JPH0558263B2 - - Google Patents

Info

Publication number
JPH0558263B2
JPH0558263B2 JP22204183A JP22204183A JPH0558263B2 JP H0558263 B2 JPH0558263 B2 JP H0558263B2 JP 22204183 A JP22204183 A JP 22204183A JP 22204183 A JP22204183 A JP 22204183A JP H0558263 B2 JPH0558263 B2 JP H0558263B2
Authority
JP
Japan
Prior art keywords
film
etching
silicon
polycrystalline silicon
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22204183A
Other languages
Japanese (ja)
Other versions
JPS60115255A (en
Inventor
Kazuo Nakazato
Tooru Nakamura
Yoshifumi Kawamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22204183A priority Critical patent/JPS60115255A/en
Publication of JPS60115255A publication Critical patent/JPS60115255A/en
Publication of JPH0558263B2 publication Critical patent/JPH0558263B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置の製造方法に関し、特に半
導体集積回路に好適な、微細で低容量な抵抗体
を、容易かつ高い精度で形成することのできる半
導体装置の製造方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device, which can easily and accurately form a fine, low-capacitance resistor suitable for semiconductor integrated circuits. The present invention relates to a method for manufacturing a semiconductor device.

〔発明の背景〕[Background of the invention]

近年における加工技術の進歩により能動素子で
あるトランジスタの占有面積は小さくなり、高速
動作も可能になつた。それに伴ない、集積回路の
構成要素として不可欠な抵抗体も、占有面積や容
量の小さなものが望まれている。
Advances in processing technology in recent years have made it possible to reduce the area occupied by transistors, which are active elements, and enable high-speed operation. Accordingly, resistors, which are essential components of integrated circuits, are desired to occupy a small area and have a small capacity.

第1図に示す抵抗体は従来の低容量抵抗の一例
である。第1図aは平面図を、第1図bは、その
−′に沿つた断面構造を示す。シリコン基板
1、およびシリコン酸化膜2上に形成された多結
晶シリコン層4により抵抗体を構成している。シ
リコン酸化膜3および5は多結晶シリコン4の熱
酸化により形成される。抵抗体の両端は、酸化膜
5を選択エツチングすることにより形成されるコ
ンタクト穴7a,7bを通してアルミニウム電極
6a,6bと結線される。第1図に示した抵抗体
は、酸化膜2により、基板1と分離されているた
め、容量が小さい特徴を有してはいるが、次の欠
点を持つている。
The resistor shown in FIG. 1 is an example of a conventional low capacitance resistor. FIG. 1a shows a plan view, and FIG. 1b shows a cross-sectional structure taken along the line -'. A resistor is constituted by a silicon substrate 1 and a polycrystalline silicon layer 4 formed on a silicon oxide film 2. Silicon oxide films 3 and 5 are formed by thermal oxidation of polycrystalline silicon 4. Both ends of the resistor are connected to aluminum electrodes 6a, 6b through contact holes 7a, 7b formed by selectively etching the oxide film 5. The resistor shown in FIG. 1 is separated from the substrate 1 by the oxide film 2, and therefore has a small capacitance, but has the following drawbacks.

()酸化膜2及び3がエツチングされるのを
防ぐにはコンタクト穴7は多結晶シリコン領域4
上に形成しなければならない。このため、抵抗体
の最小幅はコンタクト穴の最小加工寸法および、
多結晶シリコン領域とのマスク合せ余裕により決
まる。また、コンタクト穴を小さく形成すると、
接触抵抗が大きくなり、安定に一定の抵抗値を得
ることが困難となる。このため、精度良く所望の
抵抗値を持つ抵抗体を形成するには、抵抗体の幅
を大きく設計しなければならない。これは回路の
高集積化のさまたげになる。
() To prevent the oxide films 2 and 3 from being etched, the contact hole 7 should be formed in the polycrystalline silicon region 4.
Must be formed on top. Therefore, the minimum width of the resistor is the minimum machining dimension of the contact hole and
It is determined by the mask alignment margin with the polycrystalline silicon region. Also, if the contact hole is made small,
Contact resistance increases, making it difficult to stably obtain a constant resistance value. Therefore, in order to form a resistor having a desired resistance value with high accuracy, the width of the resistor must be designed to be large. This hinders higher integration of circuits.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記従来の問題を解決し、微細
な集積回路用の低容量抵抗体およびその製造方法
を提供することにある。
An object of the present invention is to solve the above-mentioned conventional problems and provide a low capacitance resistor for fine integrated circuits and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明はSi3n4を高
選択比でエツチできるエツチング方法により、マ
スク合せ余裕を不要にし、それによつて極めて微
細な抵抗体を形成するものである。
In order to achieve the above object, the present invention utilizes an etching method capable of etching Si 3 n 4 with a high selectivity, thereby eliminating the need for a mask alignment margin and thereby forming an extremely fine resistor.

〔発明の実施例〕[Embodiments of the invention]

第2図に本発明の第一の実施例を示す。本実施
例では多結晶シリコンと金属電極の接続に、シリ
コンちつ化膜8の開口部7を通して行なつてい
る。抵抗体4の幅は多結晶シリコンをパターニン
グの際に用いられるマスクで定まり、抵抗体の長
さはシリコンちつ化膜をパターニングの際に用い
られるマスクによつて定まるから、両マスク間の
正確な位置合わせを必要としない。更に金属電極
6と多結晶シリコン4との接触面積が大きく、接
術抵抗の小さな、精度の良い抵抗体を形成するこ
とができる。以下、本実施例の製造方法について
述べる。シリコン基板1上に、熱酸化によりシリ
コン酸化膜2を形成した後、多結晶シリコンを表
面に蒸着する。パターニングしたフオトレジスト
膜をマスクに多結晶シリコン層4をエツチングに
所定の形状に加工する。その後、上記フオトレジ
スト膜を除去し、全面に厚さ100nmのシリコンち
つ化膜8を蒸着によつて形成する。その後、ベタ
ーニングしたフオトレジストをマスクにして、次
に詳細に述べる新しいドライエツチング法により
シリコンちつ化膜を選択エツチングする。
FIG. 2 shows a first embodiment of the present invention. In this embodiment, the polycrystalline silicon and the metal electrode are connected through the opening 7 of the silicon nitride film 8. The width of the resistor 4 is determined by the mask used when patterning the polycrystalline silicon, and the length of the resistor 4 is determined by the mask used when patterning the silicon film. does not require precise alignment. Furthermore, the contact area between the metal electrode 6 and the polycrystalline silicon 4 is large, and a resistor with low contact resistance and high precision can be formed. The manufacturing method of this example will be described below. After forming a silicon oxide film 2 on a silicon substrate 1 by thermal oxidation, polycrystalline silicon is deposited on the surface. Using the patterned photoresist film as a mask, polycrystalline silicon layer 4 is etched into a predetermined shape. Thereafter, the photoresist film is removed, and a silicon dust film 8 with a thickness of 100 nm is formed on the entire surface by vapor deposition. Thereafter, using the bettered photoresist as a mask, the silicon atomized film is selectively etched by a new dry etching method described in detail below.

周知のように、シリコンもしくはその化合物の
ドライエツチングは、たとえば、CF4,CF4,+
O2,NF3,SF6,CHF3,CF4,+H2などを反応ガ
スとして用いて行なわれた。
As is well known, dry etching of silicon or its compounds is performed using, for example, CF 4 , CF 4 , +
This was carried out using O 2 , NF 3 , SF 6 , CHF 3 , CF 4 , +H 2 and the like as reaction gases.

しかし、Si,SiO2およびSi3N4のエツチング速
度を比較すると、CF4,CF4,+O2,NF3もしく
はSF4を用いた場合は、Siのエツチング速度が最
も大きく、Si3N4,SiO2の順で反応速度は小さく
なる。
However, when the etching rates of Si, SiO 2 and Si 3 N 4 are compared, when CF 4 , CF 4 , +O 2 , NF 3 or SF 4 is used, the etching rate of Si is the highest ; , SiO 2 , the reaction rate decreases in this order.

また、反応ガスとしてCHF3もしくはCF4,+
H2を用いると、SiにくらべてSiO2とSi3N4のエツ
チング速度が大きくなるが、SiO2とSi3N4のエツ
チング速度比は、ほぼ2〜3程度にすぎなかつ
た。
In addition, CHF 3 or CF 4 , +
When H 2 is used, the etching rate of SiO 2 and Si 3 N 4 is higher than that of Si, but the etching rate ratio of SiO 2 and Si 3 N 4 is only about 2 to 3.

そのため、Si3N4を選択的にエツチする際に
は、CF4,+O2やSF4が反応ガスとして用いられ
てきたが、この場合、Siのエツチング速度が大き
いため、下地のSiがエツチされるのを防止するた
め、Si3N4膜と下地Siの間に、SiO2膜を形成しな
ければならず、しかも、SiO2とSi3N4の選択比が
小さいため、上記SiO2膜を厚くする必要があつ
た。
Therefore, when selectively etching Si 3 N 4 , CF 4 , +O 2 or SF 4 has been used as a reaction gas, but in this case, the underlying Si is etched because the etching rate of Si is high. In order to prevent this, an SiO 2 film must be formed between the Si 3 N 4 film and the underlying Si, and since the selectivity ratio between SiO 2 and Si 3 N 4 is small, It was necessary to make the film thicker.

すなわち、従来は、SiやSiO2に対して、高い
選択比をもつてSi3N4膜を選択的にドライエツチ
することが困難であつた。
That is, conventionally, it has been difficult to selectively dry-etch a Si 3 N 4 film with a high selectivity to Si or SiO 2 .

そこで本発明では、特に反応ガスとして従来の
ドライエツチングでは用いられていなかつたCH2
F2およびもしくはCH3Fなど、C,HおよびFを
含みF対Hの比が約2以下であるガスを反応ガス
として用い、Si3N4の高選択ドライエツチングを
行なつた。たとえば一般に平行平板型RIE
(Reactive Ion Etching)と呼ばれる装置を用
い、真空容器内の高周波電極上に石英板を介して
半導体基板を設置し、真空容器内を1×10-3
Torr以下に排気した後CH2F2ガスを導入して圧
力を0.03Torrに保持した。しかる後周波数
13.56MHzの高周波電力を高周波電極に印加し、
プラズマを発生させ、Si3N4をエツチングした。
このとき高周波電力は約500Wに保持したが、Si3
N4とSiO2のエツチング速度比は約20,Si3N4とSi
またはpoly Siとのエツチング送度比は約25とSi3
N4だけが高選択でエツチングできた。またSi3N4
のエツチング速度は約30nm/分であり、本実施
例では約5分間エツチングしたが、SiO2
polySiはほとんどエツチングされることがなかつ
た。この後、アルミニウムを蒸着し、パターニン
グしたフオトレジストをマスクに選択エツチング
することにより第2図に示した構造が得られる。
Therefore, in the present invention, CH 2 , which has not been used in conventional dry etching, is used as a reactive gas.
Highly selective dry etching of Si 3 N 4 was carried out using a gas such as F 2 and/or CH 3 F, which contains C, H and F and has an F to H ratio of about 2 or less, as a reaction gas. For example, generally parallel plate type RIE
Using a device called (Reactive Ion Etching), a semiconductor substrate was placed on the high-frequency electrode inside the vacuum chamber via a quartz plate, and the inside of the vacuum chamber was 1×10 -3
After evacuation to below Torr, CH 2 F 2 gas was introduced to maintain the pressure at 0.03 Torr. Then the frequency
Applying 13.56MHz high frequency power to the high frequency electrode,
Plasma was generated and Si 3 N 4 was etched.
At this time, the high frequency power was kept at approximately 500W, but Si 3
The etching rate ratio of N 4 and SiO 2 is approximately 20, and that of Si 3 N 4 and Si
Or the etching feed ratio with poly Si is about 25 and Si 3
Only N 4 was able to etch with high selection. Also Si 3 N 4
The etching rate is approximately 30 nm/min, and in this example, etching was performed for approximately 5 minutes, but SiO 2 and
PolySi was hardly etched. Thereafter, aluminum is deposited and selectively etched using a patterned photoresist as a mask to obtain the structure shown in FIG.

第3図は本発明の第2の実施例である。本実施
例では多結晶シリコンの選択酸化によりシリコン
酸化膜3を形成した。上記酸化膜3とシリコンち
つ化膜8により電極接続コンタクト穴を構成して
いる。本実施例は第2図に示した抵抗体に比べ平
坦な表面を有し、多層配線を行なつた場合、断線
のおこりにくい構造となつている。第4図は第3
図に示した構造を得る製造工程を示したものであ
る。シリコン基板1の表面を熱酸化しシリコン酸
化膜2を形成する。その後、全面に多結晶シリコ
ン4およびシリコンちつ化膜8およびフオトレジ
スト9を形成し、パターニングして、第4図aに
示した構造を得る。フオトレジスト9をマスクに
上述のエツチング法によりシリコンちつ化膜8を
選択エツチングし、フオトレジストを除去する。
その後、シリコンちつ化膜8をマスクに、シリコ
ン酸化膜3を熱酸化により形成し、第4図bに示
した構造を得る。全面にフオトレジスト10を塗
布し、パターニングし、第4図cに示した構造を
得る。フオトレジスト10をマスクに上述のエツ
チング法を用いて、シリコンちつ化膜を選択エツ
チングし、フオトレジストを除去する。その後、
アルミニウムを蒸着し、パターニングして、図3
の構造を得る。
FIG. 3 shows a second embodiment of the invention. In this example, silicon oxide film 3 was formed by selective oxidation of polycrystalline silicon. The oxide film 3 and the silicon dust film 8 constitute an electrode connection contact hole. This embodiment has a flat surface compared to the resistor shown in FIG. 2, and has a structure in which disconnection is less likely to occur when multilayer wiring is used. Figure 4 is the third
This figure shows the manufacturing process for obtaining the structure shown in the figure. The surface of a silicon substrate 1 is thermally oxidized to form a silicon oxide film 2. Thereafter, polycrystalline silicon 4, silicon dust film 8, and photoresist 9 are formed on the entire surface and patterned to obtain the structure shown in FIG. 4a. Using the photoresist 9 as a mask, the silicon nitride film 8 is selectively etched by the above-described etching method, and the photoresist is removed.
Thereafter, using the silicon dust film 8 as a mask, a silicon oxide film 3 is formed by thermal oxidation to obtain the structure shown in FIG. 4b. A photoresist 10 is applied to the entire surface and patterned to obtain the structure shown in FIG. 4c. Using the photoresist 10 as a mask, the silicon nitride film is selectively etched using the above-described etching method, and the photoresist is removed. after that,
After depositing aluminum and patterning, Figure 3
obtain the structure of

〔発明の効果〕〔Effect of the invention〕

上記説明から明らかなように、本発明によれ
ば、マスク合わせ余裕を必要とせず、微細な抵抗
体を形成することができる。
As is clear from the above description, according to the present invention, a fine resistor can be formed without requiring a mask alignment margin.

たとえば、従来はマスク合わせ0.5μm、コンタ
クト穴2μm〓の加工技術を用いて、最小幅3μm
の抵抗しか形成できなかつたのに対し、約半分の
1.5μm幅の抵抗体も精度良く形成することが可能
となつた。更に従来の製造法に比べ工程が簡略さ
れるので、この点も、実用上極めて有利である。
For example, conventionally, using processing technology for mask alignment of 0.5 μm and contact hole of 2 μm, the minimum width is 3 μm.
about half of the resistance was formed.
It has become possible to form resistors with a width of 1.5 μm with high precision. Furthermore, since the process is simplified compared to conventional manufacturing methods, this point is also extremely advantageous in practical terms.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の低容量抵抗体を示す図、第2図
は本発明の第1の実施例を示す図、第3図は本発
明の他の実施例を示す図、第4図は本発明の実施
例を示す工程図である。 1……基体、2,3,5……シリコン酸化膜、
4……多結晶シリコン、6……金属、7コンタク
ト穴、8……シリコン窒化膜、9,10……フオ
トレジスト。
Fig. 1 is a diagram showing a conventional low capacitance resistor, Fig. 2 is a diagram showing a first embodiment of the present invention, Fig. 3 is a diagram showing another embodiment of the present invention, and Fig. 4 is a diagram showing the present invention. It is a process diagram showing an example of the invention. 1... Base body, 2, 3, 5... Silicon oxide film,
4... Polycrystalline silicon, 6... Metal, 7 Contact hole, 8... Silicon nitride film, 9, 10... Photoresist.

Claims (1)

【特許請求の範囲】 1 半導体基板の主表面上に、酸化シリコン膜、
多結晶リコン膜および窒化シリコン膜を積層して
形成する工程と、上記窒化シリコン膜の不要部分
を、C,HおよびFを含みF対Hの比が約2以下
であるガスをエツチングガスとするドライエツチ
ングによつて除去して、所定の形状に加工する工
程と、上記多結晶シリコン膜の露出された部分を
酸化する工程と、上記窒化シリコン膜の所定部分
をエツチして除去して開口部を形成する工程と、
当該開口部を介して露出された上記多結晶シリコ
ン膜と接続された電極を形成する工程を含むこと
を特徴とする半導体装置の製造方法。 2 上記ガスはCH3FまたはCH2F3あることを特
徴とする特許請求の範囲第1項記載の半導体装置
の製造方法。
[Claims] 1. On the main surface of a semiconductor substrate, a silicon oxide film,
A process of laminating and forming a polycrystalline silicon film and a silicon nitride film, and etching the unnecessary portions of the silicon nitride film using a gas containing C, H and F and having an F to H ratio of about 2 or less. A step of removing the polycrystalline silicon film by dry etching and processing it into a predetermined shape, a step of oxidizing the exposed portion of the polycrystalline silicon film, and a step of etching and removing a predetermined portion of the silicon nitride film to form an opening. a step of forming;
A method of manufacturing a semiconductor device, comprising the step of forming an electrode connected to the polycrystalline silicon film exposed through the opening. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the gas is CH 3 F or CH 2 F 3 .
JP22204183A 1983-11-28 1983-11-28 Semiconductor device and manufacture thereof Granted JPS60115255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22204183A JPS60115255A (en) 1983-11-28 1983-11-28 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22204183A JPS60115255A (en) 1983-11-28 1983-11-28 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS60115255A JPS60115255A (en) 1985-06-21
JPH0558263B2 true JPH0558263B2 (en) 1993-08-26

Family

ID=16776155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22204183A Granted JPS60115255A (en) 1983-11-28 1983-11-28 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60115255A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620110B2 (en) * 1985-10-07 1994-03-16 日本電気株式会社 Semiconductor device
CN102947762B (en) 2010-04-27 2016-06-08 株式会社理光 Powder collecting container, powder transfer device and image processing system
JP5420025B2 (en) 2011-07-14 2014-02-19 キヤノン株式会社 Developer storage unit, process cartridge, electrophotographic image forming apparatus

Also Published As

Publication number Publication date
JPS60115255A (en) 1985-06-21

Similar Documents

Publication Publication Date Title
US4337115A (en) Method of forming electrodes on the surface of a semiconductor substrate
US5382544A (en) Manufacturing method of a semiconductor device utilizing thin metal film
JPH0558263B2 (en)
JPH0313744B2 (en)
JPS6255694B2 (en)
JP2907314B2 (en) Method for manufacturing semiconductor device
JP2001127039A (en) Manufacturing method of semiconductor device
JP4568444B2 (en) Etching of thin films of materials containing porous silica deposited on a substrate
JP2515801B2 (en) Semiconductor device
JPH0653334A (en) Manufacturing for semiconductor device
JPH11330045A (en) Method for etching laminated film of oxide film and silicon layer
JP2535148B2 (en) Contact hole forming method
JPH10163216A (en) Manufacture of semiconductor device
JPH01117342A (en) Formation of contact hole
EP0053484B1 (en) A method for fabricating semiconductor device
JPS6358373B2 (en)
JP2002026020A (en) Method of manufacturing semiconductor device
JPS6060750A (en) Manufacture of semiconductor device
JPH09321299A (en) Fabrication of semiconductor device
JPS6125217B2 (en)
JPH0451050B2 (en)
JPS6265426A (en) Making groove or hole in semiconductor
KR20050007778A (en) Method for manufacturing nano space of the semiconductor device
JPH03125427A (en) Manufacture of semiconductor device
JPS63224273A (en) Josephson junction element and its manufacture