLING THE CRYSTALLINITY OF MICRO-CRYSTAL SILICON THIN FILM DEPOSITED BY ATMOSPHERIC PRESSURE PLASMA CVD APPARATUS}METHODS FOR CONTROLLING THE CRYSTALLINITY OF MICRO-CRYSTAL SILICON THIN FILM DEPOSITED BY ATMOSPHERIC PRESSURE PLASMA CVD APPARATUS}

본 발명은 대기압 플라즈마 CVD 장치를 사용하여 미세결정질 실리콘 박막을 형성하는 방법으로서, 보다 상세하게는 미세결정질 실리콘 박막의 결정화도를 종래에 비해 용이하게 조절할 수 있도록 하는 방법에 관한 것이다.
The present invention relates to a method of forming a microcrystalline silicon thin film using an atmospheric plasma CVD apparatus, and more particularly, to a method of easily controlling the degree of crystallinity of a microcrystalline silicon thin film as compared with the prior art.

최근 들어 세계적인 고유가 행진과 화석연료 고갈에 대응하기 위하여 대체 에너지원 발굴에 대한 필요성이 높아지고 있다. 태양광은 지상에서 가장 풍부하고 공해가 전혀 발생하지 않는 청정한 에너지원으로서 지구상에 공급되는 총 태양광 에너지는 초당 약 12만 테라와트(120×1015W)에 달한다. 이는 지구상의 인류가 사용하는 총 에너지의 10,000배에 해당되는 양이며, 이 태양광 에너지를 활용하는 기술을 개발하는 것은 국가의 당면한 에너지 및 환경문제를 해결하는 유력한 방안이 될 수 있다.Recently, the necessity of discovering alternative energy sources is increasing to cope with the global high oil price march and fossil fuel exhaustion. Sunlight is the cleanest and most pollution-free source of energy on earth, with a total of about 120,000 terawatts (120 × 10 15 W) of solar energy delivered to Earth. That's about 10,000 times the total energy used by humans on Earth, and developing technologies that use this solar energy can be a viable solution to the country's immediate energy and environmental problems.

태양전지는 p-n 접합을 이루는 반도체 다이오드에 태양광을 조사할 때 전자가 생성되는 광기전효과(photovoltaic effect)를 이용하여 태양광을 직접 전기로 변환하는 반도체 소자이다. 맑은 날 1㎠ 당 지표면까지 도달하는 태양에너지는 약 100mW인데(AM1.5 표준조건), 20%의 에너지 변환효율을 갖는 1㎠ 면적의 태양전지가 있다면 20mW의 전기에너지를 생성할 수 있다. 이러한 태양전지 산업화의 핵심과제는 높은 에너지 변환효율과 신뢰성(약 20년 이상의 수명)을 갖는 태양전지를 혁신적으로 저렴한 비용으로 만들 수 있는가 하는 것이다. 이에 따라 태양전지 기술의 발전은 대면적화, 저가화, 고효율화를 지향하고 있다.A solar cell is a semiconductor device that directly converts sunlight into electricity using a photovoltaic effect in which electrons are generated when sunlight is irradiated to a semiconductor diode forming a p-n junction. The solar energy reaching the ground surface per 1cm2 on a clear day is about 100mW (AM1.5 standard condition). If there is a 1cm2 solar cell with energy conversion efficiency of 20%, it can generate 20mW of electric energy. The key issue of the solar cell industrialization is whether the solar cells with high energy conversion efficiency and reliability (life of about 20 years or more) can be made at an innovative low cost. Accordingly, the development of solar cell technology is aiming at large area, low cost and high efficiency.

현재 1세대인 결정형 실리콘 태양전지는 높은 효율과 안정된 성능을 바탕으로 태양광발전 시장의 90%를 점유하고 있다.The first generation of crystalline silicon solar cells occupy 90% of the photovoltaic market based on high efficiency and stable performance.

그런데 단결정 실리콘이나 다결정 실리콘과 같은 결정형 실리콘을 이용하면 발전효율은 높아지지만 재료비가 비싸고 공정이 복잡하기 때문에 최근에는 유리나 플라스틱 등의 값싼 기판에 비정질 실리콘이나 화합물반도체 등을 증착하는 박막 태양전지가 주목을 받고 있다. 특히 박막 태양전지는 대면적화에 매우 유리할 뿐만 아니라 기판의 소재에 따라 플렉시블한 태양전지를 생산할 수 있다는 장점도 있다.However, the use of crystalline silicon such as monocrystalline silicon or polycrystalline silicon increases power generation efficiency, but the material cost is high and the process is complicated. Recently, thin film solar cells that deposit amorphous silicon or compound semiconductors on inexpensive substrates such as glass or plastic have attracted attention. I am getting it. In particular, the thin film solar cell is not only very advantageous for large area, but also has the advantage of producing a flexible solar cell according to the material of the substrate.

한편, 차세대 태양광 발전기술인 박막형 태양전지는 결정형 실리콘태양전지에 비해 에너지 회수기간이 절반 정도로 짧고, 소재 비용을 약 1/100로 줄일 수 있으며, 손쉽게 대면적화할 수 있기 때문에 제조비용의 혁신적인 절감이 가능할 것으로 전망되고 있다.On the other hand, thin-film solar cells, the next-generation photovoltaic technology, have half the energy recovery period compared to crystalline silicon solar cells, can reduce the material cost to about 1/100, and can easily be large-area, resulting in innovative savings in manufacturing cost. It is expected to be possible.

그런데 박막형 태양전지 중 비정질 실리콘을 이용하는 박막 태양전지는 고속공정의 구현에는 이점이 있으나 단결정 또는 다결정 실리콘을 이용하는 태양전지나 화합물반도체를 이용하는 태양전지에 비하여 에너지 변환효율이 매우 낮고, 빛에 장시간 노출되면 특성 열화 현상(Staebler-Wronski Effect)이 나타나서 시간이 갈수록 효율이 저하되는 문제점이 있다.However, thin-film solar cells using amorphous silicon among thin-film solar cells have advantages in implementing high-speed processes, but have lower energy conversion efficiency than solar cells using single crystal or polycrystalline silicon or solar cells using compound semiconductor. Deterioration phenomenon (Staebler-Wronski Effect) appears there is a problem that the efficiency decreases over time.

이러한 비정질 실리콘의 광열화 특성을 보완하기 위해, 최근 비정질과 단결정 실리콘의 경계물질로서 증착법에 따라 수십 내지 수백 nm의 결정크기를 가지며 비정질 실리콘과 같은 특성 열화현상이 없는 미세결정질 실리콘 성막 연구들이 많이 진행되고 있다.In order to supplement the photodegradation characteristics of amorphous silicon, many researches on microcrystalline silicon film formation have recently proceeded as a boundary material between amorphous and single crystal silicon and have a crystal size of several tens to several hundred nm according to the deposition method and have no characteristic deterioration such as amorphous silicon. It is becoming.

미세결정질 실리콘의 성막에는 주로 실란(SiH4)과 수소(H2)의 혼합 가스를 넣고 플라즈마를 이용한 화학기상증착(Chemical Vapor Deposition)법이 활용되는데, 이때 형성되는 실리콘 박막의 결정화도에 따라 결함 및 밴드 갭 에너지, 전도도 등이 달라지기 때문에 결정화도 제어가 태양전지의 에너지 변환효율에 큰 영향을 미친다.In order to form the microcrystalline silicon, a mixed gas of silane (SiH 4 ) and hydrogen (H 2 ) is used, and a chemical vapor deposition method using plasma is used. Because band gap energy, conductivity, etc. are different, crystallinity control has a great influence on the energy conversion efficiency of solar cells.

이때 일반적으로 사용되는 결정화도의 제어 방법은 반응가스로 사용되는 수소의 비율이 실란보다 많아지게 함으로써 결정화도가 높아지도록 하는 것이며, 이와 같이 결정화도가 높아지는 원리에 대해서는 플라즈마 내에서 발생된 수소 라디칼이 비정질 실리콘을 선택적으로 에칭함으로써 결정화된다는 가설(M. Heintze et al., J. Non-Cryst. Solids 164-166, 985 (1993))과, 수소 라디칼이 Si-H 결합과 발열반응하여 국부적인 열에 의한 어닐링으로 결정화가 된다는 가설(P. Roca i Cabarrocas et al., Appl. Phys. Lett. 66, 3609(1995))이 알려져 있다.In this case, the method of controlling the degree of crystallinity generally used is to increase the crystallinity by increasing the proportion of hydrogen used as the reaction gas than silane. As for the principle of increasing the degree of crystallinity, the hydrogen radicals generated in the plasma are treated with amorphous silicon. The hypothesis that it is crystallized by selective etching (M. Heintze et al., J. Non-Cryst. Solids 164-166, 985 (1993)), and the hydrogen radical exothermically reacts with the Si-H bond, resulting in local thermal annealing. The hypothesis of crystallization (P. Roca i Cabarrocas et al., Appl. Phys. Lett. 66, 3609 (1995)) is known.

그런데 반응가스에 포함되는 성분의 분율로 결정화도를 제어하는 방법은 특정 비율을 경계로 결정화도가 기하급수적으로 증가하는 경향을 보이기 때문에, 실리콘 박막의 결정화도를 제어하는데 어려움이 있다.
However, the method of controlling the crystallinity by the fraction of the components contained in the reaction gas has a tendency to increase the crystallinity exponentially around a specific ratio, which makes it difficult to control the crystallinity of the silicon thin film.

본 발명은 반응가스의 분율 조절에 의하는 종래의 실리콘 박막의 결정화도 제어 방법과 달리, 형성되는 실리콘 박막의 결정화도의 변화가 선형적으로 완만하게 이루어져 결정화도의 조절이 매우 용이한 실리콘 박막의 결정화도 조절 방법을 제공하는 것을 해결하려는 과제로 한다.
The present invention, unlike the conventional method for controlling the crystallinity of the silicon thin film by controlling the fraction of the reaction gas, the method of controlling the crystallinity of the silicon thin film is very easy to control the crystallinity because the change in crystallinity of the formed silicon thin film is linearly smooth To provide a solution to the problem.

상기한 목적을 달성하기 위해 본 발명은, CVD 장치를 이용하여 기판상에 형성되는 실리콘 박막의 결정화도를 조절하는 방법으로, (a) 기판 위에 전극이 배치된 CVD 챔버 내에 실리콘 형성용 반응가스와 불활성 가스를 주입하는 단계와, (b) 상기 전극에 전원을 인가하여 상기 전극과 기판 사이에 발생시킨 플라즈마로 상기 반응가스에 화학반응을 일으켜 상기 기판상에 실리콘 박막을 형성하는 단계를 포함하며, 상기 (b) 단계에서 상기 전극에 대한 기판의 움직임 속도의 조절을 통해, 형성되는 실리콘 박막의 결정화도을 조절하는 것을 특징으로 하는 방법을 제공한다.In order to achieve the above object, the present invention is a method for controlling the crystallinity of the silicon thin film formed on the substrate using a CVD apparatus, (a) the reaction gas for silicon formation and inert in the CVD chamber in which the electrode is disposed on the substrate Injecting a gas, and (b) applying a power to the electrode to chemically react the reaction gas with a plasma generated between the electrode and the substrate to form a silicon thin film on the substrate. In the step (b), by controlling the movement speed of the substrate with respect to the electrode, it provides a method characterized in that to control the crystallinity of the formed silicon thin film.

또한, 본 발명에 따른 방법에 있어서, 상기 전극은 구동장치에 연결된 회전축과 상기 회전축의 외주부에 원통형상으로 돌출 형성된 전극부를 포함하는 회전전극인 것을 특징으로 한다.In addition, in the method according to the present invention, the electrode is a rotating electrode including a rotating shaft connected to the driving device and an electrode portion protruding in a cylindrical shape on the outer peripheral portion of the rotating shaft.

또한, 본 발명에 따른 방법에 있어서, 상기 반응가스는 실란(SiH4) 및 수소(H2)인 것을 특징으로 한다.In the method according to the invention, the reaction gas is characterized in that the silane (SiH 4 ) and hydrogen (H 2 ).

또한, 본 발명에 따른 방법에 있어서, 상기 (b) 단계의 상기 기판의 온도는 100 ~ 300℃로 유지되는 것을 특징으로 한다. In addition, in the method according to the invention, the temperature of the substrate of the step (b) is characterized in that it is maintained at 100 ~ 300 ℃.

또한, 본 발명에 따른 방법에 있어서, 상기 기판의 움직임 속도는 1 ~ 25 mm/sec로 조절되는 것을 특징으로 한다.In addition, in the method according to the invention, the movement speed of the substrate is characterized in that it is adjusted to 1 ~ 25 mm / sec.

또한, 본 발명에 따른 방법에 있어서, 상기 기판의 움직임 속도는, 상기 전극은 고정되고 상기 기판의 움직이는 속도, 또는 상기 기판이 고정되고 상기 전극이 움직이는 속도, 또는 상기 기판과 전극이 동시에 움직일 때의 상대 속도에 의해 조절되는 것을 특징으로 한다.Further, in the method according to the present invention, the movement speed of the substrate is determined by the movement speed of the electrode and the movement of the substrate, or the movement speed of the substrate and the movement of the substrate, or the movement of the substrate and the electrode simultaneously. It is characterized by being controlled by the relative speed.

또한, 본 발명에 따른 방법에 있어서, 상기 기판의 움직임은 상기 전극의 중심에 대해 왕복운동 형식으로 이루어지는 것을 특징으로 한다.
In the method according to the invention, the movement of the substrate is characterized in that it is in a reciprocating manner with respect to the center of the electrode.

본 발명에 따른 방법에 의하면, 종래의 반응가스의 분압을 조절하는 방법에 비해 간단하면서도 재현성이 우수하게 결정화도를 조절할 수 있어, 다양한 결정화도의 실리콘 박막을 형성할 수 있다.
According to the method according to the present invention, the crystallinity can be adjusted more easily and reproducibly than in the conventional method of controlling the partial pressure of the reaction gas, thereby forming silicon thin films having various crystallinities.

도 1은 본 발명의 실시예에 따른 반응기를 적용한 대기압 플라즈마 CVD 장치의 개략도이다.
도 2는 본 발명의 실시예에 따른 플라즈마 생성용 원통 전극의 개략도이다.
도 3은 본 발명의 실시예에 따른 기판 움직임 속도에 따라 증착된 실리콘 박막의 결정화도 그래프이다.
도 4는 본 발명의 실시예에 따른 기판 움직임 속도가 1mm/sec일 때 증착된 실리콘 박막 내부의 TEM 사진이다.
도 5는 본 발명의 실시예에 따른 기판 움직임 속도가 1mm/sec일 때 증착된 실리콘 박막 내부의 고해상 TEM 사진이다.
도 6은 비교예에 따라 기판 움직임 속도가 25mm/sec일 때 증착된 실리콘 박막 내부의 TEM 사진이다.
도 7은 비교예에 따라 기판 움직임 속도가 25mm/sec일 때 증착된 실리콘 박막 내부의 고해상 TEM 사진이다.
1 is a schematic diagram of an atmospheric plasma CVD apparatus employing a reactor according to an embodiment of the present invention.
2 is a schematic diagram of a cylindrical electrode for plasma generation according to an embodiment of the present invention.
3 is a crystallinity graph of a silicon thin film deposited according to a substrate movement speed according to an embodiment of the present invention.
4 is a TEM image of a silicon thin film deposited when the substrate movement speed is 1mm / sec according to an embodiment of the present invention.
FIG. 5 is a high resolution TEM photograph of a silicon thin film deposited when the substrate movement speed is 1 mm / sec according to an exemplary embodiment of the present invention.
6 is a TEM photograph of a silicon thin film deposited when the substrate movement speed is 25 mm / sec according to a comparative example.
FIG. 7 is a high resolution TEM photograph of a silicon thin film deposited when the substrate movement speed is 25 mm / sec according to a comparative example.

이하에서는, 본 발명의 바람직한 실시예에 기초하여 본 발명을 보다 구체적으로 설명한다. 그러나 하기 실시예는 본 발명의 이해를 돕기 위한 일 예에 불과한 것으로 이에 의해 본 발명의 권리범위가 축소 및 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail based on the preferred embodiments of the present invention. However, the following examples are merely examples to help the understanding of the present invention, whereby the scope of the present invention is not reduced or limited.

도 1은 본 발명의 바람직한 실시예에 따른 미세결정질 실리콘 박막을 형성하기 위한 대기압 플라즈마 CVD 장치의 개략도이고, 도 2는 도 1의 장치에서 전극으로 사용된 플라즈마 생성용 원통 전극의 개략도이다.1 is a schematic diagram of an atmospheric plasma CVD apparatus for forming a microcrystalline silicon thin film according to a preferred embodiment of the present invention, and FIG. 2 is a schematic diagram of a cylindrical electrode for plasma generation used as an electrode in the apparatus of FIG.

도 1 및 도 2에 도시된 바와 같이, 본 발명에서 사용한 대기압 플라즈마 CVD 장치(1)는, 챔버(10)와 상기 챔버(10) 내부의 중앙에 배치되는 원통형 회전전극(20), 상기 원통형 회전전극(20)의 하부에 위치변경과 속도 조절이 가능하도록 배치되는 핫플레이트(30), 상기 핫플레이트(30) 상에 배치되는 유리기판(40), 반응가스를 상기 챔버(10)로 주입하기 위한 주입밸브(50), 반응가스를 상기 챔버(10) 밖으로 배출하기 위한 배출밸브(60)로 이루어진다.1 and 2, the atmospheric plasma CVD apparatus 1 used in the present invention includes a cylindrical rotating electrode 20 disposed in the center of the chamber 10 and the chamber 10, and the cylindrical rotation. Injecting the reaction gas into the chamber 10, the hot plate 30 disposed on the lower portion of the electrode 20, the glass substrate 40 disposed on the hot plate 30, and the reaction gas. Inlet valve 50 for, and the discharge valve 60 for discharging the reaction gas out of the chamber (10).

상기 챔버(10)는 금속판재를 가공하여 내부에 빈 공간이 형성되도록 한 직육면체 형상으로 이루어져 있으며, 일측에 상기 원통형 전극(20), 핫플레이트(30) 등을 장착하기 위한 장착구(미도시)가 형성되어 있다.The chamber 10 has a rectangular parallelepiped shape in which an empty space is formed by processing a metal plate, and a mounting hole (not shown) for mounting the cylindrical electrode 20 and the hot plate 30 on one side thereof. Is formed.

상기 원통형 회전전극(20)은 도 2에 도시된 바와 같이, 구동수단(미도시)에 의해 구동되며 전원이 인가되는 회전축(21)과 상기 회전축에 결합된 원통형의 전극부(22)로 구성되며, 상기 회전축(21)에 150MHz의 전원을 인가하여 상기 전극부(22)에서 방전을 일으켜 플라즈마를 생성시킨다. 이때 전극부(22)와 상기 유리기판(40) 사이의 간격은 0.1 ~ 1mm 사이로 조절될 수 있다.As shown in FIG. 2, the cylindrical rotating electrode 20 includes a rotating shaft 21 driven by a driving means (not shown) and a cylindrical electrode part 22 coupled to the rotating shaft. A 150 MHz power is applied to the rotating shaft 21 to generate a discharge in the electrode unit 22 to generate a plasma. At this time, the interval between the electrode unit 22 and the glass substrate 40 may be adjusted between 0.1 ~ 1mm.

상기 핫플레이트(30)는 박막을 형성하고자 하는 유리기판(30)을 가열하기 위한 것으로, 본 발명의 실시예에서는 150 ~ 300℃까지 가열할 수 있는 통상의 핫플레이트를 사용하였다. 또한 상기 핫플레이트(30)는 치구(미도시)에 장착되어 상기 회전전극(20)을 중심에 두고 좌우로 왕복구동시킬 수 있는 구동수단(미도시)에 의해, 도 1에 도시된 바와 같이 횡방향으로 왕복이동할 수 있으며, 이때 이동속도는 0.5 ~ 50mm/sec 범위로 조절될 수 있도록 하였다.The hot plate 30 is for heating the glass substrate 30 to form a thin film, in the embodiment of the present invention used a conventional hot plate that can be heated to 150 ~ 300 ℃. In addition, the hot plate 30 is mounted to the jig (not shown) by the drive means (not shown) that can reciprocate left and right around the rotating electrode 20, as shown in Figure 1 It can be reciprocated in the direction, and the movement speed was adjusted to be in the range of 0.5 ~ 50mm / sec.

본 발명의 실시예에서는 유리기판(40)으로 6×6㎝ 크기의 정사각형 형상의 유리기판을 사용하였다.In the exemplary embodiment of the present invention, a glass substrate having a square shape having a size of 6 × 6 cm is used as the glass substrate 40.

다음으로 전술한 대기압 플라즈마 CVD 장치(1)를 통해 미세결정립 실리콘 박막을 형성할 때 결정화도가 조절되는 과정에 대해 설명한다.Next, the process of adjusting the crystallinity when forming the microcrystalline silicon thin film through the above-mentioned atmospheric plasma CVD apparatus 1 will be described.

먼저, 상기 유리기판(40)을 상기 핫플레이트(30)에 올려놓고 가열하는데, 100℃ 미만일 경우에는 실리콘 박막의 결정화가 이루어지기 어렵고 300℃를 초과할 때는 실리콘 박막의 하부에 형성되는 투명전극의 전기적 특성을 저하시키기 때문에, 핫플레이트(30)의 가열온도는 100 ~ 300℃의 범위로 하는 것이 바람직하다. 본 발명의 실시예에서는 핫플레이트(30)의 온도를 250℃로 유지하였다.First, the glass substrate 40 is placed on the hot plate 30 and heated. When it is less than 100 ° C., crystallization of the silicon thin film is difficult to occur, and when the glass substrate is above 300 ° C., the transparent electrode is formed below the silicon thin film. In order to reduce an electrical characteristic, it is preferable to make heating temperature of the hotplate 30 into the range of 100-300 degreeC. In the embodiment of the present invention, the temperature of the hot plate 30 was maintained at 250 ° C.

실리콘을 증착하기 위한 반응가스로는 실란(SiH4)과 수소(H2)을 사용하였고, 불활성가스로는 헬륨(He)을 사용하였다. 한편 실란 대비 수소의 유량비는 10 ~ 130까지 가능한데, 본 발명의 실시예에서는 실란 대비 수소의 유량비를 70으로 고정하였으며, 실란과 수소의 라디칼 밀도를 높여주기 위한 헬륨은 10 liter/min 유량으로 챔버에 주입하였다. Silane (SiH 4 ) and hydrogen (H 2 ) were used as reaction gases for depositing silicon, and helium (He) was used as an inert gas. On the other hand, the flow rate ratio of hydrogen to silane can be up to 10 to 130. In the embodiment of the present invention, the flow rate ratio of hydrogen to silane is fixed at 70, and helium is used to increase the radical density of silane and hydrogen in the chamber at a flow rate of 10 liter / min. Injected.

상기 챔버(10) 내부의 반응가스의 압력은 30 ~ 500Torr 정도로 유지하는 것이 바람직한데, 본 발명의 실시예에서는 반응가스의 압력이 300Torr가 될 때까지 반응가스를 주입한 후 상기 주입밸브(50)를 차단하는 방법을 사용하였다.The pressure of the reaction gas inside the chamber 10 is preferably maintained at about 30 to 500 Torr. In the embodiment of the present invention, the reaction gas is injected until the pressure of the reaction gas reaches 300 Torr, and then the injection valve 50 A method of blocking was used.

또한 상기 유리 기판(40)과 원통형 전극(20)의 전극부(22) 사이의 간격은 0.5mm가 되도록 하였으며, 상기 원통형 전극(20)에는 150MHz의 전원을 이용하여 200W정도 전력을 인가하여 플라즈마를 형성하도록 하였다.In addition, the distance between the glass substrate 40 and the electrode portion 22 of the cylindrical electrode 20 is 0.5mm, and the cylindrical electrode 20 is applied to the plasma by applying a power of about 200W using a 150MHz power source To form.

그리고, 상기 유리기판(40)이 장착된 핫플레이트(30)는 상기 원통형 전극(20)의 전극부(22)를 중심으로 좌우 ±2.5cm씩 왕복 운동하도록 하였으며, 상기 핫플레이트(30)에 놓여진 유리기판(40)의 움직임 속도가 1 ~ 25 mm/sec의 범위가 되도록 변화시키면서 상기 유리기판(40) 상에 실리콘 박막이 증착되도록 하였다.In addition, the hot plate 30 on which the glass substrate 40 is mounted is reciprocated by left and right by ± 2.5 cm around the electrode part 22 of the cylindrical electrode 20, and placed on the hot plate 30. The silicon thin film was deposited on the glass substrate 40 while changing the movement speed of the glass substrate 40 to be in the range of 1 to 25 mm / sec.

이때 증착 시간은 유리기판(40)의 움직임 속도에 관계없이 모두 400초로 고정하였으며, 400초 후 증착된 실리콘 박막의 두께는 표면측정기(Surface Profiler)로 측정한 결과, 유리기판(40)의 동작 속도에 따라 거의 차이가 없었으며 대략 500±20nm정도의 편차를 나타냈다.At this time, the deposition time was fixed to 400 seconds regardless of the movement speed of the glass substrate 40, the thickness of the silicon thin film deposited after 400 seconds as a result of measuring by the Surface Profiler, the operation speed of the glass substrate 40 There was almost no difference and the deviation was about 500 ± 20nm.

형성된 각 실리콘 박막의 결정화도에 대한 정량분석은 라만분석기(Raman Spectroscopy)를 통해 얻었다. 라만분석기를 이용한 분석 시에, 480cm-1에서 나타나는 피크는 비정질 상에서 나타나는 것이며, 510과 520cm-1에 나타나는 피크는 결정질 상에서 나타나는 피크이므로, 결정화도는 하기 식 1로 계산하였다(참조문헌: P.Alpuim, V. Chu, J.P. Conde, Journal of Applied Physics, V87, N7, 3812 (1999)).Quantitative analysis of the crystallinity of each formed silicon thin film was obtained by Raman Spectroscopy. Will appear at the time of analysis using Raman analyzer, it is on the peak appearing in the amorphous 480cm -1, because peaks appear at 510 and 520cm -1 is a peak appearing on the crystalline and the crystallinity was calculated by the following formula 1 (reference: P.Alpuim , V. Chu, JP Conde, Journal of Applied Physics, V87, N7, 3812 (1999)).

[식 1][Formula 1]

Xc=(I510cm -1+I520cm -1)/(I480cm -1+I510cm -1+I520cm -1) Xc = (I 510cm -1 + I 520cm -1) / (I 480cm -1 + I 510cm -1 + I 520cm -1)

본 발명의 실시예에 따른 증착 조건으로 유리기판(40) 상에 실리콘 박막을 증착한 후 라만분석기(Raman Spectroscopy)를 이용하여 분석한 결과, 도 3에서 보여지는 바와 같이 기판의 움직임 속도가 1mm/sec일 때는 실리콘 결정화도가 23% 정도였으며, 동작 속도를 25mm/sec까지 증가시킴에 따라 실리콘 결정화도가 50%까지 거의 선형적으로 완만하게 증가하는 경향을 나타내었다.After the deposition of the silicon thin film on the glass substrate 40 in the deposition conditions according to the embodiment of the present invention and analyzed using Raman spectroscopy (Raman Spectroscopy), as shown in Figure 3 the movement speed of the substrate 1mm / At sec, the silicon crystallinity was about 23%, and as the operating speed was increased up to 25mm / sec, the silicon crystallinity tended to increase almost linearly to 50%.

또한 형성된 실리콘 박막 내부 상태를 정성적으로 확인하기 위해 투과전자현미경(TEM)을 이용하여 미세 결정상태를 관찰하였다.In addition, in order to qualitatively check the internal state of the formed silicon thin film, a fine crystal state was observed using a transmission electron microscope (TEM).

도 4는 기판 움직임 속도 1mm/sec의 조건에서 증착된 실리콘 박막의 단면을 투과전자현미경으로 관찰한 사진이다. 도 4에 나타난 바와 같이 1mm/sec의 기판 움직임 속도로 증착된 실리콘 박막의 경우, 비정질 층과 결정질 층이 교대로 증착되어 있는 구조를 가짐을 알 수 있다.4 is a photograph of a cross section of a silicon thin film deposited under a substrate movement speed of 1 mm / sec with a transmission electron microscope. As shown in FIG. 4, it can be seen that the silicon thin film deposited at a substrate movement speed of 1 mm / sec has a structure in which an amorphous layer and a crystalline layer are alternately deposited.

또한, 도 5는 기판 움직임 속도 1mm/sec의 조건에서 증착된 실리콘 박막을 고해상도의 고배율로 TEM으로 관찰한 결과를 나타낸 것인데, 도 5에 보여진 바와 같이 1mm/sec의 기판 움직임 속도에서 증착된 실리콘 박막의 경우, 실리콘 격자들이 보이는 결정질 층과 보이지 않는 비정질 층이 혼합되어 있음도 확인되었다.In addition, FIG. 5 shows the results of observing a silicon thin film deposited at a substrate movement speed of 1 mm / sec by TEM at a high resolution with a high resolution. As shown in FIG. 5, a silicon thin film deposited at a substrate movement speed of 1 mm / sec is shown. In the case of, it was also confirmed that the silicon crystalline layers visible and the invisible amorphous layer were mixed.

도 6은 기판 움직임 속도 25mm/sec의 조건에서 증착된 실리콘 박막을 투과전자현미경으로 관찰한 사진이다. 도 6에서 보여지는 바와 같이, 유리기판(40)과 그 위에 형성된 실리콘 박막 사이에 얇은 비정질층이 보이지만 그 위로는 모두 결정질 실리콘 박막이 형성되어 있음을 알 수 있다. 6 is a photograph of a silicon thin film deposited under a substrate movement speed of 25 mm / sec under a transmission electron microscope. As shown in FIG. 6, although a thin amorphous layer is visible between the glass substrate 40 and the silicon thin film formed thereon, it can be seen that the crystalline silicon thin film is formed all over it.

한편 고해상 TEM으로 결정질 내부를 확인한 결과, 도 7에 보여지는 바와 같이 결정질 실리콘 박막의 내부는 기판 움직임 속도 1mm/sec에 비하여 대부분 실리콘 격자로 이루어져 있음을 확인하였다. 그러므로, 기판 움직임 속도가 빨라질수록 대부분 결정질로 이루어진 결정화층이 강화되는 현상이 나타나며, 이와 같은 결과는 상기한 라만분석기를 이용한 정량분석의 결과와 일치한다.On the other hand, as a result of confirming the crystalline inside with a high resolution TEM, it was confirmed that the inside of the crystalline silicon thin film is composed of the silicon lattice as compared to the substrate movement speed of 1mm / sec as shown in FIG. Therefore, the faster the substrate movement speed, the stronger the crystallization layer, which is mainly composed of crystalline, appears. This result is consistent with the result of quantitative analysis using the Raman analyzer.

도 3에서 보여진 바와 같이, 본 발명의 실시예에 따른 방법에 의하면 형성되는 실리콘 박막의 결정화도가 특정 범위에서 급격하게 변화하지 않고 완만하게 선형적으로 변화한다. 그러므로 기판의 움직임 속도를 통해 실리콘 박막의 결정화도를 조절할 경우 종래의 반응가스 분율의 조절에 의한 결정화도 조절과 달리, 원하는 정도의 결정화도를 용이하게 얻을 수 있게 된다.
As shown in FIG. 3, according to the method of the embodiment of the present invention, the crystallinity of the silicon thin film to be formed does not change abruptly in a specific range but smoothly and linearly. Therefore, when the degree of crystallinity of the silicon thin film is controlled through the movement speed of the substrate, unlike the conventional method of controlling the degree of crystallization by controlling the reaction gas fraction, it is possible to easily obtain a desired degree of crystallinity.

Claims (7)

CVD 장치를 이용하여 기판상에 형성되는 실리콘 박막의 결정화도를 조절하는 방법으로,
(a) 기판 위에 전극이 배치된 CVD 챔버 내에 실리콘 형성용 반응가스와 불활성 가스를 주입하는 단계와,
(b) 상기 전극에 전원을 인가하여 상기 전극과 기판 사이에 발생시킨 플라즈마로 상기 반응가스에 화학반응을 일으켜 상기 기판상에 실리콘 박막을 형성하는 단계를 포함하며,
상기 (b) 단계에서 상기 전극에 대한 기판의 움직임 속도의 조절을 통해, 형성되는 실리콘 박막의 결정화도을 조절하는 것을 특징으로 하는 방법.
In the method of controlling the crystallinity of the silicon thin film formed on the substrate using a CVD apparatus,
(a) injecting a reactive gas for forming silicon and an inert gas into a CVD chamber in which electrodes are disposed on the substrate;
(b) forming a silicon thin film on the substrate by applying a power to the electrode and causing a chemical reaction to the reaction gas with a plasma generated between the electrode and the substrate,
And controlling the crystallinity of the formed silicon thin film by adjusting the movement speed of the substrate with respect to the electrode in the step (b).
제 1 항에 있어서,
상기 전극은 구동장치에 연결된 회전축과 상기 회전축의 외주부에 원통형상으로 돌출 형성된 전극부를 포함하는 것을 특징으로 하는 방법.
The method of claim 1,
The electrode is characterized in that it comprises a rotating shaft connected to the drive device and an electrode portion protruding in a cylindrical shape on the outer peripheral portion of the rotating shaft.
제 1 항에 있어서,
상기 반응가스는 실란(SiH4) 및 수소(H2)인 것을 특징으로 하는 방법.
The method of claim 1,
The reaction gas is characterized in that the silane (SiH 4 ) and hydrogen (H 2 ).
제 1 항에 있어서,
상기 (b) 단계에 있어서, 상기 기판의 온도는 100 ~ 300℃로 유지되는 것을 특징으로 하는 방법.
The method of claim 1,
In the step (b), the temperature of the substrate is characterized in that it is maintained at 100 ~ 300 ℃.
제 4 항에 있어서,
상기 기판의 움직임 속도는 1 ~ 25 mm/sec로 조절되는 것을 특징으로 하는 방법.
The method of claim 4, wherein
The movement speed of the substrate is characterized in that it is adjusted to 1 ~ 25 mm / sec.
제 1 항에 있어서,
상기 기판의 움직임 속도는, 상기 전극은 고정되고 상기 기판의 움직이는 속도, 또는 상기 기판이 고정되고 상기 전극이 움직이는 속도, 또는 상기 기판과 전극이 동시에 움직일 때의 상대 속도에 의해 조절되는 것을 특징으로 하는 방법.
The method of claim 1,
The movement speed of the substrate is controlled by the speed at which the electrode is fixed and the movement of the substrate, or the relative speed when the substrate is fixed and the electrode moves, or when the substrate and the electrode move simultaneously. Way.
제 1 항에 있어서,
상기 기판의 움직임은 상기 전극의 중심에 대해 왕복운동 형식으로 이루어지는 것을 특징으로 하는 방법.
The method of claim 1,
The movement of the substrate is in a reciprocating manner with respect to the center of the electrode.
KR20100122148A 2010-12-02 2010-12-02 Method for controlling the crystallinity of micro-crystal silicon thin film deposited by atmospheric pressure plasma cvd apparatus KR101181411B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20100122148A KR101181411B1 (en) 2010-12-02 2010-12-02 Method for controlling the crystallinity of micro-crystal silicon thin film deposited by atmospheric pressure plasma cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20100122148A KR101181411B1 (en) 2010-12-02 2010-12-02 Method for controlling the crystallinity of micro-crystal silicon thin film deposited by atmospheric pressure plasma cvd apparatus

Publications (2)

Publication Number Publication Date
KR20120060572A true KR20120060572A (en) 2012-06-12
KR101181411B1 KR101181411B1 (en) 2012-09-19

Family

ID=46611465

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20100122148A KR101181411B1 (en) 2010-12-02 2010-12-02 Method for controlling the crystallinity of micro-crystal silicon thin film deposited by atmospheric pressure plasma cvd apparatus

Country Status (1)

Country Link
KR (1) KR101181411B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101556677B1 (en) 2014-02-25 2015-10-01 성균관대학교산학협력단 Superhydrophobic thin film, and preparing method of the same
KR102658733B1 (en) * 2022-11-16 2024-04-19 범아유니텍(주) Spindle unit for torque and acoustic inspection of bearing products

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3857024B2 (en) 2000-07-17 2006-12-13 株式会社神戸製鋼所 Method for forming microcrystalline silicon thin film
JP2008218796A (en) 2007-03-06 2008-09-18 Kobe Steel Ltd Thin-film transistor manufacturing device and thin-film transistor manufacturing method

Also Published As

Publication number Publication date
KR101181411B1 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
US9099585B2 (en) Method of stabilizing hydrogenated amorphous silicon and amorphous hydrogenated silicon alloys
JP4814307B2 (en) Method for producing photovoltaic cells based on thin film silicon
US20090178711A1 (en) Polycrystalline silicon solar cell having high efficiency and method for fabricating the same
CN103000742B (en) A kind of solar cell of band gap gradual change silicon quantum dot multilayer film and preparation method
CN101820007B (en) High-conversion rate silicon and thin film compound type multijunction PIN solar cell and manufacturing method thereof
CN1588649A (en) Method for preparing silicon thin film heterojunction solar cell
JP2009152265A (en) Apparatus and method for manufacturing photoelectric converting element, and photoelectric converting element
CN104851931B (en) Cadmium telluride diaphragm solar battery and its manufacture method with gradient-structure
JPH04266019A (en) Film formation
JP2007281156A (en) Rear-surface-electrode type semiconductor heterojunction solar battery, and manufacturing method and apparatus thereof
US8211738B2 (en) Polycrystalline silicon solar cell having high efficiency and method for fabricating the same
CN101609796B (en) Film forming method and method for manufacturing film solar battery
JPH04266066A (en) Photoelectromotive force element
CN104733548B (en) There is silicon-based film solar cells and its manufacture method of quantum well structure
KR101181411B1 (en) Method for controlling the crystallinity of micro-crystal silicon thin film deposited by atmospheric pressure plasma cvd apparatus
CN106711288B (en) A kind of preparation method of Nano silicon-crystal thin film solar cell
US4839312A (en) Fluorinated precursors from which to fabricate amorphous semiconductor material
CN101894871A (en) High-conversion rate silicon crystal and thin film compound type unijunction PIN (Positive Intrinsic-Negative) solar battery and manufacturing method thereof
JP5502210B2 (en) Microcrystalline semiconductor thin film manufacturing method
CN109037392A (en) A kind of production technology of graphene/silicon structure solar battery
CN103594541A (en) Polycrystalline silicon/monocrystalline silicon heterojunction structure applied to solar cell and preparation method thereof
JP3542510B2 (en) Method for forming non-single-crystal semiconductor film and photovoltaic element, and apparatus for forming non-single-crystal semiconductor film
JPH04266067A (en) Photovoltaic element
TWI436493B (en) Solar cell with simple electrode design and manufacturing method thereof
CN104779309B (en) Silicon-based film solar cells and its manufacturing method with gradient-structure

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150604

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee