JPH0555217A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0555217A
JPH0555217A JP20970291A JP20970291A JPH0555217A JP H0555217 A JPH0555217 A JP H0555217A JP 20970291 A JP20970291 A JP 20970291A JP 20970291 A JP20970291 A JP 20970291A JP H0555217 A JPH0555217 A JP H0555217A
Authority
JP
Japan
Prior art keywords
film
wiring
insulating film
metal film
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20970291A
Other languages
Japanese (ja)
Inventor
Hideki Kitahata
秀樹 北畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20970291A priority Critical patent/JPH0555217A/en
Publication of JPH0555217A publication Critical patent/JPH0555217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To increase the density of wiring. CONSTITUTION:An inter-layer insulating film 4A on a semiconductor substrate 1 is flattened, and an inter-layer insulating film 4B is grown. The inter-layer insulating film 4B is etched while using a photo-resist film 5 having a desired wiring pattern as a mask. Through-holes 7A, 7B are formed, and a wiring metallic film 8 is grown on the whole surface through a sputtering method. Anisotropic etching is added from the oblique direction while turning the semiconductor substrate 1 in order to remove thin wiring metallic films 8C on side faces connecting wiring metallic films 8B grown on projecting sections by the inter-layer insulating film and wiring metallic films 8A grown in recessed sections. The wiring metallic films 8B on the projecting sections and the wiring metallic films 8A in the recessed sections are separated completely through the etching.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に金属配線の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming metal wiring.

【0002】[0002]

【従来の技術】従来半導体装置の配線形成方法は、各配
線層の配線パターンを平坦な同一層間膜上にフォトリソ
グラフィの技術により形成している。図3(a)〜
(d)はその従来例を説明する為の工程順に示した半導
体チップの断面図である。
2. Description of the Related Art In the conventional wiring forming method of a semiconductor device, the wiring pattern of each wiring layer is formed on the same flat interlayer film by a photolithography technique. Fig.3 (a)-
(D) is sectional drawing of the semiconductor chip shown in the order of processes for explaining the conventional example.

【0003】まず図3(a)に示すように、表面にコン
タクトパッド2等による凹凸が形成された半導体基板1
の表面にPSG等からなる層間絶縁膜3を形成する。次
に図3(b)に示すように、フォトレジスト膜6をマス
クとして、層間絶縁膜3を選択的にエッチングしてコン
タクトパッド2の上にスルーホール7を形成する。その
後、図3(c)に示すように、スパッタリング法等によ
り、全面に配線金属膜8を成長し、更に図3(d)に示
すように、フォトレジスト膜9をマスクとして配線金属
膜8を選択的にエッチングして、所望の配線パターンを
得る。
First, as shown in FIG. 3A, a semiconductor substrate 1 having an uneven surface formed by contact pads 2 etc. is formed.
An interlayer insulating film 3 made of PSG or the like is formed on the surface of the. Next, as shown in FIG. 3B, the interlayer insulating film 3 is selectively etched using the photoresist film 6 as a mask to form a through hole 7 on the contact pad 2. Thereafter, as shown in FIG. 3C, a wiring metal film 8 is grown on the entire surface by a sputtering method or the like, and further, as shown in FIG. 3D, the wiring metal film 8 is formed using the photoresist film 9 as a mask. Selective etching is performed to obtain a desired wiring pattern.

【0004】[0004]

【発明が解決しようとする課題】配線密度の限界は、形
成可能な最小配線幅と最小配線間隔の和(最小配線ピッ
チ)で評価できる。
The limit of the wiring density can be evaluated by the sum of the minimum wiring width that can be formed and the minimum wiring interval (minimum wiring pitch).

【0005】しかしながら、このような従来の配線形成
の方法では、最小配線幅と最小配線間隔が共に同じフォ
トリソグラフィの能力に依存する為、両者の値はほぼ同
程度(例えば最小配線幅が1μmであれば、最小配線間
隔も1μm前後になる)になり、最小配線幅又は最小配
線間隔の2倍程度以下に最小配線ピッチを小さくするこ
とは困難であった。
However, in such a conventional wiring forming method, the minimum wiring width and the minimum wiring interval both depend on the same photolithographic ability, and therefore the values of both are almost the same (for example, the minimum wiring width is 1 μm. If so, the minimum wiring interval is also about 1 μm), and it has been difficult to reduce the minimum wiring pitch to about twice the minimum wiring width or the minimum wiring interval.

【0006】[0006]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板上に絶縁膜を形成する工程と、こ
の絶縁膜の上部を異方性エッチング法によりパターニン
グし垂直な断面形状の凹凸面を形成する工程と、この凹
凸面を含む全面に金属膜を形成する工程と、前記半導体
基板をその中央部の法線を軸に回転させながらその法線
に対し斜め方向からの異方性エッチング法により前記金
属膜をエッチングし前記絶縁膜の凸部上に成長した金属
膜と凹部内に成長した金属膜を分離する工程とを含むも
のである。
A method of manufacturing a semiconductor device according to the present invention comprises a step of forming an insulating film on a semiconductor substrate, and an upper portion of the insulating film is patterned by anisotropic etching to obtain a vertical cross-sectional shape. A step of forming an uneven surface, a step of forming a metal film on the entire surface including the uneven surface, and anisotropy from an oblique direction with respect to the normal line while rotating the semiconductor substrate about the normal line of the central portion thereof. Etching the metal film by a conductive etching method to separate the metal film grown on the convex portion of the insulating film and the metal film grown in the concave portion.

【0007】[0007]

【実施例】次に本発明について図面を参照して説明す
る。図1(a)〜(e)は本発明の第1の実施例を説明
する為の工程順に示した半導体チップの断面図である。
The present invention will be described below with reference to the drawings. 1A to 1E are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a first embodiment of the present invention.

【0008】まず図1(a)に示すように、表面にコン
タクトパッド2等による凹凸が形成された半導体基板1
の表面を層間絶縁膜4Aにより平坦化した後、層間絶縁
膜の厚さが所望の厚さになる様に更に層間絶縁膜4Bを
成長する。この時層間絶縁膜4A,4Bの合計厚は、所
望の層間絶縁膜厚と配線厚の合計厚よりも厚くなるよう
にする。層間絶縁膜4Aの厚さが十分厚ければ層間絶縁
膜4Bは必ずしも成長する必要はない。しかしながら、
ここでは層間絶縁膜4Aを所望の厚さに形成し、層間絶
縁膜4Bのエッチングをこの層間絶縁膜4上に対し選択
的に行なえるように別構成とした。次に所望の配線パタ
ーンを有するフォトレジスト膜5をマスクとして層間絶
縁膜4Bを異方性エッチング法で選択的にエッチングす
る。この時、下層のコンタクトパッド2の上部の層間絶
縁膜4Bもエッチングされるようにフォトレジスト膜5
のパターンを設計しておく。
First, as shown in FIG. 1 (a), a semiconductor substrate 1 having irregularities formed by contact pads 2 or the like on its surface is formed.
After planarizing the surface of the substrate with the interlayer insulating film 4A, the interlayer insulating film 4B is further grown so that the thickness of the interlayer insulating film becomes a desired thickness. At this time, the total thickness of the interlayer insulating films 4A and 4B is made thicker than the desired total thickness of the interlayer insulating film and the wiring. If the thickness of the interlayer insulating film 4A is sufficiently thick, the interlayer insulating film 4B does not necessarily have to grow. However,
Here, the interlayer insulating film 4A is formed to have a desired thickness, and the interlayer insulating film 4B is separately configured so that the etching on the interlayer insulating film 4 can be selectively performed. Next, using the photoresist film 5 having a desired wiring pattern as a mask, the interlayer insulating film 4B is selectively etched by an anisotropic etching method. At this time, the photoresist film 5 is formed so that the interlayer insulating film 4B above the lower contact pad 2 is also etched.
Design the pattern.

【0009】次に図1(b)に示すように、フォトレジ
スト膜5を除去したのち、新たなフォトレジスト膜6を
マスクとして、等方性のエッチング法により層間絶縁膜
4Aをエッチングしてコンタクトパッド上に浅いスルー
ホール7A及び深いスルーホール7Bを形成する。この
時のエッチング条件は、層間絶縁膜4Bのエッチレート
が層間絶縁膜4Aのエッチレートに対し同じか、やや速
くなるように設定する。
Next, as shown in FIG. 1B, after removing the photoresist film 5, the interlayer insulating film 4A is etched by an isotropic etching method using the new photoresist film 6 as a mask to make contact. A shallow through hole 7A and a deep through hole 7B are formed on the pad. The etching conditions at this time are set so that the etching rate of the interlayer insulating film 4B is the same as or slightly faster than the etching rate of the interlayer insulating film 4A.

【0010】このようなエッチングは、例えば層間絶縁
膜4AにSiO2 膜,層間絶縁膜4BにSiN膜を用い
た場合、CF4 /O2 系のガスを用いることで可能であ
り前述の異方性選択エッチングはNF3 /Cl2 系のガ
スにより可能である。浅いスルーホール部は図1(a)
におけるフォトレジスト膜5の開口幅を図1(b)にお
けるフォトレジスト膜6の開口幅よりも広く設定して形
成する。又、深いスルーホール部は逆に図1(a)にお
けるフォトレジスト膜5の開口幅より図1(b)におけ
るフォトレジスト膜6の開口幅を広く設定して形成す
る。上述の等方性エッチングにより深いスルーホール7
B部の層間絶縁膜4Bの各表面から各々テーパー状のエ
ッチングが進行し全体としてテーパー状の断面形状が得
られる。
Such etching is possible, for example, by using a CF 4 / O 2 gas when an SiO 2 film is used for the interlayer insulating film 4A and a SiN film is used for the interlayer insulating film 4B. The sex-selective etching can be performed with an NF 3 / Cl 2 system gas. The shallow through hole is shown in Figure 1 (a).
The opening width of the photoresist film 5 in FIG. 1 is set wider than the opening width of the photoresist film 6 in FIG. On the contrary, the deep through-hole portion is formed by setting the opening width of the photoresist film 6 in FIG. 1B wider than the opening width of the photoresist film 5 in FIG. Deep through holes 7 due to the isotropic etching described above.
The tapered etching progresses from each surface of the interlayer insulating film 4B in the B portion, and a tapered sectional shape is obtained as a whole.

【0011】次に図1(c)に示すように、スパッタリ
ング法により配線金属膜8を全面に成長する。この時異
方性エッチングにより形成された層間絶縁膜4Bによる
凹凸部のステップカバレッジが悪い為、凹部を埋込むよ
うに成長した配線金属膜8Aと凸部上部に成長した配線
金属膜8Bは、薄い側面の配線金属膜8Cでつながって
いる。
Next, as shown in FIG. 1C, a wiring metal film 8 is grown on the entire surface by a sputtering method. At this time, since the step coverage of the uneven portion due to the interlayer insulating film 4B formed by anisotropic etching is poor, the wiring metal film 8A grown to fill the concave portion and the wiring metal film 8B grown above the convex portion are thin. They are connected by a wiring metal film 8C on the side surface.

【0012】そこで半導体基板1を回転させながら斜め
方向よりイオンミリング等の異方性エッチングを施すこ
とにより、図1(d)に示すように、凹部の配線金属膜
8Aと凸部上の配線金属膜8Bは分離される。但しこの
時のエッチング角ψは、凸部の配線金属膜8Bにより側
面の配線金属膜8C部分がエッチングの影にならないよ
うに設定する必要がある。例えばこのエッチング角ψを
45°に設定したとすると凸部上及び凹部内の配線金属
膜8A及び8Bの基板法線方向に対するエッチレートと
側面の配線金属膜8Cの基板表面方向に対するエッチレ
ートは等しくなる。側面の配線金属膜8Cの厚さはスパ
ッタリング条件により成長膜厚の10%以下にできるの
で異方性エッチングによりこの配線金属膜8Cを完全に
除去しても、平坦部の配線は成長膜厚の60%程度の膜
厚が確保できる。また深いスルーホール7Bの側壁部は
テーパー状になっており、最悪部のテーパー角が20%
程度になるようにフォトレジスト膜5,6の開口幅を設
計しておけば、側壁部には平坦部の約30%以上の膜厚
で配線金属膜が形成される。この側壁部の金属膜は、平
坦部の配線金属膜に比べ垂直エッチングに近くなる為速
いエッチレートでエッチングされる。
Then, while the semiconductor substrate 1 is rotated, anisotropic etching such as ion milling is performed in an oblique direction, so that the wiring metal film 8A in the concave portion and the wiring metal on the convex portion are formed as shown in FIG. 1D. Membrane 8B is separated. However, it is necessary to set the etching angle ψ at this time so that the wiring metal film 8B of the convex portion does not cause the wiring metal film 8C on the side surface to be a shadow of the etching. For example, if the etching angle ψ is set to 45 °, the etching rates of the wiring metal films 8A and 8B on the convex portions and the concave portions in the substrate normal direction are equal to the etching rates of the side wiring metal films 8C in the substrate surface direction. Become. The thickness of the wiring metal film 8C on the side surface can be set to 10% or less of the grown film thickness depending on the sputtering conditions. Therefore, even if the wiring metal film 8C is completely removed by anisotropic etching, the flat part of the wiring is A film thickness of about 60% can be secured. The side wall of the deep through hole 7B is tapered, and the taper angle at the worst part is 20%.
If the opening widths of the photoresist films 5 and 6 are designed to be about the same, the wiring metal film is formed on the side wall portion with a film thickness of about 30% or more of the flat portion. Since the metal film on the side wall portion is closer to vertical etching than the wiring metal film on the flat portion, it is etched at a faster etching rate.

【0013】しかしながら、例えば配線金属を金,異方
性エッチングとしてイオンミリングを仮定すると、エッ
チング角45°に対するエッチング角0°のエッチレー
ト比は約1.4倍程度である為、側面の配線金属膜8C
を完全に除去してもスルーホールの側壁部には平坦部の
約16%以上の配線金属膜が残ることになる。従って配
線金属膜の成長厚を十分厚く設定しておけばスルーホー
ルコンタクトには問題ない。尚、配線金属膜を真空蒸着
により形成すると、側面の配線金属膜8Cを更に薄くす
ることができるので、異方性エッチングによる配線金属
膜の膜減りを抑えることができる。その後、不要な配線
部を除去する為、図1(e)に示すフォトレジスト膜9
をマスクとして配線金属膜8をエッチングする。
However, assuming ion milling with gold as the wiring metal and anisotropic etching, the etching rate ratio of the etching angle of 0 ° to the etching angle of 45 ° is about 1.4 times. Membrane 8C
Even if it is completely removed, about 16% or more of the flat portion of the wiring metal film remains on the side wall of the through hole. Therefore, if the growth thickness of the wiring metal film is set to be sufficiently thick, there will be no problem in through-hole contact. When the wiring metal film is formed by vacuum vapor deposition, the wiring metal film 8C on the side surface can be made thinner, so that the film reduction of the wiring metal film due to anisotropic etching can be suppressed. Then, in order to remove unnecessary wiring portions, the photoresist film 9 shown in FIG.
The wiring metal film 8 is etched using the as a mask.

【0014】以上の様にして形成された配線は、隣接す
る配線間の間隔をほぼ零で形成することができるので配
線パターンの高密度化が図れる。
Since the wirings formed as described above can be formed with the distance between the adjacent wirings being substantially zero, the density of the wiring pattern can be increased.

【0015】図2(a)〜(c)は本発明の第2の実施
例を説明する為の工程順に示した半導体チップの断面図
である。
2 (a) to 2 (c) are sectional views of a semiconductor chip in the order of steps for explaining the second embodiment of the present invention.

【0016】まず図1(a)〜(d)に示したように、
第1の実施例と全く同じ工程で配線金属膜を形成する。
その後、不要な配線金属膜を除去する際第1の実施例で
はフォトレジスト工程のみでエッチングしていた。その
際図1(e)に示したように、細い配線パターンを除去
する場合、配線間隔がほぼ零の為目合せマージンが厳し
く、凸部上の配線金属膜上のフォトレジスト膜のみが感
光するように露光量をコントロールするなどの工夫が必
要となる。
First, as shown in FIGS. 1 (a) to 1 (d),
A wiring metal film is formed in exactly the same process as in the first embodiment.
After that, when removing the unnecessary wiring metal film, etching was performed only in the photoresist process in the first embodiment. At this time, as shown in FIG. 1E, when the thin wiring pattern is removed, since the wiring interval is almost zero, the alignment margin is strict and only the photoresist film on the wiring metal film on the convex portion is exposed. It is necessary to devise such as controlling the amount of exposure.

【0017】そこでこの第2の実施例では、フォトレジ
スト工程に入る前に図2(a)に示すように、CVD法
によりSiN膜等の層間絶縁膜10を全面に成長した
後、ポリイミド等の絶縁性塗布膜11で凹部を埋込んで
平坦化する。その後熱処理により絶縁性塗布膜11を焼
き固めた後、図2(b)に示すように、凸部上の配線金
属膜8Bが露出するまで層間絶縁膜10及び絶縁性塗布
膜11をエッチバックする。
Therefore, in the second embodiment, as shown in FIG. 2A, before the photoresist process, an interlayer insulating film 10 such as a SiN film is grown on the entire surface by a CVD method, and then a polyimide film or the like is used. The insulating coating film 11 is filled in the concave portion to planarize it. After that, the insulating coating film 11 is baked and solidified by heat treatment, and then the interlayer insulating film 10 and the insulating coating film 11 are etched back until the wiring metal film 8B on the convex portion is exposed as shown in FIG. 2B. ..

【0018】以上の工程により凹部の配線金属膜8A
は、層間絶縁膜4B及び10で埋め込まれ、凸部上の配
線金属膜8Bのみが露出した形になるので、この配線金
属膜8Bのみを選択的にエッチングすることが可能とな
る。この時図2(c)に示すように、必要な配線金属膜
上はフォトレジスト膜9で覆うことになるが、レジスト
パターンのエッヂは凸部上の配線金属膜8Bの間を埋め
る層間絶縁膜10及び絶縁性塗布膜11の上にあれば隣
接する凸部上の配線金属膜8Bを分離することが可能と
なるので、十分な目合せマージンが得られる。従って凸
部上の配線金属膜8Bに関しては以上の工程により幅の
細い部分でも不要箇所を除去することが可能となる。
Through the above steps, the wiring metal film 8A in the recess is formed.
Is filled with the interlayer insulating films 4B and 10, and only the wiring metal film 8B on the convex portion is exposed, so that only the wiring metal film 8B can be selectively etched. At this time, as shown in FIG. 2C, the necessary wiring metal film is covered with the photoresist film 9, but the edge of the resist pattern is the interlayer insulating film filling the space between the wiring metal films 8B on the convex portions. Since the wiring metal film 8B on the adjacent convex portion can be separated if it is on 10 and the insulating coating film 11, a sufficient alignment margin can be obtained. Therefore, with respect to the wiring metal film 8B on the convex portion, it is possible to remove unnecessary portions even in a narrow portion by the above steps.

【0019】凹部配線金属膜8Aに関しては、幅の細い
部分を選択的に除去することは困難であるが、層間絶縁
膜4Bの凹凸を形成する際のフォトレジスト膜5(図1
(b))のパターン設計の際凹部に必要な配線パターン
のみを当てることで問題にはならない。
Regarding the recess wiring metal film 8A, it is difficult to selectively remove the narrow portion, but the photoresist film 5 (FIG. 1) when forming the unevenness of the interlayer insulating film 4B is used.
In the pattern design of (b), applying only the necessary wiring pattern to the recess does not cause a problem.

【0020】[0020]

【発明の効果】以上説明した様に本発明は、絶縁膜パタ
ーンの凹凸の段差を利用して隣接する配線金属膜を分離
するようにしたので、配線間の間隔をほぼ零で形成する
ことが可能となる。従って従来の半導体装置の製造方法
に比べ約2倍の配線パターンの高密度化が図れるという
効果を有する。
As described above, according to the present invention, the adjacent wiring metal films are separated by utilizing the unevenness of the insulating film pattern. It will be possible. Therefore, there is an effect that the density of the wiring pattern can be increased by about twice as compared with the conventional method of manufacturing a semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を説明するための半導体
チップの断面図。
FIG. 1 is a cross-sectional view of a semiconductor chip for explaining a first embodiment of the present invention.

【図2】本発明の第2の実施例を説明するための半導体
チップの断面図。
FIG. 2 is a sectional view of a semiconductor chip for explaining a second embodiment of the present invention.

【図3】従来の半導体装置の製造方法を説明するための
半導体チップの断面図。
FIG. 3 is a cross-sectional view of a semiconductor chip for explaining a conventional method of manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 コンタクトパッド 3 層間絶縁膜 4A,4B 層間絶縁膜 5,6 フォトレジスト膜 7,7A,7B スルーホール 8,8A,8B,8C 配線金属膜 9 フォトレジスト膜 10 層間絶縁膜 11 絶縁性塗布膜 1 Semiconductor Substrate 2 Contact Pad 3 Interlayer Insulation Film 4A, 4B Interlayer Insulation Film 5, 6 Photoresist Film 7, 7A, 7B Through Holes 8, 8A, 8B, 8C Wiring Metal Film 9 Photoresist Film 10 Interlayer Insulation Film 11 Insulation Coating film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に絶縁膜を形成する工程
と、この絶縁膜の上部を異方性エッチング法によりパタ
ーニングし垂直な断面形状の凹凸面を形成する工程と、
この凹凸面を含む全面に金属膜を形成する工程と、前記
半導体基板をその中央部の法線を軸に回転させながらそ
の法線に対し斜め方向からの異方性エッチング法により
前記金属膜をエッチングし前記絶縁膜の凸部上に成長し
た金属膜と凹部内に成長した金属膜を分離する工程とを
含むことを特徴とする半導体装置の製造方法。
1. A step of forming an insulating film on a semiconductor substrate, and a step of patterning an upper portion of the insulating film by an anisotropic etching method to form an uneven surface having a vertical sectional shape,
The step of forming a metal film on the entire surface including this uneven surface, and the metal film is formed by an anisotropic etching method from an oblique direction with respect to the normal line while rotating the semiconductor substrate about the normal line at the center thereof. A method of manufacturing a semiconductor device, comprising: a step of etching to separate a metal film grown on a convex part of the insulating film and a metal film grown on a concave part of the insulating film.
JP20970291A 1991-08-22 1991-08-22 Manufacture of semiconductor device Pending JPH0555217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20970291A JPH0555217A (en) 1991-08-22 1991-08-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20970291A JPH0555217A (en) 1991-08-22 1991-08-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0555217A true JPH0555217A (en) 1993-03-05

Family

ID=16577224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20970291A Pending JPH0555217A (en) 1991-08-22 1991-08-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0555217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015183A1 (en) * 2001-08-01 2003-02-20 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing thin-film structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003015183A1 (en) * 2001-08-01 2003-02-20 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing thin-film structure
US7041593B2 (en) 2001-08-01 2006-05-09 Mitsubishi Denki Kabushiki Kaisha Method for manufacturing thin-film structure

Similar Documents

Publication Publication Date Title
JPH0573338B2 (en)
JPH08236526A (en) Method of making all surfaces of wafer for integrated circuit device global plane or flattening it
JPH0563940B2 (en)
JP3077990B2 (en) Method for manufacturing semiconductor device
US4749663A (en) Process of fabricating a semiconductor IC involving simultaneous sputter etching and deposition
JPH0669351A (en) Manufacture of contact of multilayer metal interconnection structure
JPH0555217A (en) Manufacture of semiconductor device
JPS607737A (en) Manufacture of semiconductor device
JP2535908B2 (en) Method for manufacturing semiconductor device
JP3033839B2 (en) Method for forming contact hole in semiconductor device
JP2628339B2 (en) Method for manufacturing semiconductor device
JP2716156B2 (en) Method for manufacturing semiconductor device
JPS586306B2 (en) Handout Taisouchino Seizouhouhou
JP2671369B2 (en) Method for manufacturing semiconductor device
JPS6313347B2 (en)
JPH065594A (en) Semiconductor device and manufacture thereof
JPS61287245A (en) Multilayer interconnection method
JPS5874037A (en) Preparation of semiconductor device
JPH05206295A (en) Manufacture of semiconductor device
JP2597424B2 (en) Method for manufacturing semiconductor device
JP2872298B2 (en) Method for manufacturing semiconductor device
JPH04303943A (en) Manufacture of semiconductor device
JPH04345054A (en) Semiconductor device and its manufacture
JPH0587973B2 (en)
JP3191769B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010703