JPS6060750A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6060750A
JPS6060750A JP16817583A JP16817583A JPS6060750A JP S6060750 A JPS6060750 A JP S6060750A JP 16817583 A JP16817583 A JP 16817583A JP 16817583 A JP16817583 A JP 16817583A JP S6060750 A JPS6060750 A JP S6060750A
Authority
JP
Japan
Prior art keywords
thin film
capacitor
etched
resist
contact hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16817583A
Other languages
Japanese (ja)
Inventor
Taijo Nishioka
西岡 泰城
Noriyuki Sakuma
憲之 佐久間
Yoshio Honma
喜夫 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16817583A priority Critical patent/JPS6060750A/en
Publication of JPS6060750A publication Critical patent/JPS6060750A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Abstract

PURPOSE:To form a contact hole with no overhang by etching a first thin film in a contact region and coating the peripheral section of the contact region with a second resist mask. CONSTITUTION:An Si nitride film 9 is etched while using a photo-resist 10 in a contact section as a mask. The resist 10 is removed. A second photo-resist 11 is patterned, and SiO2 8 is etched. An overhang is not generated on the lower side of the Si nitride 9 because the resist 11 is formed on the side inner than the end of the etched Si nitride 9. The resist 11 is removed, and tantalum oxide 12 is evaporated from the upper section of a contact hole.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置の製造方法に係り、特に大規模集積
回路(LSI)の実現に適しているキャパシタの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a capacitor suitable for realizing a large-scale integrated circuit (LSI).

〔発明の背景〕[Background of the invention]

LS I、特にダイナミックメモリやバイポーラメモリ
では、その集積度が向上するにつれてキャパシタの面積
が縮小されてきたが、α線による誤動作を防止するなど
の回路動作上の条件からキャパシタの静電容量はある限
度よシも小さくすることはできない(%開昭52−11
960.特開昭53−97343 )。
In LSI, especially dynamic memory and bipolar memory, the area of the capacitor has been reduced as the degree of integration has improved, but the capacitance of the capacitor is still limited due to circuit operation conditions such as preventing malfunction due to alpha rays. The limit cannot be reduced (%
960. Japanese Patent Publication No. 53-97343).

ところが、従来ダイナミックメモリを代表例とするLS
I用キャパシタの誘電材料として、熱酸化シリコンが用
いられてきたが、キャパシタの面積の縮小につれて酸化
膜の膜厚を薄くしなければならす、十分な歩留シを確保
することは難しくなシつつある。したがって、熱酸化シ
リコンよシも比誘電率の大きいキャパシタ用誘電材料に
対する要求が高まっている。上記の新しいキャパシタ用
誘電材料として、窒化シリコンや、酸化タンタルなどに
代表される遷移金属酸化物を用いようとする試みがなさ
れているが、LSIの製造工程に必要な量産性と再現性
を要求する場合は気相成長法(CVD法)やスパッタ法
によって上記の誘電材料を被着する必要がある。
However, conventional LS with dynamic memory as a representative example
Thermal oxidation silicon has been used as a dielectric material for I capacitors, but as the area of the capacitor decreases, the thickness of the oxide film must be made thinner, making it difficult to ensure a sufficient yield. be. Therefore, there is an increasing demand for dielectric materials for capacitors having a high dielectric constant, such as thermally oxidized silicon. Attempts have been made to use transition metal oxides such as silicon nitride and tantalum oxide as the new capacitor dielectric materials mentioned above, but these require mass productivity and reproducibility necessary for the LSI manufacturing process. In this case, it is necessary to deposit the above-mentioned dielectric material by vapor phase growth (CVD) or sputtering.

一搬にLSI用キャパシタは、第1図(a)に断面図を
示したように導電性基板l上に第2の絶縁膜2と第1の
絶縁M3で覆われた部分にコンタクト用穴を形成し、作
られることが多い。
As shown in the cross-sectional view of FIG. 1(a), the LSI capacitor is made by forming a contact hole in a portion covered with the second insulating film 2 and the first insulating film M3 on the conductive substrate L. Often formed and created.

第1図(a)の領域上に導電性基板1を一つの電極とし
てキャパシタを形成するさいは、第1図(1))のよう
に7オトレジスト4をバターニング形成して、第1の絶
縁膜に対して選択的にエツチング速度の速いエツチング
法で該第1の絶縁膜をエツチングしたのち、第2の絶縁
膜に対して速い第2のエツチング法によって該第2の絶
縁膜をエツチングするのが従来の方法である。
When forming a capacitor on the area shown in FIG. 1(a) using the conductive substrate 1 as one electrode, a 7-photoresist 4 is formed by patterning as shown in FIG. 1(1)) to form the first insulating The first insulating film is selectively etched with an etching method having a high etching rate, and then the second insulating film is etched with a second etching method having a high etching rate with respect to the second insulating film. is the conventional method.

上述のエツチングを行うと、第1図(b)に示したよう
にコンタクト穴の周辺に第2の絶縁膜2が第1の絶縁膜
3の下側までエツチングされいわゆるパオーバハングI
I aを生じる。
When the above-mentioned etching is performed, the second insulating film 2 is etched to the bottom of the first insulating film 3 around the contact hole as shown in FIG. 1(b), resulting in a so-called overhang I.
produces Ia.

次に第1図(C)に示すように、レジスト4を除去し、
キャパシタ用誘電材料5をCVD法、スパッタ法などに
よって形成する。そのさい、オーバハングaの部分には
誘電材料5は形成されないか又は極めて薄い、したがっ
て、次に上部電極6として金属膜等が蒸着されるとオー
バハング部へも上部電極6が入シこみ、電極6と基板1
が短絡することによるキャパシタの歩留りの低下が生ず
る。
Next, as shown in FIG. 1(C), the resist 4 is removed,
The capacitor dielectric material 5 is formed by CVD, sputtering, or the like. At that time, the dielectric material 5 is not formed in the overhang part a, or is extremely thin. Therefore, when a metal film or the like is deposited next as the upper electrode 6, the upper electrode 6 also enters the overhang part, and the electrode 6 and board 1
The yield of capacitors decreases due to short-circuiting.

その結果、2層以上よりガる絶縁膜にコンタクト用穴を
開孔しキャパシタを形成するさいには、オーバハングが
生じやすいため、誘電体が段切れを起こして、キャパシ
タの耐圧不良を生じることが多かった。また、上部コン
タクトホール上の電極に関してもオーバハング部で配線
材料が段切れを起こし、断線を生じやすい難点などの難
点があった。
As a result, when a capacitor is formed by forming a contact hole in an insulating film that is looser than two or more layers, overhang tends to occur, which can cause the dielectric to break and cause a breakdown voltage failure in the capacitor. There were many. Further, regarding the electrode on the upper contact hole, there are also disadvantages in that the wiring material is easily broken at the overhang portion, resulting in disconnection.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記コンタクトホール形成のさいのオー
バハングの発生を防止し、電極配線材料やキャパシタ月
給4騨膜の段切れによる歩留シの低下をまねかない半導
体装置を製造することにある。
An object of the present invention is to prevent the occurrence of overhang during the formation of the contact holes, and to manufacture a semiconductor device that does not cause a decrease in yield due to breakage of the electrode wiring material or the capacitor film.

〔発明の概要〕[Summary of the invention]

本発明の概念は、2層以上よりなる薄膜に覆われたコン
タクト領域に第1のレジストマスクをパターニング形成
して、第1の薄膜をエツチングし、該第1のレジストマ
スクを除去したのち、第2のレジストマスクを前記コン
タクト領域の周辺部を榎うようにして形成し、第2の薄
膜をエツチングすることによってオーバハングのないコ
ンタクトホールを形成し、その上部に被着される電極配
線材料またはキャパシタ用絶縁膜の段切れを防止するこ
とにある。
The concept of the present invention is to pattern a first resist mask in a contact region covered with a thin film consisting of two or more layers, to etch the first thin film, and to remove the first resist mask. A second resist mask is formed so as to cover the periphery of the contact region, and the second thin film is etched to form a contact hole without overhang, and an electrode wiring material or capacitor is deposited on the top of the contact hole. The purpose is to prevent breakage of the insulating film.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の概念を実施例により詳細に説明する。 Hereinafter, the concept of the present invention will be explained in detail with reference to Examples.

第2図に本発明のキャパシタの製造方法を断面図を用い
て示す。
FIG. 2 shows a method for manufacturing a capacitor according to the present invention using a cross-sectional view.

第2図(a)に示すように、壕ず比抵抗0,03Ω・副
以下の不純物を高濃度にドープした84基板7の表面を
乾燥02ガス中で、1000C,30分酸化(膜厚33
nmの酸化シリコン8を形成した。次に、CVD法によ
って膜厚120nmの窒化シリコン膜9を被着し、フォ
トレジストの剥離を防ぐため表面活性化を行い、フオト
レジス)AZ−1350Jシプレ−社の商品名)を1,
38mスピン回転塗布機を用いて塗布する。その後、密
着露光型フォトアライナ−(Cob、ilt社製)を用
いて露光し、通常の方法で現像し、コンタクト部のフォ
トレジストパターン10を形成する。
As shown in FIG. 2(a), the surface of the 84 substrate 7 doped with a high concentration of impurities with a trench specific resistance of 0.03Ω or less was oxidized in dry 02 gas at 1000C for 30 minutes (film thickness 33Ω).
Silicon oxide 8 with a thickness of 8 nm was formed. Next, a silicon nitride film 9 with a thickness of 120 nm is deposited by the CVD method, and the surface is activated to prevent the photoresist from peeling off.
Coat using a 38m spin rotary coater. Thereafter, exposure is performed using a contact exposure type photoaligner (Cob, manufactured by ILT), and development is performed in a usual manner to form a photoresist pattern 10 of the contact portion.

上記フォトレジスト10をマスクとして、窒化シリコン
膜9を東京応化社製のIPC型ドライエツチング装置を
用いてエツチングした。反応カスは02を5%含むCF
 4ガスであシ、プラズマ放電中のカス圧は0.6to
rr、電力は200W″″Cあった。上記のエツチング
は約3〜4分秒度で完了するが、エツチング終了はウェ
ハ全面の干渉色が消えてから30秒はどオーバエツチン
グを行った。
Using the photoresist 10 as a mask, the silicon nitride film 9 was etched using an IPC type dry etching device manufactured by Tokyo Ohka Co., Ltd. The reaction residue is CF containing 5% of 02.
4 gases, gas pressure during plasma discharge is 0.6 to
rr, the power was 200W″″C. The above-mentioned etching was completed in about 3 to 4 minutes, but over-etching was performed for 30 seconds after the interference color on the entire surface of the wafer disappeared.

その結果、第2図(b)に示すように、窒化シリコン9
のレジスト10の周辺部の下側に約150nmのサイド
エッチが生じた。そのさい、下地のシリコン酸化膜8は
ほとんどエツチングされない。次に公知の方法でレジス
ト10を除去する。
As a result, as shown in FIG. 2(b), silicon nitride 9
A side etch of about 150 nm was generated on the lower side of the periphery of the resist 10. At this time, the underlying silicon oxide film 8 is hardly etched. Next, the resist 10 is removed by a known method.

続いて、第2図(C)に示すように第2のフォトレジス
ト11をパターニング形成し、酸化シリコン8を弗化水
素水:弗化アンモニウム液の比がに6のエツチング液に
よって約40秒間エツチングする。このエツチングによ
って第2のレジスト11の下部の酸化シリコン8が約4
Qnmサイドエッチされるが、第2のレジスト11はエ
ツチングされた窒化シリコン9の端から1μm内側に形
成されるため、窒化シリコン9の下側にオーバハングが
生じることはない。
Subsequently, as shown in FIG. 2(C), a second photoresist 11 is patterned, and the silicon oxide 8 is etched for about 40 seconds using an etching solution with a hydrogen fluoride solution:ammonium fluoride solution ratio of 6. do. As a result of this etching, the silicon oxide 8 at the bottom of the second resist 11 is etched by about 4
Qnm side etching is performed, but since the second resist 11 is formed 1 μm inside from the edge of the etched silicon nitride 9, no overhang occurs below the silicon nitride 9.

なお、この1μmの間隔はフォトアライナ−の合わせ精
度を考!して決めた。
Please note that this 1 μm interval takes into consideration the alignment accuracy of the photo aligner! I decided.

第2図(d)に示すように、レジスト11を除去したの
ち、キャパシタ用誘電体としては、高誘電率材料として
良好な特性をもつ酸化メンタル12を上記コンタクトホ
ールの上部からスパッタ法によって60人蒸着し、上部
電極としてMo2Bを蒸着し、従来のフォトリソグラフ
ィ法によって加工した。MOはリン酸を含むエツチング
液によって容易にエツチング可能である。
As shown in FIG. 2(d), after removing the resist 11, oxidized mental 12, which has good characteristics as a high dielectric constant material, was sputtered from above the contact hole as a capacitor dielectric. Mo2B was deposited as the top electrode and processed by conventional photolithography methods. MO can be easily etched with an etching solution containing phosphoric acid.

以下、本発明の方法によって形成したキャパシタの特性
と従来技術の項で示した従来法によって形成したキャパ
シタの特性を比較して示す。
Hereinafter, the characteristics of a capacitor formed by the method of the present invention will be compared with those of a capacitor formed by the conventional method shown in the prior art section.

第3図(a)は本発明の方法によって形成したキャパシ
タの電流−電圧特性を示し、第3図(b)は上記の従来
方法によって形成したキャパシタの電流−電圧特性を示
す。第3図(a)のキャパシタではいくつかのキャパシ
タの測定値のばらつきはほとんどなく再現性の良いキャ
パシタが形成されていることがわかる。一方、第3図Φ
)に示した従来法によって形成したキャパシタでは電流
密度が大きくかつ測定試料によって大きくばらつくため
、LSI用キャパシタとしては信頼性が低すぎる。
FIG. 3(a) shows the current-voltage characteristics of a capacitor formed by the method of the present invention, and FIG. 3(b) shows the current-voltage characteristics of a capacitor formed by the above-mentioned conventional method. It can be seen that in the capacitor shown in FIG. 3(a), there is almost no variation in the measured values of some capacitors, and a capacitor with good reproducibility is formed. On the other hand, Fig. 3Φ
In the capacitor formed by the conventional method shown in ), the current density is large and varies widely depending on the measurement sample, so the reliability is too low as an LSI capacitor.

従って、本発明によるオーババンクのないコンタクトホ
ールを用いた場合、該コンタクトホールの上方から60
人はどの膜厚のTa1ls!をスパッタ法で被着しても
段切れを起こさないことがわかる。
Therefore, when using the contact hole without overbank according to the present invention, 600 mm from the top of the contact hole is used.
What film thickness does Ta1ls have? It can be seen that no breakage occurs even when the material is deposited by sputtering.

一方、該コンタクトホールの上部電極の厚さは通常のL
SIプロセスにおいては0.2〜1.0μm程度である
ため、段切れが起こる心配にない。
On the other hand, the thickness of the upper electrode of the contact hole is the usual L
In the SI process, the thickness is about 0.2 to 1.0 μm, so there is no fear of breakage.

なお、本発明以外の方法で、たとえば、第2図(a)で
窒化シリコン9と酸化シリコン8ガとをドライエッチ法
で同時にエツチングしてしまえば、オーバハングは生じ
ないように考えられるが、現実のLSI製造工程におい
ては、エツチング後のS + 7の表面にプラズマによ
る欠陥層が形成したシ、ドライエツチングによってSi
7の表面が汚染されたりして#Si7の表面を洗浄する
必要が生じる。洗浄には弗化水素酸を含む水溶液で洗浄
されることが多いがそのさい、酸化シリコン8がエツチ
ングされオーバハングが生じることが多い。
It should be noted that if silicon nitride 9 and silicon oxide 8 are simultaneously etched using a dry etching method using a method other than the present invention, for example, as shown in FIG. In the LSI manufacturing process, a defect layer was formed by plasma on the surface of S+7 after etching, and Si
The surface of #Si7 may be contaminated and it becomes necessary to clean the surface of #Si7. When cleaning, an aqueous solution containing hydrofluoric acid is often used, but at that time, the silicon oxide 8 is often etched, resulting in an overhang.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、2層以上の薄膜に覆われている領域に
、コンタクトホールを形成するさい、オーバハングのな
いコンタクトホールを形成できるためキャパシタ用誘電
体薄膜や上部電極を段切れなしに形成でき、LSIの歩
留シを大幅に向上させる効果がある。
According to the present invention, when forming a contact hole in a region covered with two or more layers of thin films, it is possible to form a contact hole without overhang, so that a dielectric thin film for a capacitor and an upper electrode can be formed without a step break. This has the effect of significantly improving the yield of LSI.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)、 (C)は従来のキャパシタ
の形成プロセスを示す断面図、第2図(a)、 (b)
、 (C)、 (d)は本発明によるキャパシタの製造
プロセスを示す断面図、第3図(a)は本発明の一実施
例におけるキャパシタの電流−電圧特性、第3図(b)
は従来プロセスによるキャパシタの電流−電圧特性を示
す。 1・・・導電性基板、2・・・第2の絶縁膜、3・・・
第1の絶R膜、4・・・フォトレジスト、5・・・誘電
材料、6・・・電極、7・・・Sr基板、8・・・酸化
シリコン、9・・・9化シリコン、10・・・フォトレ
ジスト、11・・・第2のフォトレジスト、12・・・
酸化タンタル、13瑯 / 圓 (a> / (b〕 窮 2 図 (υ) (b〕 [=− <C) 「 3 (ill) を足CV) (トノ も瓦<v)
Figures 1 (a), (b), and (C) are cross-sectional views showing the conventional capacitor formation process; Figures 2 (a) and (b)
, (C), (d) are cross-sectional views showing the manufacturing process of the capacitor according to the present invention, FIG. 3(a) is the current-voltage characteristic of the capacitor in one embodiment of the present invention, and FIG. 3(b) is
shows the current-voltage characteristics of a capacitor produced by a conventional process. DESCRIPTION OF SYMBOLS 1... Conductive substrate, 2... Second insulating film, 3...
1st R film, 4... Photoresist, 5... Dielectric material, 6... Electrode, 7... Sr substrate, 8... Silicon oxide, 9... Silicon 9ide, 10 ...Photoresist, 11...Second photoresist, 12...
Tantalum oxide, 13 oxide / Yen (a> / (b) 2 Figure (υ) (b) [=- <C) "3 (ill) foot CV) (Tono mo tile <v)

Claims (1)

【特許請求の範囲】 1、第1の薄膜/第2の薄膜/導電性基板がそれぞれ積
層されている半導体装置において、該第1の薄膜上に第
1のレジストマスクラパターニング形成して、該第1の
薄膜をエツチングし、次に鈑第1のレジストマスクを除
去し、上記エツチングによシ残った該第2の薄膜上の該
第1の薄膜のエツジ部の近傍を覆うようにして第2のレ
ジストマスクをバターニング形成し、該第2の薄膜をエ
ツチングすることにょジオ−バーハングのない段差部も
しくはコンタクトホールを形成することを特徴とする半
導体装置の製造方法。 2、特許請求の範囲第1項記載の製造方法において、形
成したコンタクトホールの上部から絶縁膜を被着し、次
に該絶縁膜の上部に電極を形成しキャパシタとすること
を特徴とする半導体装置の製造方法。 3、特許請求の範囲第2項記載の製造方法において、該
絶縁膜は、タンタル、ニオビウム、バナジウム、チタン
、ジルコニウム、ハフニウム等の遷移金属からなる群よ
シ選択した少なくとも一酸化物によって形成されている
ことを特徴とする半導体装置の製造方法。
[Claims] 1. In a semiconductor device in which a first thin film/a second thin film/a conductive substrate are laminated, a first resist mask is formed on the first thin film by patterning the first resist mask; The first thin film is etched, the first resist mask is removed, and the second thin film is etched to cover the vicinity of the edge of the first thin film on the second thin film remaining after the etching. 1. A method of manufacturing a semiconductor device, comprising patterning a resist mask and etching the second thin film to form a step portion or a contact hole without geobar hang. 2. In the manufacturing method according to claim 1, an insulating film is deposited from above the formed contact hole, and then an electrode is formed on the insulating film to form a capacitor. Method of manufacturing the device. 3. In the manufacturing method according to claim 2, the insulating film is formed of at least a monoxide selected from the group consisting of transition metals such as tantalum, niobium, vanadium, titanium, zirconium, and hafnium. A method for manufacturing a semiconductor device, characterized in that:
JP16817583A 1983-09-14 1983-09-14 Manufacture of semiconductor device Pending JPS6060750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16817583A JPS6060750A (en) 1983-09-14 1983-09-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16817583A JPS6060750A (en) 1983-09-14 1983-09-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6060750A true JPS6060750A (en) 1985-04-08

Family

ID=15863181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16817583A Pending JPS6060750A (en) 1983-09-14 1983-09-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6060750A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265860A (en) * 1985-05-20 1986-11-25 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265860A (en) * 1985-05-20 1986-11-25 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device

Similar Documents

Publication Publication Date Title
US4337115A (en) Method of forming electrodes on the surface of a semiconductor substrate
JPH06140396A (en) Semiconductor device and manufacture thereof
JP2003110023A (en) Capacitance element and method of fabricating the same
JPH11214369A (en) Platinum film etching method for semiconductor device
KR900001834B1 (en) Method of manufacturing semiconductor device
JP3361918B2 (en) Method for forming fine holes in semiconductor integrated circuit device
WO2022160633A1 (en) Capacitor structure processing method and semiconductor structure
JPS6060750A (en) Manufacture of semiconductor device
JPH0313744B2 (en)
JPH10214816A (en) Manufacturing method of semiconductor device and manufacture of capacitive device of semiconductor device
US6613680B2 (en) Method of manufacturing a semiconductor device
JP2004079582A (en) Metal wiring etching method
JPH0558263B2 (en)
KR100223831B1 (en) Method of manufacturing capacitor
JP2991388B2 (en) Method for manufacturing semiconductor device
JPS5810855B2 (en) Tasou High Senkou Zou no Seihou
JPS6038854A (en) Manufacture of semiconductor device
JPH0570938B2 (en)
JPS5825229A (en) Manufacture of semiconductor device
JPH0451050B2 (en)
KR100419749B1 (en) Method for fabricating semiconductor device
JP2000223660A (en) Semiconductor device and its manufacture
JP3750362B2 (en) Method for forming dielectric thin film
JPH0481323B2 (en)
JPH0758329A (en) Semiconductor device and its production