JPH04367221A - Method and apparatus for formation of nonsingle-crystal silicon film - Google Patents

Method and apparatus for formation of nonsingle-crystal silicon film

Info

Publication number
JPH04367221A
JPH04367221A JP3169138A JP16913891A JPH04367221A JP H04367221 A JPH04367221 A JP H04367221A JP 3169138 A JP3169138 A JP 3169138A JP 16913891 A JP16913891 A JP 16913891A JP H04367221 A JPH04367221 A JP H04367221A
Authority
JP
Japan
Prior art keywords
crystal silicon
film
silicon film
deposited
nonsingle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3169138A
Other languages
Japanese (ja)
Inventor
Izumi Tabata
泉 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3169138A priority Critical patent/JPH04367221A/en
Publication of JPH04367221A publication Critical patent/JPH04367221A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To form a stable and high-quality film wherein its deterioration is small by a method wherein a nonsingle-crystal silicon film is deposited while repeating alternately the steps of depositing nonsingle-crystal silicon layers on a substrate and irradiating the deposited nonsingle-crystal silicon layer with a hydrogen plasma. CONSTITUTION:A nonsingle-crystal silicon film is formed by repeating alternately the steps of depositing single-crystal silicon films on a substrate and irradiating the deposited nonsingle-crystal silicon film with a hydrogen plasma. When the nonsingle-crystal silicon film is deposited, high-frequency electric power and microwave electric power are applied. When it is irradiated with the hydrogen plasma, microwave electric power is applied and high-frequency electric power is not applied. For example, while a raw-material gas (CH4 or the like) is being decomposed by RF electric power during the deposition time tD, a hydrogen plasma is applied by means of microwave electric power and nonsingle-crystal silicon is deposited; after that, the raw-material gas is stopped during the tA, and only the hydrogen plasma is applied by means of microwave electric power.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、非単結晶シリコン膜の
成膜方法に関するものであり、特に大面積の非単結晶シ
リコンデバイスに適した非単結晶シリコン膜の成膜方法
及びその装置に関する。
[Field of Industrial Application] The present invention relates to a method for forming a non-single crystal silicon film, and more particularly to a method and apparatus for forming a non-single crystal silicon film suitable for large-area non-single crystal silicon devices. .

【0002】0002

【従来の技術】従来、非単結晶シリコンデバイスの堆積
膜(尚、非単結晶とはアモルファス、マイクロクリスタ
ル、ポリクリスタルを含む)で、例えばアモルファスシ
リコン膜(以下a−Si膜と略記)の製造方法としては
、SiH4またはSi2 H6 を成膜ガスとするRF
プラズマCVD法(いわゆるGD法)や、マイクロ波プ
ラズマCVD法、あるいは水素ガス存在下でSiターゲ
ットによりArプラズマ中で行なう反応性スパッタリン
グ法などが用いられてきた。
[Prior Art] Conventionally, a deposited film for a non-single crystal silicon device (non-single crystal includes amorphous, microcrystal, and polycrystal), such as an amorphous silicon film (hereinafter abbreviated as a-Si film), has been manufactured. The method is RF using SiH4 or Si2H6 as a film forming gas.
A plasma CVD method (so-called GD method), a microwave plasma CVD method, or a reactive sputtering method performed in Ar plasma using a Si target in the presence of hydrogen gas has been used.

【0003】また更に、実験的には、この他にも光CV
D法、ECRCVD法、水素ガス存在下でのSiの蒸着
法、などの報告があり、Si2 H6 などによる熱C
VD法での成膜例もある。
Furthermore, in addition to this, optical CV
D method, ECRCVD method, Si vapor deposition method in the presence of hydrogen gas, etc. have been reported.
There are also examples of film formation using the VD method.

【0004】これらの方法により得られるa−Si膜の
ほとんどは、水素を10%又はそれ以上含むいわゆる水
素化a−Siであり、a−Siデバイスに利用できる電
子材料としての特性を示すものはすべて10%又はそれ
以上の水素を含む。
Most of the a-Si films obtained by these methods are so-called hydrogenated a-Si containing 10% or more hydrogen, and only those that exhibit properties as electronic materials that can be used in a-Si devices All contain 10% or more hydrogen.

【0005】このようなa−Si膜の製法として最も普
及しているものは、プラズマCVD法で、多くの場合S
iH4 またはSi2 H6 ガスを用い、必要に応じ
て水素ガスで希釈して13.56MHz又は2.45G
Hz の高周波でプラズマを発生させ、プラズマにより
成膜ガスを分解して反応性のある前駆体をつくり、基板
上にa−Si膜を堆積させている。
The most widespread method for producing such a-Si films is the plasma CVD method, in which S
Using iH4 or Si2 H6 gas, dilute with hydrogen gas as necessary to achieve 13.56MHz or 2.45G.
Plasma is generated with a high frequency of Hz, and the plasma decomposes the film forming gas to create a reactive precursor, and the a-Si film is deposited on the substrate.

【0006】前記成膜ガス中にPH3 ,B2 H6 
,BF3 などのドーピングガスを添加すれば、n型又
はp型のa−Si膜が形成されるので、これらを利用し
てさまざまなa−Siデバイスが作られてきた。
[0006] In the film forming gas, PH3, B2 H6
, BF3, etc., an n-type or p-type a-Si film is formed, and various a-Si devices have been made using these.

【0007】a−Si膜の場合には、単結晶Siと違っ
て低温基板やガラス基板の上に成膜でき、大面積化も容
易でさらに光吸収が結晶よりも強いこと、特性が等方的
で方向性を持たないこと、などのため、結晶とは異なる
利用分野が開けた。主な非単結晶シリコンデバイスとし
ては、太陽電池、ラインセンサーやエリアセンサーなど
のイメージセンサー、液晶ディスプレー駆動や光センサ
ーのスイッチングに使われるTFT又はTFTアレイあ
るいはマトリックス、電子写真感光体などが上げられる
。単一の光センサーなどの例はあるが、非単結晶シリコ
ンデバイスの中心はやはりその特性を生かした上記の大
面積デバイスである。
In the case of an a-Si film, unlike single-crystal Si, it can be formed on a low-temperature substrate or a glass substrate, it can easily be made into a large area, and it has stronger light absorption than crystals and isotropic properties. Because it has no direction and has no direction, it has opened up a field of use different from that of crystals. Main non-monocrystalline silicon devices include solar cells, image sensors such as line sensors and area sensors, TFTs or TFT arrays or matrices used for driving liquid crystal displays and switching optical sensors, and electrophotographic photoreceptors. Although there are examples such as single optical sensors, the core of non-single crystal silicon devices is the above-mentioned large-area device that takes advantage of its characteristics.

【0008】[0008]

【発明が解決しようとしている課題】しかしながら、イ
メージセンサー、太陽電池、などの光電変換を利用した
デバイスに応用されている従来のプラズマCVD等の成
膜プロセスにより作製されたa−Si膜等の非単結晶シ
リコンは、光劣化(いわゆるStabler−Wron
ski効果)現象により、特性が低下するという問題が
ある。
[Problems to be Solved by the Invention] However, non-conforming materials such as a-Si films produced by conventional film-forming processes such as plasma CVD, which are applied to devices using photoelectric conversion such as image sensors and solar cells, are difficult to solve. Single crystal silicon suffers from photodegradation (so-called Stabler-Wron).
There is a problem in that the characteristics deteriorate due to the phenomenon (ski effect).

【0009】この光劣化の原因は、a−Si膜中に存在
するダングリングボンドや、Siどうしの弱い結合が切
れることなどにより、光電変換効率が低下するためと考
えられている。
The cause of this photodeterioration is thought to be that the photoelectric conversion efficiency decreases due to dangling bonds existing in the a-Si film or weak bonds between Si being broken.

【0010】光劣化の程度は、a−Si膜のプロセス条
件(基板温度、成膜圧力、原料ガス濃度、分解パワーな
ど)の違いによりさまざまである。
The degree of photodegradation varies depending on the process conditions of the a-Si film (substrate temperature, film forming pressure, source gas concentration, decomposition power, etc.).

【0011】また、一般的に作製されているものでは、
膜中に水素を10at%、またはそれ以上含んでおり、
このため緻密な構造が得られていない。
[0011] Also, among the commonly produced ones,
The film contains 10 at% or more of hydrogen,
For this reason, a dense structure cannot be obtained.

【0012】この膜中水素濃度を低くするため、単純に
高温条件で水素を減少させていくと、Siの結晶化が促
進され、光吸収係数が低下したり、結晶粒界の影響によ
り均一性が低下するなどの欠点が生じ、これは特に受光
デバイスに用いる場合、不都合なことが多くなる。
In order to lower the hydrogen concentration in this film, if hydrogen is simply reduced under high temperature conditions, the crystallization of Si will be promoted, the light absorption coefficient will decrease, and the uniformity will be reduced due to the influence of crystal grain boundaries. However, there are disadvantages such as a decrease in the optical density, which is often inconvenient especially when used in a light-receiving device.

【0013】また、薄膜トランジスターに用いた場合で
も、上記のような劣化や、不均一性などにより特性に大
きな問題を与える。
Further, even when used in thin film transistors, the above-mentioned deterioration and non-uniformity cause serious problems in characteristics.

【0014】このようなa−Siデバイスの劣化や不安
定さは、特に大面積デバイスの場合には重大であり、製
造の歩留やコストに支障を与えるという問題がある。 (発明の目的)したがって本発明は、劣化が少なく、安
定した、高品質な非単結晶シリコン膜の成膜方法を提供
するとともに、これを用いることにより同様に特性の優
れたa−Siデバイスを提供することを目的とする。
[0014] Such deterioration and instability of a-Si devices are particularly serious in the case of large-area devices, and pose a problem in that they impede manufacturing yield and cost. (Objective of the Invention) Therefore, the present invention provides a method for forming a stable, high-quality non-single-crystal silicon film with little deterioration, and by using this method, an a-Si device with similar excellent characteristics can be produced. The purpose is to provide.

【0015】[0015]

【課題を解決するための手段及び作用】上述した本発明
の目的は、非単結晶シリコンたとえばa−Siデバイス
の製造方法において、a−Si層を成膜する段階で下記
の方法を用いることにより達成される。
[Means and Effects for Solving the Problems] The above-mentioned object of the present invention is to provide a method for manufacturing non-single crystal silicon, for example, an a-Si device, by using the following method in the step of forming an a-Si layer. achieved.

【0016】即ち、基体上に非単結晶シリコン層を堆積
する工程と、堆積した非単結晶シリコン層に水素プラズ
マ照射をする工程とを交互に繰り返しながら堆積を行な
う非単結晶シリコン膜の堆積方法において、非単結晶シ
リコン層の堆積時は高周波(RF)電力とマイクロ波電
力を用い、水素プラズマ照射時はマイクロ波電力を用い
ることとする。また上記方法において、RF電力は非単
結晶シリコン層堆積時と水素プラズマ照射時の切り換え
に合わせてON/OFFする。
That is, a method for depositing a non-single-crystal silicon film in which the steps of depositing a non-single-crystal silicon layer on a substrate and irradiating the deposited non-single-crystal silicon layer with hydrogen plasma are alternately repeated. In this example, radio frequency (RF) power and microwave power are used when depositing a non-single crystal silicon layer, and microwave power is used when irradiating hydrogen plasma. Further, in the above method, the RF power is turned ON/OFF in accordance with the switching between the time of depositing the non-single crystal silicon layer and the time of irradiation with hydrogen plasma.

【0017】また、上記成膜方法を実行可能な成膜装置
により、上記課題を解決しようとすものである。
Another object of the present invention is to solve the above-mentioned problems by using a film-forming apparatus capable of carrying out the film-forming method described above.

【0018】以下、本発明の手段及びそれによる作用に
ついて、更に詳しく説明する。
The means of the present invention and its effects will be explained in more detail below.

【0019】本発明でa−Si膜を堆積する手順は、図
1に示すように、一定時間tD の間a−Si層の堆積
を行った後、この堆積したa−Si層に対して別の一定
時間tA だけ水素プラズマ照射をするという一組のス
テップを繰り返すことである。堆積時間tD の間は、
原料ガス(SiH4 またはSi2 H6 )をRF電
力で分解しながら、一方でマイクロ波電力で水素プラズ
マを照射し、非単結晶シリコンを堆積し、その後のtA
 の間は原料ガスは停止してマイクロ波電力で水素プラ
ズマのみを照射する。この間はRF電力を停止する。
The procedure for depositing an a-Si film in the present invention is as shown in FIG. The process consists of repeating a set of steps of irradiating hydrogen plasma for a certain period of time tA. During the deposition time tD,
While the raw material gas (SiH4 or Si2 H6) is decomposed using RF power, hydrogen plasma is irradiated using microwave power to deposit non-single crystal silicon, and the subsequent tA
During this period, the source gas is stopped and only hydrogen plasma is irradiated using microwave power. During this time, RF power is stopped.

【0020】一例として、tD の間の堆積速度をVD
 とすると、各ステップをn回繰り返した後の堆積膜厚
Lと、これに要する時間tT は、単純に計算すると次
のようになる。
As an example, let the deposition rate during tD be VD
Then, the deposited film thickness L after each step is repeated n times and the time tT required for this are simply calculated as follows.

【0021】[0021]

【数1】L=vD tP n[Equation 1] L=vD tP n

【0022】[0022]

【数2】tT =(tD +tA )nしたがって平均
的な堆積速度VD は、
[Equation 2] tT = (tD + tA)n Therefore, the average deposition rate VD is

【0023】[0023]

【数3】VD =L/tT =tD /(tD+tA 
)*VDとなる。実際に成膜すると、Lは上式の値にほ
ぼ一致する。各ステップ毎にtD,vD,tA が一定
でもあるいは変化してもさしつかえなく適切な膜厚を得
ることができる。
[Math. 3] VD = L/tT = tD / (tD+tA
)*VD. When a film is actually formed, L almost matches the value of the above formula. An appropriate film thickness can be obtained even if tD, vD, and tA are constant or varied in each step.

【0024】tA の間、堆積膜表面は、水素のマイク
ロ波プラズマから原子状水素の照射を受ける。この間の
メカニズムは必ずしも明らかでないが、水素原子が堆積
膜の中にある程度浸透し、膜中に存在する過剰の水素原
子の引き抜きや、Siネットワークの組変え(構造緩和
)が起きると考えられ、ダングリングボンドが少なく緻
密なa−Si膜が得られる。
During tA, the surface of the deposited film is irradiated with atomic hydrogen from a hydrogen microwave plasma. The mechanism behind this is not necessarily clear, but it is thought that hydrogen atoms penetrate into the deposited film to some extent, extracting excess hydrogen atoms existing in the film, and recombining the Si network (structural relaxation). A dense a-Si film with fewer ring bonds can be obtained.

【0025】また、各ステップの堆積膜厚は、薄すぎる
とアモルファス構造を安定に保つことができず、水素原
子の供給により膜中の水素が引き抜かれ、微結晶化、多
結晶化が促進される。逆に厚すぎると堆積膜に水素原子
がうまく浸透せず、膜中で構造緩和が進みにくくなる。 従ってtD の間に堆積する膜厚及び膜表面に供給され
る原子状水素量、照射時間TA によってa−Si又は
μc−Siなどを含む非単結晶シリコンが形成される。
Furthermore, if the thickness of the deposited film in each step is too thin, it will not be possible to maintain a stable amorphous structure, and hydrogen in the film will be extracted by the supply of hydrogen atoms, promoting microcrystalization and polycrystalization. Ru. On the other hand, if it is too thick, hydrogen atoms will not penetrate well into the deposited film, making it difficult for structural relaxation to proceed in the film. Therefore, non-single crystal silicon containing a-Si or μc-Si is formed depending on the thickness of the film deposited during tD, the amount of atomic hydrogen supplied to the film surface, and the irradiation time TA.

【0026】水素プラズマ照射時は高周波(RF)電力
を停止しているので、RFプラズマによるプラズマ・ダ
メージを増やすことなく、膜中の水素濃度をダングリン
グボンドを増加させずに5at%またはそれ以下にまで
低下させることができる。
Since radio frequency (RF) power is stopped during hydrogen plasma irradiation, the hydrogen concentration in the film can be reduced to 5 at% or less without increasing plasma damage due to RF plasma and without increasing dangling bonds. can be reduced to.

【0027】[0027]

【実施例】【Example】

(実施例1)以下、本発明の実施例について詳細に説明
する。図2は、本実施例で用いる成膜装置の模式的な構
造図である。図2の装置をa−Siの成膜に用いること
により、図3のpin構成持つpin型光起電力素子を
作った。図3は、本実施例で作製したpin型光起電力
素子を模式的に表したものである。
(Example 1) Examples of the present invention will be described in detail below. FIG. 2 is a schematic structural diagram of a film forming apparatus used in this example. By using the apparatus shown in FIG. 2 to form an a-Si film, a pin-type photovoltaic device having the pin configuration shown in FIG. 3 was manufactured. FIG. 3 schematically shows the pin-type photovoltaic device produced in this example.

【0028】図3において、本実施例は、光が図の上部
から入射する構造の光起電力素子であり、図において3
00は光起電力素子本体、301は基板、302は下部
電極、303はn型半導体層、304はi型半導体層、
305はp型半導体層、306は上部電極(透明電極)
、307は集電電極を表す。
In FIG. 3, this example is a photovoltaic element having a structure in which light enters from the upper part of the figure.
00 is a photovoltaic element main body, 301 is a substrate, 302 is a lower electrode, 303 is an n-type semiconductor layer, 304 is an i-type semiconductor layer,
305 is a p-type semiconductor layer, 306 is an upper electrode (transparent electrode)
, 307 represent current collecting electrodes.

【0029】図2のa−Si成膜装置において、200
は反応チャンバー、201は基板、202はカソード電
極、203はアノード電極、204は基板加熱用ヒータ
ー、205は接地用端子、206はマッチングボックス
、207は13.56MHZのRF電源、208および
214は排気管、209および215は排気ポンプ、2
10,211は成膜ガス導入管、216,217は空気
作動弁、220,230,240,250,260,2
22,232,242,252,262はバルブ,22
1,231,241,251,261はマスフローコン
トローラー、270はマイクロ波プラズマ発生器、27
2はマイクロ波導波管、271はプラズマ発生室、27
3は2.45GHZ のマイクロ波電源を示す。
In the a-Si film forming apparatus shown in FIG.
is a reaction chamber, 201 is a substrate, 202 is a cathode electrode, 203 is an anode electrode, 204 is a heater for heating the substrate, 205 is a grounding terminal, 206 is a matching box, 207 is a 13.56MHZ RF power supply, 208 and 214 are exhaust pipes, 209 and 215 are exhaust pumps, 2
10, 211 is a film forming gas introduction pipe, 216, 217 is an air operated valve, 220, 230, 240, 250, 260, 2
22, 232, 242, 252, 262 are valves, 22
1,231,241,251,261 are mass flow controllers, 270 are microwave plasma generators, 27
2 is a microwave waveguide, 271 is a plasma generation chamber, 27
3 indicates a 2.45GHz microwave power source.

【0030】成膜ガス導入管211には空気作動弁21
6,217が取りつけられており、空気作動弁216,
217を片側を開、もう一方を閉となるように切り換え
ることにより、成膜ガス導入管211あるいは排気管2
14に接続される。空気作動弁217が開いているとき
、成膜ガスは反応チャンバー200内に導入され、排気
管208を通して排気ポンプ209により系外に排出さ
れる。
An air-operated valve 21 is provided in the film-forming gas introduction pipe 211.
6,217 are installed, and air operated valves 216,
217 so that one side is open and the other side is closed, the deposition gas introduction pipe 211 or the exhaust pipe 2 can be opened.
14. When the air-operated valve 217 is open, the deposition gas is introduced into the reaction chamber 200 and is exhausted out of the system by the exhaust pump 209 through the exhaust pipe 208.

【0031】また、空気作動弁216が開いているとき
は、成膜ガスは反応チャンバー200を通らず真空ポン
プ215により系外に排出される。もう一方のガス導入
管210は、H2 およびAr が図示しないボンベよ
り供給され、プラズマ発生室に連通され反応チャンバー
200に供給される。マイクロ波電源273より供給さ
れるマイクロ波は導波管272を通りプラズマ発生器2
70に入る。
Furthermore, when the air-operated valve 216 is open, the film-forming gas does not pass through the reaction chamber 200 and is discharged out of the system by the vacuum pump 215. The other gas introduction pipe 210 is supplied with H2 and Ar from a cylinder (not shown), communicated with the plasma generation chamber, and supplied to the reaction chamber 200. Microwaves supplied from the microwave power source 273 pass through the waveguide 272 and reach the plasma generator 2.
Enter 70.

【0032】本装置において、成膜ガスを導入管211
あるいは排気管214のいずれの方向に接続してもマス
フローは正常に作動する。また空気作動弁の切り換えに
よって成膜ガスの流れは滞留することなく一定流量のガ
スが流れる。
In this apparatus, the film forming gas is introduced into the inlet pipe 211.
Alternatively, the mass flow will operate normally no matter which direction the exhaust pipe 214 is connected. Furthermore, by switching the air-operated valve, the film-forming gas flows at a constant flow rate without stagnation.

【0033】次に、本発明のa−Si膜をi層に用いた
、図3に示すpin構成の光起電力素子の作製手順を説
明する。
Next, a procedure for manufacturing a photovoltaic device having a pin configuration shown in FIG. 3 using the a-Si film of the present invention in the i-layer will be explained.

【0034】まず、表面を表面研磨し0.05μmRm
ax とした5cm角の大きさのステンレス製(SUS
304)基板301を、不図示のスパッタ装置に入れ、
前記装置内を10−7torr以下に真空排気した後、
Arガスを導入し、内圧を5mtorrとして200W
のパワーでDCプラズマ放電を生起して、Agのターゲ
ットによりスパッターを行い、約5000ÅのAgを堆
積した。
First, the surface was polished to 0.05 μmRm.
5cm square size stainless steel (SUS)
304) Put the substrate 301 into a sputtering device (not shown),
After evacuating the inside of the device to 10 −7 torr or less,
Introducing Ar gas and setting the internal pressure to 5mtorr at 200W.
A DC plasma discharge was generated with a power of 200 Å, and sputtering was performed using an Ag target to deposit approximately 5000 Å of Ag.

【0035】その後、ターゲットをZnOに変えて、内
圧、パワーともに同じ条件でDCプラズマ放電を生起し
、スパッターを行い、約5000ÅのZnOを堆積した
Thereafter, the target was changed to ZnO, DC plasma discharge was generated under the same internal pressure and power conditions, and sputtering was performed to deposit ZnO with a thickness of about 5000 Å.

【0036】以上の工程で下部電極302を作製した後
、基板301を取り出し、反応チャンバー200の中の
アノード203に取り付け、真空排気ポンプ209によ
り充分排気し、不図示のイオンゲージで反応チャンバー
200の真空度が10−6torr以下であることを確
認して、基板温度が250℃に安定した後、バルブ26
0、262を開け、マスフローコントローラー261流
量を制御して、不図示のSiH4 ガスボンベからSi
H4 ガス30sccmを空気作動弁217を通しチャ
ンバー200の中に導入した。
After producing the lower electrode 302 through the above steps, the substrate 301 is taken out and attached to the anode 203 in the reaction chamber 200, sufficiently evacuated by the vacuum pump 209, and the reaction chamber 200 is evacuated using an ion gauge (not shown). After confirming that the degree of vacuum is 10-6 torr or less and the substrate temperature stabilized at 250°C, close the valve 26.
0 and 262, and control the flow rate of the mass flow controller 261 to supply Si from a SiH4 gas cylinder (not shown).
30 sccm of H4 gas was introduced into chamber 200 through air operated valve 217.

【0037】同様にしてバルブ220、222を開け、
マスフローコントローラー221で流量を制御してH2
 ガス30sccmを供給し、バルブ240、242を
開け、マスフローコントローラー241で流量を制御し
てH2 ガスで5%に希釈したPH3 ガスを10sc
cm導入した。
Similarly, valves 220 and 222 are opened,
The mass flow controller 221 controls the flow rate and H2
Supply gas at 30 sccm, open the valves 240 and 242, and control the flow rate with the mass flow controller 241 to supply 10 sccm of PH3 gas diluted to 5% with H2 gas.
cm was introduced.

【0038】反応チャンバー200の内圧を0.5to
rrに調整した後、マッチングボックス206を介して
RF電源207から10Wのパワーを投入し、プラズマ
放電を3分間行い、n型a−Si層303を400Å堆
積した。
[0038] The internal pressure of the reaction chamber 200 is set to 0.5 to
After adjusting to rr, 10 W power was applied from the RF power source 207 via the matching box 206, plasma discharge was performed for 3 minutes, and an n-type a-Si layer 303 was deposited to a thickness of 400 Å.

【0039】その後ガス供給をやめ、再度反応チャンバ
ーを真空引きして真空度が10−6torr以下になる
まで排気した後、バルブ220,222を開けてH2 
ガスを30sccm、反応チャンバー200に導入した
After that, the gas supply is stopped, and the reaction chamber is evacuated again until the degree of vacuum becomes 10-6 torr or less. Then, the valves 220 and 222 are opened and the H2
Gas was introduced into the reaction chamber 200 at 30 sccm.

【0040】次に空気作動弁217を開けた状態で、バ
ルブ260,262を開けて、マスフローコントローラ
ー261流量を制御して、SiH4 ガス30sccm
を成膜ガス導入管に流した。
Next, with the air-operated valve 217 open, the valves 260 and 262 are opened to control the flow rate of the mass flow controller 261, and the flow rate of SiH4 gas is 30 sccm.
was flowed into the film-forming gas introduction pipe.

【0041】この状態で反応チャンバー圧力を0.1t
orrに調整した。またこの状態で、RF電源207か
ら10Wの高周波(RF)電力を投入し、SiH4 プ
ラズマ放電を生起させ、もう一方でマイクロ波プラズマ
発生室271内でH2 プラズマを生起し、原子状水素
を反応チャンバー200に供給しながらa−Si膜の堆
積を開始した。
In this state, the reaction chamber pressure is set to 0.1 t.
Adjusted to orr. In this state, 10W of radio frequency (RF) power is applied from the RF power source 207 to generate SiH4 plasma discharge, and on the other hand, H2 plasma is generated in the microwave plasma generation chamber 271, and atomic hydrogen is transferred to the reaction chamber. Deposition of the a-Si film was started while supplying 200 ml of the a-Si film.

【0042】30秒間a−Si膜を堆積した後、高周波
(RF)電力の停止と同時に空気作動弁216,217
の開閉を逆にして、SiH4 ガスを排気管214から
排気してチャンバーへのSiH4 ガスの供給を停止し
、水素(H2 )プラズマ照射を40秒間行った。
After depositing the a-Si film for 30 seconds, the radio frequency (RF) power is stopped and the air operated valves 216, 217
The SiH4 gas was exhausted from the exhaust pipe 214 by reversing the opening and closing of the chamber, the supply of SiH4 gas to the chamber was stopped, and hydrogen (H2) plasma irradiation was performed for 40 seconds.

【0043】その後、再び高周波(RF)電力の投入と
SiH4 ガスのチャンバー導入を同時にして、30秒
間a−Si膜を堆積する。
Thereafter, radio frequency (RF) power is turned on again and SiH4 gas is introduced into the chamber at the same time to deposit an a-Si film for 30 seconds.

【0044】すなわち、このようにSiH4 ガスの導
入と高周波(RF)電力の投入をON/OFFし、OF
F時に水素プラズマ照射をする工程を200回繰り返し
た結果、n型a−Si:H層上に6000Åのi型a−
Si層304を堆積した。
That is, in this way, the introduction of SiH4 gas and the input of radio frequency (RF) power are turned on and off, and then turned off.
As a result of repeating the hydrogen plasma irradiation process 200 times during F, a 6000 Å thick i-type a-
A Si layer 304 was deposited.

【0045】i型a−Si:H層304の堆積後、プラ
ズマ放電を停止し、ガス供給を遮断した後、反応チャン
バーの真空度を10−6torr以下まで下げ、基板温
度を200℃に変え、安定した後、バルブ220,22
2,230,232,260,262および空気作動弁
217を開けて、SiH4 ガス1sccmとH2 ガ
スで5%に希釈したB2 H6 ガスを10sccm、
H2 ガスを300sccm、反応チャンバー200に
導入した。
After depositing the i-type a-Si:H layer 304, after stopping the plasma discharge and cutting off the gas supply, the degree of vacuum in the reaction chamber was lowered to below 10-6 torr, and the substrate temperature was changed to 200°C. After stabilizing, valves 220, 22
2,230,232,260,262 and the air operated valve 217 were opened, and 1 sccm of SiH4 gas and 10 sccm of B2 H6 gas diluted to 5% with H2 gas were added.
H2 gas was introduced into the reaction chamber 200 at 300 sccm.

【0046】チャンバー圧力を0.1torrに調整し
た後、RF電源207から50Wのパワーを投入し、プ
ラズマ放電を生起し15分間成膜を行いp層305を1
00Å堆積した。
After adjusting the chamber pressure to 0.1 torr, 50 W of power was applied from the RF power source 207 to generate plasma discharge and film formation was performed for 15 minutes to completely remove the p layer 305.
00 Å deposited.

【0047】次に、基板301を反応チャンバー200
から取り出し、不図示の抵抗加熱の蒸着装置に入れて、
該装置内を10−7torr以下に真空排気し、基板温
度を160℃に保った後、酸素ガスを導入し、内圧を0
.5mtorrとした後InとSnの合金を抵抗加熱に
より蒸着し、反射防止効果を兼ねた透明導電膜(ITO
膜)を700Å堆積し上部電極306とした。
Next, the substrate 301 is placed in the reaction chamber 200.
, and put it in a resistance heating vapor deposition device (not shown).
After evacuating the inside of the device to 10-7 torr or less and maintaining the substrate temperature at 160°C, oxygen gas was introduced and the internal pressure was reduced to 0.
.. After setting the torque to 5 mtorr, an alloy of In and Sn was vapor-deposited by resistance heating to form a transparent conductive film (ITO) which also had an anti-reflection effect.
A film) of 700 Å was deposited to form the upper electrode 306.

【0048】蒸着終了後、試料を取り出し、不図示のド
ライエッチング装置により1cm×1cmのセルに分離
した後、別の蒸着装置によりアルミの集電電極307を
形成した。
After completion of the vapor deposition, the sample was taken out and separated into 1 cm×1 cm cells using a dry etching device (not shown), and then an aluminum current collecting electrode 307 was formed using another vapor deposition device.

【0049】本実施例の比較例として、従来の方法、す
なわちi層の成膜時に、SiH4 ガスを断続的に導入
せず、高周波電力を連続的に投入したプラズマ放電によ
り行ない、実施例1と同じくpin構造の光起電力素子
を作製した。ガスの流量、圧力、高周波電力、i層膜厚
は、実施例1と同じにした。
As a comparative example of this example, a conventional method was used to form the i-layer, in which SiH4 gas was not intermittently introduced, but plasma discharge was used in which high frequency power was continuously applied. Similarly, a photovoltaic device having a pin structure was fabricated. The gas flow rate, pressure, high frequency power, and i-layer film thickness were the same as in Example 1.

【0050】これらの試料を、ソーラーシュミレーター
を用いてAM−1.5の太陽光スペクトルの光を100
mW/cm2 の強度で照射し、電圧電流曲線を求める
ことにより、光起電力素子の初期光電変換効率η(0)
を測定した。
These samples were exposed to 100 AM-1.5 sunlight spectrum using a solar simulator.
By irradiating with an intensity of mW/cm2 and determining the voltage-current curve, the initial photoelectric conversion efficiency η(0) of the photovoltaic element was determined.
was measured.

【0051】次に電圧電流曲線を求めることによって得
られた開放電圧VOC及び短絡電流VSCから最適負荷
を算出し、負荷抵抗を各々の試料に接続した。次に負荷
抵抗を接続された試料に、前述と同じAM1.5光(1
00mW/cm2 )を500時間連続照射した後、前
述と同様に、試料にAM1.5光を照射したときの光電
変換効率η(500)を求めた。
Next, the optimum load was calculated from the open circuit voltage VOC and short circuit current VSC obtained by determining the voltage-current curve, and a load resistance was connected to each sample. Next, apply the same AM1.5 light (1
00 mW/cm2) for 500 hours, the photoelectric conversion efficiency η(500) when the sample was irradiated with AM1.5 light was determined in the same manner as described above.

【0052】このようにした得られたη(500)とη
(0)とから劣化率{1−η(500)/η(0)}を
求めた。また、i層中の水素濃度をSiウエハーに堆積
した試料を用いて赤外吸収スペクトルにより求めた。
[0052] The thus obtained η(500) and η
(0), the deterioration rate {1-η(500)/η(0)} was calculated. Further, the hydrogen concentration in the i-layer was determined by infrared absorption spectroscopy using a sample deposited on a Si wafer.

【0053】以上の結果、本発明のa−Si:H膜をi
層に用いたpin構成の光起電力素子は、初期変換効率
が1.2、劣化率が0.1であった。従来の比較例によ
って作製した光素子は、初期変換効率が0.85、劣化
率が0.8であったので、本実施例のものは初期変換効
率が高く、劣化率が小さいことがわかる。特に劣化率の
低下が著しい。
As a result, the a-Si:H film of the present invention was
The photovoltaic element with a pin configuration used for the layer had an initial conversion efficiency of 1.2 and a deterioration rate of 0.1. Since the optical device manufactured according to the conventional comparative example had an initial conversion efficiency of 0.85 and a deterioration rate of 0.8, it can be seen that the device of this example had a high initial conversion efficiency and a low deterioration rate. In particular, the decrease in deterioration rate is remarkable.

【0054】また、i層中の水素濃度は、本実施例のも
のが3at%、比較例のものが9at%であった。
Further, the hydrogen concentration in the i-layer was 3 at % in the present example and 9 at % in the comparative example.

【0055】(実施例2)a−Si膜の基本特性を調べ
るため、デバイスにはせず、50mm×50mmのコー
ニング7059基板上に本発明の方法により実施例1と
同様の条件でa−Si膜のみの成膜を行った。
(Example 2) In order to investigate the basic characteristics of an a-Si film, a-Si was deposited on a 50 mm x 50 mm Corning 7059 substrate under the same conditions as in Example 1 by the method of the present invention without making it into a device. Only the film was formed.

【0056】s−Si膜の堆積とH2 プラズマ照射の
各ステップを300回繰り返して約9000Åのa−S
i膜を堆積した。
The steps of s-Si film deposition and H2 plasma irradiation were repeated 300 times to form an a-S film of about 9000 Å.
i film was deposited.

【0057】この膜にギャップ幅250μmのくし型ア
ルミ電極を蒸着し、光電気伝導度を測定したところ、1
0−4〜10−5s/cmと従来の膜より大きく良質な
膜と判断できた。
A comb-shaped aluminum electrode with a gap width of 250 μm was deposited on this film, and the photoelectric conductivity was measured.
It was determined that the film was 0-4 to 10-5 s/cm, which was larger than the conventional film and of good quality.

【0058】また、光劣化も大幅に低減した。またラマ
ンスペクトルには520cm−1付近のピークは現れず
、480cm−1付近のピークのみがある。このことか
ら本発明で作製した膜はアモルファス構造を維持してい
ることになる。
[0058] Furthermore, photodeterioration was also significantly reduced. Further, the Raman spectrum does not have a peak near 520 cm-1, but only a peak near 480 cm-1. This means that the film produced according to the present invention maintains an amorphous structure.

【0059】[0059]

【発明の効果】以上説明したように、本発明によれば、
非単結晶シリコン膜の堆積と、堆積した膜への水素プラ
ズマ照射を繰り返す方法で、水素プラズマ照射時に高周
波(RF)電力を停止することでプラズマ・ダメージが
減少し、非単結晶シリコン膜の光電変換効率の向上や、
光劣化率の低減、膜中水素濃度低減が実現し非単結晶シ
リコンデバイスの特性向上、さらに歩留向上から製造コ
ストの低減に効果が得られる。
[Effects of the Invention] As explained above, according to the present invention,
This method involves repeating the deposition of a non-monocrystalline silicon film and irradiation of the deposited film with hydrogen plasma. Plasma damage is reduced by stopping radio frequency (RF) power during hydrogen plasma irradiation, and photovoltaic damage to the non-monocrystalline silicon film is reduced. Improving conversion efficiency,
It is possible to reduce the photodegradation rate and the hydrogen concentration in the film, thereby improving the characteristics of non-single-crystal silicon devices, and further improving yields and reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の成膜方法を説明するための図、FIG. 1 is a diagram for explaining the film forming method of the present invention,

【図2
】本発明の非単結晶シリコン膜を作製した成膜装置を示
す模式図、
[Figure 2
]A schematic diagram showing a film forming apparatus for producing the non-single crystal silicon film of the present invention,

【図3】本発明の非単結晶シリコン(a−Si:H)膜
をi層に用いたpin構成の光起電力素子を模式的に示
す図である。
FIG. 3 is a diagram schematically showing a photovoltaic device with a pin configuration using the non-single crystal silicon (a-Si:H) film of the present invention in the i-layer.

【符号の説明】[Explanation of symbols]

200    反応チャンバー 201    基板 202    カソード電極 203    アノード電極 204    基板加熱ヒーター 205    接地用端子 206    マッチングボックス 207    高周波(RF)電源 208,214    排気管 209,215    排気ポンプ 210,211    ガス導入管 220,230,240,250,260,222,2
32,242,252,262    バルブ221,
231,241,251,261    マスフロート
コントローラー 270    マイクロ波プラズマ発生器271   
 プラズマ発生室 272    マイクロ波導波管 301    基板 302    下部電極 303    n型半導体層 304    i型半導体層 305    p型半導体層 306    透明電極 307    集電電極
200 Reaction chamber 201 Substrate 202 Cathode electrode 203 Anode electrode 204 Substrate heater 205 Grounding terminal 206 Matching box 207 Radio frequency (RF) power source 208, 214 Exhaust pipe 209, 215 Exhaust pump 210, 211 Gas introduction pipe 220, 230, 240, 250, 260, 222, 2
32,242,252,262 valve 221,
231, 241, 251, 261 Mass float controller 270 Microwave plasma generator 271
Plasma generation chamber 272 Microwave waveguide 301 Substrate 302 Lower electrode 303 N-type semiconductor layer 304 I-type semiconductor layer 305 P-type semiconductor layer 306 Transparent electrode 307 Current collector electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  非単結晶シリコン膜の形成方法におい
て、基体上に非単結晶シリコン膜を堆積する工程と、堆
積した前記非単結晶シリコン膜に水素プラズマ照射をす
る工程とを交互に繰り返しながら、非単結晶シリコン膜
を堆積し、前記非単結晶シリコン膜の堆積時には、高周
波電力とマイクロ波電力を投入し、前記水素プラズマ照
射時には前記マイクロ波電力を投入し、前記高周波電力
は投入しないことを特徴とする非単結晶シリコン膜の成
膜方法。
1. A method for forming a non-single-crystal silicon film, comprising alternately repeating steps of depositing a non-single-crystal silicon film on a substrate and irradiating the deposited non-single-crystal silicon film with hydrogen plasma. , depositing a non-single crystal silicon film, applying high frequency power and microwave power during deposition of the non-single crystal silicon film, applying the microwave power during the hydrogen plasma irradiation, but not applying the high frequency power; A method for forming a non-single crystal silicon film characterized by:
【請求項2】  前記高周波電力により原料ガスを分解
して前記非単結晶シリコン膜を堆積し、前記マイクロ波
電力により前記水素プラズマ照射を行なうことを特徴と
する請求項1に記載の非単結晶シリコン膜の成膜方法。
2. The non-single crystal silicon film according to claim 1, wherein the source gas is decomposed by the high-frequency power to deposit the non-single crystal silicon film, and the hydrogen plasma irradiation is performed by the microwave power. Method for forming silicon film.
【請求項3】  原料ガスを導入する反応容器と、前記
原料ガスに高周波電力とマイクロ波電力を投入して分解
し、非単結晶シリコン膜を堆積する手段と、前記マイク
ロ波電力のみを投入して、前記堆積した非単結晶シリコ
ン膜に水素プラズマ照射をする手段と、前記堆積する手
段と、水素プラズマ照射をする手段とを交互に行う手段
と、を有することを特徴とする非単結晶シリコン膜の成
膜装置。
3. A reaction vessel into which a raw material gas is introduced, a means for inputting high frequency power and microwave power to the raw material gas to decompose it and depositing a non-single crystal silicon film, and a means for inputting only the microwave power. a non-single-crystal silicon film characterized by comprising: means for irradiating the deposited non-single-crystal silicon film with hydrogen plasma; and means for alternately performing the depositing means and the means for irradiating hydrogen plasma. Film deposition equipment.
JP3169138A 1991-06-14 1991-06-14 Method and apparatus for formation of nonsingle-crystal silicon film Pending JPH04367221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3169138A JPH04367221A (en) 1991-06-14 1991-06-14 Method and apparatus for formation of nonsingle-crystal silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3169138A JPH04367221A (en) 1991-06-14 1991-06-14 Method and apparatus for formation of nonsingle-crystal silicon film

Publications (1)

Publication Number Publication Date
JPH04367221A true JPH04367221A (en) 1992-12-18

Family

ID=15880993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3169138A Pending JPH04367221A (en) 1991-06-14 1991-06-14 Method and apparatus for formation of nonsingle-crystal silicon film

Country Status (1)

Country Link
JP (1) JPH04367221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100241817B1 (en) * 1993-12-27 2000-02-01 니시무로 타이죠 Thin film forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100241817B1 (en) * 1993-12-27 2000-02-01 니시무로 타이죠 Thin film forming method

Similar Documents

Publication Publication Date Title
US5644145A (en) Process for the formation of an amorphous silicon deposited film with intermittent irradiation of inert gas plasma
JP2000277439A (en) Plasma cvd method for crystalline silicon thin-film and manufacture of silicon thin-film photoelectric conversion device
CN1588649A (en) Method for preparing silicon thin film heterojunction solar cell
JPH04266019A (en) Film formation
Takano et al. Light-weight and large-area solar cell production technology
US4799968A (en) Photovoltaic device
JPH0465120A (en) Formation of deposition film
US4749588A (en) Process for producing hydrogenated amorphous silicon thin film and a solar cell
JP5502210B2 (en) Microcrystalline semiconductor thin film manufacturing method
JPH04367221A (en) Method and apparatus for formation of nonsingle-crystal silicon film
JPH05166733A (en) Method and apparatus for forming non-single crystal silicon film
Takano et al. Excitation frequency effects on stabilized efficiency of large-area amorphous silicon solar cells using flexible plastic film substrate
JPH09199426A (en) Manufacture of microcrystalline silicon semiconductor thin film
JP3542510B2 (en) Method for forming non-single-crystal semiconductor film and photovoltaic element, and apparatus for forming non-single-crystal semiconductor film
JP3078373B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2001291882A (en) Method of manufacturing thin film
JP3300802B2 (en) Semiconductor manufacturing method
JP3100668B2 (en) Method for manufacturing photovoltaic element
JPH05343713A (en) Manufacture of amorphous solar cell
Yoshida et al. Fabrication technology of a-Si/a-SiGe/a-SiGe triple-junction plastic film substrate solar cells
JPS62144370A (en) Manufacture of photoelectric conversion element
JPH02177371A (en) Manufacture of amorphous solar cell
JPH0536613A (en) Semiconductor surface treatment method and equipment
JPH05275354A (en) Manufacture of silicon film
EP0137043B1 (en) Method of manufacturing hydrogenated amorphous silicon thin film and solar cell