JPH0562612B2 - - Google Patents

Info

Publication number
JPH0562612B2
JPH0562612B2 JP60227779A JP22777985A JPH0562612B2 JP H0562612 B2 JPH0562612 B2 JP H0562612B2 JP 60227779 A JP60227779 A JP 60227779A JP 22777985 A JP22777985 A JP 22777985A JP H0562612 B2 JPH0562612 B2 JP H0562612B2
Authority
JP
Japan
Prior art keywords
polyvinyl butyral
resin
resin composition
type phenolic
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60227779A
Other languages
Japanese (ja)
Other versions
JPS6289721A (en
Inventor
Kazuhiro Sawai
Hiroyuki Hosokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Chemical Products Co Ltd
Original Assignee
Toshiba Chemical Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Products Co Ltd filed Critical Toshiba Chemical Products Co Ltd
Priority to JP60227779A priority Critical patent/JPS6289721A/en
Publication of JPS6289721A publication Critical patent/JPS6289721A/en
Publication of JPH0562612B2 publication Critical patent/JPH0562612B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Details Of Resistors (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術野] 本発明は、耐湿性、温寒サイクルに優れ、かつ
低応力である電気部品等の封止用樹脂組成物に関
する。 [発明の技術的背景とその問題点] 近年、ダイオード、トランジスタ、集積回路な
どの電子部品を熱硬化性樹脂を用いて封止する方
法が行われてきた。この樹脂封止方法は、ガラ
ス、金属、セラミツクを用いたハーメチツクシー
ル方式に比較して、経済的に有利なために広く実
用化されている。封止用樹脂組成物としては、熱
硬化性樹脂組成物が使われ、その中でもエポキシ
樹脂組成物が最も一般的に用いられている。とこ
ろで、エポキシ樹脂の硬化剤として、酸無水物、
芳香族アミン、ノボラツク型フエノール樹脂等が
用いられている。これらの中でもノボラツク型フ
エノール樹脂を硬化剤としたエポキシ樹脂組成物
は、他の硬化剤を使用したものに比べて、成形
性、耐湿性に優れ、また毒性がなく、かつ安価で
あるため半導体封止材料として広く用いられてい
る。 しかしながら、ノボラツク型フエノール樹脂を
硬化剤としたエポキシ樹脂組成物は、成形硬化時
に収縮して半導体素子に応力がかかり、信頼性に
劣るという欠点がある。すなわち、こうした樹脂
組成物を使用した成形品について温寒サイクルテ
ストを行うと、ボンデイングワイヤーのオープ
ン、樹脂クラツク、パツシベーシヨンクラツク、
ペレツトクラツクなどが発生し、電子部品として
の機能が果せなくなるという問題があつた。これ
らの問題は、最近の半導体素子の高集積化、大型
化に伴つて更に大きな問題となつてきた。こうし
たことから前記従来のエポキシ樹脂組成物の利点
である特性を保持し、かつ低応力の封止用樹脂組
成物の開発が望まれていた。 [発明の目的] 本発明の目的は、上記の欠点および問題点を解
消するためになされたもので、耐湿性、温寒サイ
クルに優れ、かつ低応力で信頼性の高い封止用樹
脂組成物を提供しようとするものである。 [発明の概要] 本発明者らは、上記の目的を達成すべく鋭意研
究を重ねた結果、後述するようにポリビニルブチ
ラール変性ノボラツク型フエノール樹脂を配合す
ることによつて、従来の封止用樹脂に比べて、優
れた耐湿性、温寒サイクル性を示し、かつ低応力
の封止用樹脂組成物が得られることを見いだし、
本発明を完成するに至つたものである。 即ち、本発明は、 (A) エポキシ樹脂、 (B) ポリビニルブチラールとフエノール類とホル
ムアルデヒド、あるいはポリビニルブチラール
とフエノール類とパラホルムアルデヒドを反応
させて得られるポリビニルブチラール変性ノボ
ラツク型フエノール樹脂および (C) 無機質充填剤 を含み、樹脂組成物に対して前記(C)無機質充填剤
を25〜90重量%含有することを特徴とする封止用
樹脂組成物である。そして、ポリビニルブチラー
ル変性ノボラツク型フエノール樹脂のポリビニル
ブチラール変性率が10〜50重量%であり、またエ
ポキシ樹脂のエポキシ基(a)とポリビニルブチラー
ル変性ノボラツク型フエノール樹脂のフエノール
性水酸基(b)との当量比[(a)/(b)]が0.1〜10の範
囲内である封止用樹脂組成物である。 本発明に用いる(A)エポキシ樹脂としては、その
分子中にエポキシ基を少くとも2個有する化合物
である限り、分子構造、分子量などに制限はな
く、一般に封止用材料に使用されているものを広
く包含することができる。例えばビスフエノール
型の芳香族系、シクロヘキサン誘導体等の脂環族
系、さらに次の一般式で示されるエポキシノボラ
ツク系等の樹脂が挙げられる。これらのエポキシ
樹脂は1種又は2種以上混合して用いられる。 (式中、R1は、水素原子、ハロゲン原子又は
アルキル基を、R2は、水素原子又はアルキル基
を、nは1以上の整数を表す) 本発明に使用する(B)ポリビニルブチラール変性
ノボラツク型フエノール樹脂としては、ポリビニ
ルブチラール樹脂とフエノール類およびホルムア
ルデヒドあるいはパラホルムアルデヒドを反応さ
せて得られるポリビニルブチラール変性ノボラツ
ク型フエノール樹脂である。これらは単独もしく
は2種以上混合して使用する。 ポリビニルブチラール変性ノボラツク型フエノ
ール樹脂の配合割合は、前記(A)エポキシ樹脂エポ
キシ基(a)と(B)ポリビニルブチラール変性ノボラツ
ク型フエノール樹脂のフエノール性水酸基(b)との
当量比[(a)/(b)]が0.1〜10の範囲内にあること
が望ましい。当量比が0.1末端又は10を超えると、
耐湿性、成形作業性および硬化物の電気特性が悪
くなり、いずれの場合も好ましくない。従つて、
上記範囲内に限定される。またポリビニルブチラ
ール変性ノボラツク型フエノール樹脂のポリビニ
ルブチラール樹脂の変性率は、10〜50重量%であ
ることが好ましい。変性率が10重量%未満では、
低応力、温寒サイクルに耐え得る効果がなく、ま
た50重量%を超えると吸水率、成形性が悪くなり
実用に適さない。これらのポリビニルブチラール
変性ノボラツク型フエノール樹脂は、封止用樹脂
組成物に柔軟性を付与し、応力を緩和し、低応力
になると考えられる。 本発明に用いる(C)無機質充填剤としては、シリ
カ粉末、アルミナ、三酸化アンチモン、タルク、
炭酸カルシウム、チタンホワイト、クレー、アス
ベスト、マイカ、ベンガラ、ガラス繊維、炭素繊
維等が挙げられ、特にシリカ粉末およびアルミナ
が好ましい。無機質充填剤の配合割合は、樹脂組
成物の25〜90重量%配合することが望ましい。そ
の配合量が25重量%未満では耐湿性、耐熱性、機
械的特性および成形性に効果なく、90重量%を超
えるとかさばりが大きくなり成形性が悪く実用に
適さない。 本発明の封止用樹脂組成物は、エポキシ樹脂、
ポリビニルブチラール変性ノボラツク型フエノー
ル樹脂、無機質充填剤を必須成分とするが、必要
に応じて例えば天然ワツクス類、合成ワツクス
類、直鎖脂肪酸の金属塩、酸アミド、エステル
類、パラフイン類などの離型剤、塩素化パラフイ
ン、プロムトルエン、ヘキサブロムベンゼン、三
酸化アンチモンなどの離燃剤、カーボンブラツ
ク、ベンガラなどの着色剤、シランカツプリング
剤、種々の硬化促進剤等を適宜添加配合すること
もできる。本発明の封止用樹脂組成物を成形材料
として製造する場合の一般的な方法としては、エ
ポキシ樹脂、ポリビニルブチラール変性ノボラツ
ク型フエノール樹脂、ポリウレタン−メタクリル
酸メチル共重合樹脂、無機質充填剤、その他を所
定の組成比に選んだ原料組成物をミキサー等によ
つて充分均一に混合した後、更に熱ロールによる
溶融混合処理、またはニーダ等による混合処理を
行い、次いで冷却固化させ、適当な大きさに粉砕
して成形材料とすることができる。 本発明に係る封止用樹脂組成物からなる成形材
料は、電子部品或いは電気部品の封止、被覆、絶
縁等に適用することができる。 なお、本発明のように反応段階でフエノール樹
脂をポリビニルブチラールにより変性したもの
は、成形材料の混練段階でフエノール樹脂にブチ
ラール樹脂を配合したものと比較すると、封止用
樹脂組成物のガラス転移点が低くなり、封止装置
の歪試験の結果はかなり応力歪が小さくなる(特
開昭60−161423号公報参照)。 [発明の効果] 本発明の封止用樹脂組成物は、耐湿性、温寒サ
イクルに優れ、低応力で、かつ成形作業性のよい
組成物であり、電子・電気部品の封止用、被覆
用、絶縁用等に用いた場合、十分信頼性の高い製
品を得ることができる。 [発明の実施例] 本発明を実施例により具体的に説明するが本発
明は以下の実施例に限定されるものではない。以
下実施例および比較例において「%」とあるのは
「重量%」を意味する。 実施例 1 クレゾールノボラツクエポキシ樹脂(エポキシ
当量215)19%に、ポリビニルブチラール10%変
性ノボラツク型フエノール樹脂11%および溶融シ
リカ粉末70%を常温で混合しさらに90〜95℃で混
練して冷却した後、粉砕して成形材料を得た。得
られた成形材料を170℃に加熱した金型内にトラ
ンスフアー注入し硬化させて成形品を得た。この
成形品について耐湿性、応力等の諸特性を試験
し、その結果を第1表に示した。 実施例 2 クレゾールノボラツクエポキシ樹脂(エポキシ
当量215)18%に、ポリビニルブチラール30%変
性ノボラツク型フエノール樹脂12%および溶融シ
リカ粉末70%を実施例1と同様に混合混練粉砕し
て成形材料を得た。次いで同様にして成形品を得
て、これらの成形品について実施例1と同様にし
て耐温性、応力等の諸特性を試験し、その結果を
第1表に示した。 比較例 クレゾールノボラツクエポキシ樹脂(エポキシ
当量215)20%に、ノボラツク型フエノール樹脂
(フエノール当量107)10%、およびシリカ粉末70
%を原料から実施例と同様にして成形材料を得
た。この成形材料を用いて成形品とし、成形品の
諸特性について実施例と同様に試験し、その結果
を第1表に示した。
[Technical Field of the Invention] The present invention relates to a resin composition for sealing electrical parts, etc., which has excellent moisture resistance, resistance to hot and cold cycles, and low stress. [Technical background of the invention and its problems] In recent years, methods have been used to seal electronic components such as diodes, transistors, and integrated circuits using thermosetting resins. This resin sealing method is economically advantageous compared to hermetic sealing methods using glass, metal, or ceramic, and is therefore widely put into practical use. As the sealing resin composition, thermosetting resin compositions are used, and among them, epoxy resin compositions are most commonly used. By the way, acid anhydrides,
Aromatic amines, novolac type phenolic resins, etc. are used. Among these, epoxy resin compositions using novolac-type phenolic resin as a curing agent have excellent moldability and moisture resistance, are non-toxic, and are inexpensive, compared to those using other curing agents, so they are widely used in semiconductor encapsulation. Widely used as a stopper material. However, epoxy resin compositions using a novolak type phenolic resin as a curing agent have the disadvantage that they shrink during molding and curing, applying stress to semiconductor devices, resulting in poor reliability. In other words, when hot and cold cycle tests are performed on molded products using such resin compositions, bonding wire opens, resin cracks, bonding cracks,
There was a problem that pellet cracks were generated and the electronic component could no longer function as an electronic component. These problems have become even more serious as semiconductor devices have recently become more highly integrated and larger. For these reasons, it has been desired to develop a sealing resin composition that maintains the advantages of the conventional epoxy resin compositions and has low stress. [Object of the Invention] The object of the present invention was to solve the above-mentioned drawbacks and problems, and to provide a resin composition for sealing that has excellent moisture resistance, resistance to hot and cold cycles, low stress, and high reliability. This is what we are trying to provide. [Summary of the Invention] As a result of extensive research in order to achieve the above object, the present inventors have discovered that the conventional sealing resin can be improved by blending a polyvinyl butyral modified novolak type phenolic resin as described below. It has been found that a resin composition for sealing that exhibits excellent moisture resistance, thermal and cold cycling properties, and has low stress can be obtained compared to
This has led to the completion of the present invention. That is, the present invention provides (A) an epoxy resin, (B) a polyvinyl butyral-modified novolak type phenolic resin obtained by reacting polyvinyl butyral, phenols, and formaldehyde, or polyvinyl butyral, phenols, and paraformaldehyde, and (C) an inorganic material. A sealing resin composition containing a filler and containing the inorganic filler (C) in an amount of 25 to 90% by weight based on the resin composition. The polyvinyl butyral modification rate of the polyvinyl butyral modified novolak type phenolic resin is 10 to 50% by weight, and the equivalent weight of the epoxy group (a) of the epoxy resin and the phenolic hydroxyl group (b) of the polyvinyl butyral modified novolak type phenolic resin. A sealing resin composition having a ratio [(a)/(b)] of 0.1 to 10. As long as the epoxy resin (A) used in the present invention is a compound having at least two epoxy groups in its molecule, there are no restrictions on its molecular structure or molecular weight, and the epoxy resin is one that is generally used for sealing materials. can include a wide range of Examples include aromatic resins such as bisphenol, alicyclic resins such as cyclohexane derivatives, and epoxy novolac resins represented by the following general formula. These epoxy resins may be used alone or in combination of two or more. (In the formula, R 1 represents a hydrogen atom, a halogen atom, or an alkyl group, R 2 represents a hydrogen atom or an alkyl group, and n represents an integer of 1 or more.) (B) Polyvinyl butyral modified novolak used in the present invention The type phenolic resin is a polyvinyl butyral modified novolak type phenolic resin obtained by reacting a polyvinyl butyral resin with a phenol and formaldehyde or paraformaldehyde. These may be used alone or in combination of two or more. The blending ratio of the polyvinyl butyral-modified novolak type phenolic resin is determined by the equivalent ratio of the epoxy groups (a) of the epoxy resin (A) and the phenolic hydroxyl groups (b) of the polyvinyl butyral-modified novolak type phenolic resin (B) [(a)/ (b)] is preferably within the range of 0.1 to 10. If the equivalence ratio exceeds 0.1 end or 10,
Moisture resistance, molding workability, and electrical properties of the cured product deteriorate, which is undesirable in all cases. Therefore,
Limited within the above range. Further, the modification rate of the polyvinyl butyral resin in the polyvinyl butyral modified novolak type phenolic resin is preferably 10 to 50% by weight. When the modification rate is less than 10% by weight,
It is not effective in withstanding low stress and hot/cold cycles, and if it exceeds 50% by weight, water absorption and moldability deteriorate, making it unsuitable for practical use. These polyvinyl butyral-modified novolac type phenolic resins are thought to impart flexibility to the sealing resin composition, relieve stress, and reduce stress. Inorganic fillers (C) used in the present invention include silica powder, alumina, antimony trioxide, talc,
Examples include calcium carbonate, titanium white, clay, asbestos, mica, red iron oxide, glass fiber, and carbon fiber, with silica powder and alumina being particularly preferred. The blending ratio of the inorganic filler is preferably 25 to 90% by weight of the resin composition. If the amount is less than 25% by weight, it will have no effect on moisture resistance, heat resistance, mechanical properties, or moldability, and if it exceeds 90% by weight, it will be bulky and have poor moldability, making it unsuitable for practical use. The sealing resin composition of the present invention includes an epoxy resin,
The essential ingredients are a polyvinyl butyral modified novolak type phenolic resin and an inorganic filler, but if necessary, release materials such as natural waxes, synthetic waxes, metal salts of straight chain fatty acids, acid amides, esters, paraffins, etc. can be added. A flame retardant such as chlorinated paraffin, bromotoluene, hexabromobenzene, and antimony trioxide, a coloring agent such as carbon black and red iron oxide, a silane coupling agent, various curing accelerators, etc. may be appropriately added and blended. A general method for producing the encapsulating resin composition of the present invention as a molding material includes using epoxy resin, polyvinyl butyral modified novolak type phenolic resin, polyurethane-methyl methacrylate copolymer resin, inorganic filler, etc. After the raw material composition selected to have a predetermined composition ratio is mixed sufficiently uniformly using a mixer, etc., it is further melt-mixed using a heated roll or mixed using a kneader, etc., and then cooled and solidified to form an appropriate size. It can be crushed into a molding material. The molding material made of the encapsulating resin composition according to the present invention can be applied to encapsulating, covering, insulating, etc. electronic or electrical components. In addition, when the phenolic resin is modified with polyvinyl butyral in the reaction stage as in the present invention, the glass transition point of the sealing resin composition is lower than when the phenolic resin is blended with butyral resin in the molding material kneading stage. As a result, the strain test result of the sealing device shows that the stress strain is considerably small (see Japanese Patent Laid-Open No. 161423/1983). [Effects of the Invention] The encapsulating resin composition of the present invention is a composition that has excellent moisture resistance and thermal cycle resistance, has low stress, and has good molding workability, and is suitable for encapsulating and coating electronic and electrical components. When used for electrical purposes, insulation, etc., a sufficiently reliable product can be obtained. [Examples of the Invention] The present invention will be specifically explained by examples, but the present invention is not limited to the following examples. In the Examples and Comparative Examples below, "%" means "% by weight". Example 1 19% cresol novolak epoxy resin (epoxy equivalent: 215), 10% polyvinyl butyral, 11% modified novolak type phenolic resin, and 70% fused silica powder were mixed at room temperature, and the mixture was further kneaded at 90 to 95°C and cooled. Thereafter, it was crushed to obtain a molding material. The obtained molding material was transfer-injected into a mold heated to 170°C and cured to obtain a molded product. This molded article was tested for various properties such as moisture resistance and stress, and the results are shown in Table 1. Example 2 18% cresol novolac epoxy resin (epoxy equivalent 215), 30% polyvinyl butyral, 12% modified novolac type phenolic resin, and 70% fused silica powder were mixed, kneaded, and ground in the same manner as in Example 1 to obtain a molding material. Ta. Molded articles were then obtained in the same manner, and these molded articles were tested for various properties such as temperature resistance and stress in the same manner as in Example 1. The results are shown in Table 1. Comparative example: 20% cresol novolac epoxy resin (epoxy equivalent 215), 10% novolac type phenolic resin (phenol equivalent 107), and 70% silica powder.
A molding material was obtained from raw materials in the same manner as in the examples. This molding material was used to make a molded article, and the various properties of the molded article were tested in the same manner as in the Examples, and the results are shown in Table 1.

【表】 第1表から明らかなように、本発明の封止用樹
脂組成物は、耐湿性、温寒サイクルに優れ、低応
力であることが確認された。
[Table] As is clear from Table 1, it was confirmed that the sealing resin composition of the present invention has excellent moisture resistance, excellent heat and cold cycle performance, and low stress.

Claims (1)

【特許請求の範囲】 1 (A) エポキシ樹脂、 (B) ポリビニルブチラールとフエノール類とホル
ムアルデヒド、あるいはポリビニルブチラール
とフエノール類とパラホルムアルデヒドを反応
させて得られるポリビニルブチラール変性ノボ
ラツク型フエノール樹脂および (C) 無機質充填剤 を含み、樹脂組成物に対して前記(C)無機質充填剤
を25〜90重量%含有することを特徴とする封止用
樹脂組成物。 2 ポリビニルブチラール変性ノボラツク型フエ
ノール樹脂のポリビニルブチラール変性率が10〜
50重量%である特許請求の範囲第1項記載の封止
用樹脂組成物。 3 エポキシ樹脂のエポキシ基(a)とポリビニルブ
チラール変性ノボラツク型フエノール樹脂のフエ
ノール性水酸基(b)との当量比[(a)/(b)]が、0.1
〜10の範囲内である特許請求の範囲第1項記載又
は第2項記載の封止用樹脂組成物。
[Scope of Claims] 1 (A) an epoxy resin, (B) a polyvinyl butyral-modified novolak type phenolic resin obtained by reacting polyvinyl butyral, phenols, and formaldehyde, or polyvinyl butyral, phenols, and paraformaldehyde, and (C) A sealing resin composition containing an inorganic filler, characterized in that the inorganic filler (C) is contained in an amount of 25 to 90% by weight based on the resin composition. 2 The polyvinyl butyral modification rate of the polyvinyl butyral modified novolac type phenolic resin is 10~
50% by weight of the sealing resin composition according to claim 1. 3 The equivalent ratio [(a)/(b)] between the epoxy group (a) of the epoxy resin and the phenolic hydroxyl group (b) of the polyvinyl butyral modified novolac type phenolic resin is 0.1.
The sealing resin composition according to claim 1 or 2, which is within the range of 10 to 10.
JP60227779A 1985-10-15 1985-10-15 Sealing resin composition Granted JPS6289721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60227779A JPS6289721A (en) 1985-10-15 1985-10-15 Sealing resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60227779A JPS6289721A (en) 1985-10-15 1985-10-15 Sealing resin composition

Publications (2)

Publication Number Publication Date
JPS6289721A JPS6289721A (en) 1987-04-24
JPH0562612B2 true JPH0562612B2 (en) 1993-09-08

Family

ID=16866247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60227779A Granted JPS6289721A (en) 1985-10-15 1985-10-15 Sealing resin composition

Country Status (1)

Country Link
JP (1) JPS6289721A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052521A2 (en) * 2014-09-29 2016-04-07 住友理工株式会社 Silicone rubber composition, silicone rubber crosslinked body, integrally molded body, and manufacturing method for integrally molded body
WO2017094703A1 (en) 2015-11-30 2017-06-08 住友理工株式会社 Elastic roller for electrophotographic device, and method for manufacturing said roller
JP6585535B2 (en) 2016-03-29 2019-10-02 住友理工株式会社 Silicone rubber composition and crosslinked silicone rubber

Also Published As

Publication number Publication date
JPS6289721A (en) 1987-04-24

Similar Documents

Publication Publication Date Title
JPH0468345B2 (en)
JPH0513185B2 (en)
JPH0562612B2 (en)
JPH0249329B2 (en)
JPH0548770B2 (en)
JPH0621152B2 (en) Sealing resin composition
JP2641183B2 (en) Resin composition for sealing
JPH0528243B2 (en)
JPS60161423A (en) Resin composition for sealing
JPS6222822A (en) Sealing resin composition
JPH1112442A (en) Sealing resin composition and sealed semiconductor device
JPH0739471B2 (en) Sealing resin composition
JPH0552846B2 (en)
JPH1112446A (en) Sealing resin composition and semiconductor device sealed therewith
JPS6333416A (en) Sealing resin composition
JPH0314050B2 (en)
JPH0621154B2 (en) Sealing resin composition
JPH0668006B2 (en) Sealing resin composition
JPH0468329B2 (en)
JPS60152522A (en) Sealing resin composition
JPH0676476B2 (en) Sealing resin composition
JPS6222824A (en) Sealing resin composition
JPH0414710B2 (en)
JPS59210933A (en) Sealing resin composition
JPS62112621A (en) Sealing resin composition