JP2628339B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2628339B2
JP2628339B2 JP63116557A JP11655788A JP2628339B2 JP 2628339 B2 JP2628339 B2 JP 2628339B2 JP 63116557 A JP63116557 A JP 63116557A JP 11655788 A JP11655788 A JP 11655788A JP 2628339 B2 JP2628339 B2 JP 2628339B2
Authority
JP
Japan
Prior art keywords
etching
wiring
wiring connection
connection hole
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63116557A
Other languages
Japanese (ja)
Other versions
JPH01286443A (en
Inventor
孝 森本
秀男 吉野
秀夫 秋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63116557A priority Critical patent/JP2628339B2/en
Publication of JPH01286443A publication Critical patent/JPH01286443A/en
Application granted granted Critical
Publication of JP2628339B2 publication Critical patent/JP2628339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に関するものであ
り、具体的には、集積回路の多層配線における配線接続
穴の構造とその形成方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more specifically, to a structure of a wiring connection hole in a multilayer wiring of an integrated circuit and a method of forming the same.

〔従来の技術〕[Conventional technology]

第7図(A),(B)は、従来の配線接続穴の形成方
法を示したものである。層間絶縁膜2の表面3の平坦化
は配線の伝達特性の均質化を向上させ、配線の断線およ
び線間の漏れ電流防止に有効なことから、配線の微細化
に伴い必須となつている。一般に多層配線における平坦
化は凹凸のある下地上になされるため、表面3の平坦度
が向上する程、ホトレジスト11の開口部にエツチングに
よつて形成される配線接続穴4および5の穴の深さの差
は下地の凹凸の持つている段差の高さに近づくことにな
る。このため配線接続穴4と5を形成する際のエツチン
グに必要な時間が異なり、浅い方の配線接続穴4の下地
6の露出面8は、配線接続穴4のエツチングが完了した
後も、深い方の配線接続穴5の形成が完了するまでエツ
チング雰囲気にさらされることになる。この場合、層間
絶縁膜2のエツチングレートをa、下地6のエツチング
レートをbとし、配線接続穴4および5の深さをそれぞ
れH4、H5とする。エツチング完了時に下地6がエツチン
グされる深さh6(第7図(B)参照)は少なくとも h6=b(H5−H4)/aとなる。
FIGS. 7A and 7B show a conventional method for forming a wiring connection hole. The flattening of the surface 3 of the interlayer insulating film 2 improves the homogeneity of the transmission characteristics of the wiring and is effective in preventing the disconnection of the wiring and the leakage current between the wirings. In general, since the flattening of the multilayer wiring is performed on an uneven base, as the flatness of the surface 3 is improved, the depths of the wiring connection holes 4 and 5 formed by etching the openings of the photoresist 11 are increased. The difference in height approaches the height of the step of the unevenness of the base. For this reason, the time required for etching when forming the wiring connection holes 4 and 5 is different, and the exposed surface 8 of the base 6 of the shallower wiring connection hole 4 is deep even after the etching of the wiring connection hole 4 is completed. It is exposed to the etching atmosphere until the formation of the wiring connection hole 5 is completed. In this case, the etching rate of the interlayer insulating film 2 is a, the etching rate of the base 6 is b, and the depths of the wiring connection holes 4 and 5 are H4 and H5, respectively. When the etching is completed, the depth h6 (see FIG. 7B) at which the base 6 is etched is at least h6 = b (H5−H4) / a.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

こうした下地のエツチングは不必要なばかりでなく、
配線不良の原因にもなる。また、エツチングによるパタ
ン変換差はエツチング完了時にエツチング雰囲気にさら
されることにより増加しやすいので、パタンの微細化の
観点からもエツチング時間の均一化が必要である。
Etching of the base is not only unnecessary,
It may cause wiring failure. Further, since the pattern conversion difference due to the etching tends to increase due to exposure to the etching atmosphere when the etching is completed, it is necessary to make the etching time uniform from the viewpoint of making the pattern finer.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の目的は、配線接続穴の形成において、異なる
深さの配線接続穴のエツチング時間を均一化し、配線接
続穴の接続歩留りの向上とパタン変換差のばらつきを防
止した配線接続穴形成方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of forming a wiring connection hole in which the etching time of wiring connection holes having different depths is made uniform in the formation of the wiring connection hole, thereby improving the connection yield of the wiring connection hole and preventing the variation in pattern conversion difference. To provide.

本発明は上記目的を達成するため、電極配線を形成す
べき半導体基板の一表面に段差の互いに異なる導電層を
有する半導体装置の製造方法において、該導電層の形成
後、リアクティブイオンエッチングにおけるエッチング
レートが互いに異なり、第1の絶縁層に対して第2の絶
縁層の該エッチングレートが大きくできる絶縁層を第1
および第2の絶縁膜の順に形成して後に表面を平坦化す
る工程と、配線接続穴形成のためにホトレジストでマス
クする工程と、上記第2の絶縁層のエッチングレートが
第1の絶縁層のエッチングレートより大きいリアクティ
ブイオンエッチングを用いて深さが異なる配線接続穴を
形成する工程を含むことを特徴とする。
In order to achieve the above object, the present invention provides a method of manufacturing a semiconductor device having conductive layers having different levels on one surface of a semiconductor substrate on which an electrode wiring is to be formed. The first insulating layer is different from the first insulating layer in that the etching rate of the second insulating layer can be higher than that of the first insulating layer.
A step of flattening the surface after forming in order of the second insulating film, a step of masking with a photoresist for forming a wiring connection hole, and a step of etching the second insulating layer with an etching rate of the first insulating layer. Forming a wiring connection hole having a different depth by using reactive ion etching that is higher than an etching rate.

第6図(a)〜(f)は、本発明による半導体装置の
構造とその形成方法を工程順に説明するための原理図で
ある。基板1の主面10は高さH10の段差を有する
(a)。主面10上に配線6および配線7を形成する
(b)。その後、層間絶縁剤2を形成する(c)。続い
て層間絶縁膜2と材料の異なる層間絶縁膜20を形成す
る。層間絶縁膜20の表面は例えばエツチング法により平
坦化し表面3を得る(d)。ホトレジスト11により配線
接続穴形成用の穴12および13を形成する(e)。次に、
例えばリアクテイブ イオン エツチング法(RIE)に
よりホトレジスト11をマスクにして層間絶縁膜20をエツ
チングレートa20でエツチングする。この時、層間絶縁
膜2のエッチングレートはa2とする。接続穴5のエツチ
ング完了までに配線6がエツチング雰囲気にさらされる
時間T6はH10/a20となる。H10は第6図(a)を参照され
たい。a20が大きい程、T6も小さくなる。また、a2に対
してa20が大きい程、接続穴5のエツチング完了時間に
対するT6の割合は減少し配線接続穴形成時間の均一化が
はかれる(f)。このように、本発明による半導体装置
では層間絶縁膜は2層構造になつており、深い配線接続
穴になる程その配線接続穴の位置におけるエツチングレ
ートの大きい層間接続膜20のエツチングレートの小さい
層間絶縁膜2に対する膜厚比率が大きくなるという構造
上の特性を有している。
6 (a) to 6 (f) are principle diagrams for explaining a structure of a semiconductor device according to the present invention and a method of forming the same in order of process. The main surface 10 of the substrate 1 has a step having a height H10 (a). The wiring 6 and the wiring 7 are formed on the main surface 10 (b). After that, an interlayer insulating material 2 is formed (c). Subsequently, an interlayer insulating film 20 having a different material from that of the interlayer insulating film 2 is formed. The surface of the interlayer insulating film 20 is flattened by, for example, an etching method to obtain a surface 3 (d). Holes 12 and 13 for forming wiring connection holes are formed by the photoresist 11 (e). next,
For example, the interlayer insulating film 20 is etched at an etching rate a20 by a reactive ion etching method (RIE) using the photoresist 11 as a mask. At this time, the etching rate of the interlayer insulating film 2 is set to a2. The time T6 during which the wiring 6 is exposed to the etching atmosphere until the etching of the connection hole 5 is completed is H10 / a20. For H10, see FIG. 6 (a). The larger the a20, the smaller the T6. Also, as a20 is larger than a2, the ratio of T6 to the etching completion time of the connection hole 5 is reduced, and the wiring connection hole formation time is made uniform (f). As described above, in the semiconductor device according to the present invention, the interlayer insulating film has a two-layer structure. As the depth of the wiring connection hole increases, the interlayer connection film 20 having a higher etching rate at the position of the wiring connection hole has a lower etching rate. It has a structural characteristic that the thickness ratio with respect to the insulating film 2 is increased.

〔実施例〕〔Example〕

第1図は、本発明による配線接続穴形成方法の第1の
実施例を示す断面図である。図において1は半導体デバ
イスを集積してなる基板、2は絶縁膜、20は2と材質の
異なる絶縁膜、3は最上部絶縁膜の表面、4および5は
配線接続穴、6および7は配線、8および9はそれぞれ
配線6および7の露出部分、10は基板1の主面、11はホ
トレジストである。
FIG. 1 is a sectional view showing a first embodiment of the method for forming a wiring connection hole according to the present invention. In the figure, 1 is a substrate on which semiconductor devices are integrated, 2 is an insulating film, 20 is an insulating film of a different material from 2, 3 is the surface of the uppermost insulating film, 4 and 5 are wiring connection holes, and 6 and 7 are wirings. , 8 and 9 are exposed portions of the wirings 6 and 7, respectively, 10 is the main surface of the substrate 1, and 11 is a photoresist.

以下、第1図に示した配線接続穴の製造方法を第4図
を用いて説明する。
Hereinafter, a method of manufacturing the wiring connection hole shown in FIG. 1 will be described with reference to FIG.

半導体装置デバイス、たとえばMOS電界効果トランジ
スタやバイポーラトランジスタおよび素子間分離領域等
を集積してなる基板1の主面10には高さH10の段差が存
在する。主面10上に例えばアルミニウムを材料とした配
線をアルミニウム堆積工程とホトリソグラフイ工程とエ
ツチング工程により形成する。配線6は主面10の段差の
高い法に形成された配線を代表し,配線7は主面10の段
差の低い方に形成された配線を代表する。次に、たとえ
ばSiO2を材料とした絶縁膜2を被着する。SiO2の被着は
気相反応によつて、スパツタリングによつても可能であ
る。SiO2の膜厚は上記配線を被着できる膜厚であればよ
く、配線の高さ1μmにたいして100nm程度でよい。絶
縁膜2としてはSi3N4でもよい。続いて、PSGを材料とし
た絶縁膜20を1μm程度の膜厚で被着する。続いて、エ
ツチバツク法等の表面平坦化法により平坦化された絶縁
膜20の表面3を得る。そのため、たとえばこの上に有機
高分子材層12を塗布し、これを熱処理して平坦な表面を
有する配線構造体を形成する。次に、このように構成さ
れた配線構造体の表面をRIEによつて絶縁膜20と有機高
分子材層12のエツチングレートが同一となる条件でエツ
チングし、絶縁膜20の凸部を有機高分子材層12のエツチ
ングと同時に除去して平坦面3を得る。
There is a step having a height H10 on a main surface 10 of a substrate 1 on which semiconductor device devices, for example, MOS field-effect transistors, bipolar transistors, element isolation regions, and the like are integrated. A wiring made of, for example, aluminum is formed on the main surface 10 by an aluminum deposition process, a photolithography process, and an etching process. The wiring 6 represents a wiring formed on the main surface 10 by a method with a high step, and the wiring 7 represents a wiring formed on the main surface 10 with a lower step. Next, an insulating film 2 made of, for example, SiO 2 is deposited. The deposition of SiO 2 is possible by a gas phase reaction or by sputtering. The thickness of SiO 2 may be any thickness as long as the above-mentioned wiring can be deposited, and may be about 100 nm for a wiring height of 1 μm. The insulating film 2 may be Si 3 N 4 . Subsequently, an insulating film 20 made of PSG is deposited with a thickness of about 1 μm. Subsequently, the surface 3 of the insulating film 20 which is flattened by a surface flattening method such as an etching back method is obtained. For this purpose, for example, an organic polymer material layer 12 is applied thereon, and this is heat-treated to form a wiring structure having a flat surface. Next, the surface of the wiring structure thus configured is etched by RIE under the condition that the etching rates of the insulating film 20 and the organic polymer material layer 12 are the same, and the protrusions of the insulating film 20 are organically raised. The flat surface 3 is obtained by removing the molecular material layer 12 simultaneously with the etching.

次に、ホトリソグラフイ工程によりホトレジスト11を
膜厚1.6μmにて塗布後、パターンニングして配線接続
穴の開口位置13および14を露出して表面3上をホトレジ
ストで被覆する。
Next, a photoresist 11 having a thickness of 1.6 μm is applied by a photolithography process, and then patterned to expose the opening positions 13 and 14 of the wiring connection holes, and the surface 3 is covered with the photoresist.

配線接続穴のエツチングは、通常のRIE装置を用い、
エツチングガスにCHF3/O2混合ガスを流量比9/50SCCM、
圧力50mTorr、RF電力1000W印加した場合には、PSGのエ
ツチングレートは130nm/分、SiO2のエツチレートは36nm
/分である。今、例として段差H10を0.5μm、配線接続
穴4の深さを0.5μm、配線接続穴5の深さを1μm、
絶縁膜2の膜厚を0.5μmとする。この場合、配線接続
穴5のエツチングを終了するまでに配線接続穴4は約3.
8分のオーバーエツチングをうける。これは全エツチン
グ時間の22%である。一方、層間絶縁膜としてすべてSi
O2とした場合、配線接続穴4は同様のオーバーエツチン
グを約13.9分受けることになり、これは全エツチング時
間の50%である。また、層間絶縁膜としてすべてPSGと
した場合、配線接続穴のオーバーエツチング時間は本実
施例と同じであるが、これは全エツチング時間の50%で
ある。この様に、層間絶縁膜を2層構造とし、上層のエ
ツチングレートを下層のエツチングレートより大きくす
ることにより、下地主面10に段差を持ち表面3の平坦な
配線構造体では、深さの異なる配線接続穴のエツチング
完了時間を近付けることができる。その結果、不必要な
オーバーエツチング時間の短縮ができるので、オーバー
エツチングに伴うアルミニウム配線のエツチングによる
配線の接続不良やパタン変換差の増加を防止できる。
Etching of wiring connection holes uses a normal RIE device,
CHF 3 / O 2 mixed gas as the etching gas at a flow ratio of 9/50 SCCM,
When a pressure of 50 mTorr and an RF power of 1000 W are applied, the etching rate of PSG is 130 nm / min, and the etching rate of SiO 2 is 36 nm.
/ Min. Now, as an example, the step H10 is 0.5 μm, the depth of the wiring connection hole 4 is 0.5 μm, and the depth of the wiring connection hole 5 is 1 μm.
The thickness of the insulating film 2 is set to 0.5 μm. In this case, the wiring connection hole 4 is about 3.
Receive 8 minute overetching. This is 22% of the total etching time. On the other hand, all of
In the case of O 2 , the wiring connection hole 4 receives similar over-etching for about 13.9 minutes, which is 50% of the total etching time. When all the interlayer insulating films are made of PSG, the over-etching time of the wiring connection hole is the same as that of this embodiment, but this is 50% of the total etching time. As described above, the interlayer insulating film has a two-layer structure, and the etching rate of the upper layer is made larger than that of the lower layer, so that the wiring structure having a step on the base main surface 10 and a flat surface 3 has a different depth. The time required for completing the etching of the wiring connection hole can be reduced. As a result, unnecessary over-etching time can be shortened, so that it is possible to prevent a wiring connection failure and an increase in pattern conversion difference due to etching of the aluminum wiring due to the over-etching.

なお、層間絶縁膜20は第6図のごとくエツチバツク後
に全面的に表面に残つてもよいことは言うまでもない。
It goes without saying that the interlayer insulating film 20 may be left entirely on the surface after etching as shown in FIG.

第2図は、本発明による配線接続穴形成方法の第2の
実施例を示す断面図である。配線接続穴が不純物拡散層
16および17上に形成されてなる場合であり、第1の実施
例の場合と同様に、配線接続穴4の不必要なオーバーエ
ツチング時間が短縮できる。
FIG. 2 is a sectional view showing a second embodiment of the wiring connection hole forming method according to the present invention. Wiring connection hole is impurity diffusion layer
This is the case where the wiring connection holes 4 are formed on the wirings 16 and 17, and unnecessary over-etching time of the wiring connection holes 4 can be reduced as in the case of the first embodiment.

第3図は、本発明による配線接続穴形成方法の第3の
実施例を示す断面図である。
FIG. 3 is a sectional view showing a third embodiment of the wiring connection hole forming method according to the present invention.

以下、第3図に示した配線接続穴の製造方法を第5図
を用いて説明する。
Hereinafter, a method for manufacturing the wiring connection hole shown in FIG. 3 will be described with reference to FIG.

配線接続穴のエツチングは、第1段階としてエツチン
グガスにCHF3/O2混合ガスを流量比9/50SCCM、圧力50mTo
rr、RF電力1000W印加し、PSGのエツチングレートは130n
m/分、SiO2のエツチングレートは36nm/分である。第1
段階ではPSGを0.5μmエツチングし、SiO2を0.14μmエ
ツチングする時間に選ぶ。続いて、第2段階としてエツ
チングガスにCHF3/O2混合ガスを流量比75/50SCCM、圧力
50mTorr、RF電力1000W印加し、PSGのエツチングレート
は50nm/分、SiO2のエツチングレートは20nm/分、ホトレ
ジスト11のエツチングレートは100nm/分である。第2段
階としてSiO2を360nmエツチングし、ホトレジストを0.9
μmエツチングする時間を選ぶ。この時、ホトレジスト
は上記エツチングレートの約50%のサイドエツチングを
受けて、エツチング開始時より片側約0.5μm拡大す
る。第2段階のエツチング終了時に配線接続穴4はエツ
チングを完了して下地配線6の露出面8があらわれる。
一方、配線接続穴5には層間絶縁膜2に0.14μmの末エ
ツチング部分がある。引続き、第3段階として第1段階
と同じエツチング条件に選びSiO2を0.14μmエツチング
し下地配線7の露出面9をあらわして配線接続穴5のエ
ツチングを完了する。第2段階ではホトレジスト11の露
出部分13および14の拡大にともなつて配線接続穴の側壁
が傾きを持ち、穴径は開口部の上部程大きく下地配線の
露出部8、9では初期の穴径を保つテーパ形状となる。
その効果としては、配線接続穴に配線が入り込み易くな
り配線の付回りが改善されるので、配線接続穴での接続
歩留りが改善される。また一つの効果としては、下地配
線の露出径は拡大しないので配線接続穴と下地配線との
位置合わせマージンを大きくする必要がないので配線ピ
ツチの微細化に有利である。
Etching of the wiring connection holes is performed as the first step using a mixed gas of CHF 3 / O 2 as the etching gas at a flow rate of 9/50 SCCM and a pressure of 50 mTo
rr, RF power 1000W applied, PSG etching rate 130n
m / min, the etching rate of SiO 2 is 36 nm / min. First
In the stage, the time for etching the PSG is 0.5 μm and the time for etching the SiO 2 is 0.14 μm. Subsequently, as a second stage, a CHF 3 / O 2 mixed gas was used as an etching gas at a flow ratio of 75/50 SCCM and a pressure of 75
An etching rate of PSG is 50 nm / min, an etching rate of SiO 2 is 20 nm / min, and an etching rate of the photoresist 11 is 100 nm / min. As a second step, SiO 2 was etched at 360 nm, and the photoresist was set at 0.9 nm.
Choose the time for μm etching. At this time, the photoresist undergoes side etching of about 50% of the above etching rate, and is enlarged by about 0.5 μm on one side from the start of the etching. At the end of the etching at the second stage, the wiring connection hole 4 completes the etching, and the exposed surface 8 of the underlying wiring 6 appears.
On the other hand, the wiring connection hole 5 has an etching portion of 0.14 μm in the interlayer insulating film 2. Subsequently, as the third step, the same etching conditions as those in the first step are selected, and SiO 2 is etched by 0.14 μm to expose the exposed surface 9 of the underlying wiring 7, thereby completing the etching of the wiring connection hole 5. In the second stage, as the exposed portions 13 and 14 of the photoresist 11 are enlarged, the side walls of the wiring connection holes are inclined, and the hole diameter is larger toward the upper portion of the opening, and is larger in the exposed portions 8 and 9 of the underlying wiring. Is maintained.
As an effect, the wiring can easily enter the wiring connection hole and the turning of the wiring is improved, so that the connection yield in the wiring connection hole is improved. As another effect, since the exposed diameter of the underlying wiring does not increase, there is no need to increase the alignment margin between the wiring connection hole and the underlying wiring, which is advantageous for miniaturization of the wiring pitch.

層間絶縁膜としてすべてSiO2として、配線接続穴のテ
ーパ形状を上記実施例3の第2段階と同様の方法で得る
場合、深さの浅い方の配線接続穴4の下地配線の露出部
8で初期の穴径を保とうとすると、配線接続穴のエツチ
ングプロセスにおいて第2段階の適用できる時間割が限
られるので配線接続穴の形状としては配線接続穴5の上
部0.5μmより下に側壁の傾斜は得られない。そのた
め、配線の付回りの改善は穴径が微細化し、下地段差が
大きくなる程、効果がなくなる。また、配線接続穴のオ
ーバーエツチング時間が本実施例2より多くなることも
明らかである。
When all the interlayer insulating films are made of SiO 2 and the tapered shape of the wiring connection hole is obtained by the same method as in the second stage of the third embodiment, the exposed portion 8 of the underlying wiring of the wiring connection hole 4 having a smaller depth is used. In order to keep the initial hole diameter, the timetable applicable to the second step in the wiring connection hole etching process is limited, so that the shape of the wiring connection hole is such that the inclination of the side wall is lower than 0.5 μm above the wiring connection hole 5. I can't. Therefore, the effect of the improvement of the wiring around becomes less effective as the hole diameter becomes finer and the step of the base becomes larger. It is also apparent that the over-etching time of the wiring connection hole is longer than that of the second embodiment.

層間絶縁膜としてすべてPSGとして、配線接続穴のテ
ーパ形状を上記実施例3の第2段階と同様の方法で得る
場合、露出部8での穴径を拡大防止のためには、配線接
続穴の形状として配線接続穴5の下部0.5μmにはテー
パが形成できないばかりでなく、ホトレジストとPSGと
のエツチングレート比を大きくする安定したエツチング
条件が見いだし難いという実際上の問題がある。実施例
3の第2段階における程度の場合、ホトレジストの拡大
は片側0.2μmになるので配線の付回りの改善はほとん
ど期待できない。
When the tapered shape of the wiring connection hole is obtained by the same method as in the second stage of the third embodiment, all the PSGs are used as the interlayer insulating film, in order to prevent the hole diameter at the exposed portion 8 from being enlarged, As a shape, there is a practical problem that not only a taper cannot be formed in the lower portion 0.5 μm of the wiring connection hole 5 but also a stable etching condition for increasing the etching rate ratio between the photoresist and the PSG is difficult to find. In the case of the second stage of the third embodiment, since the enlargement of the photoresist becomes 0.2 μm on one side, it is hardly expected to improve the wiring layout.

このように、本発明では、異なる深さの配線接続穴の
エツチング時間を均一化できる。また、配線接続穴の側
壁のテーパの位置を配線ピツチの変更なしで自由に設定
できる。
As described above, according to the present invention, the etching times of the wiring connection holes having different depths can be made uniform. Further, the position of the taper of the side wall of the wiring connection hole can be set freely without changing the wiring pitch.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明では配線接続穴のオーバ
ーエツチング時間の短縮がはかれる。その効果としては
オーバーエツチングに伴う配線接続穴下地のエツチング
量が減少するので配線接続歩留りが向上する。さらに効
果としてオーバーエツチングに伴うサイドエツチングに
よる配線接続穴の拡大が減少するので配線接続穴エツチ
ング時のパタン変換差の制御性が向上する。これは配線
ピツチの微細化に有利である。本発明では配線接続穴の
側壁の傾きを制御できる。さらに本発明では、配線接続
穴の最下部の穴径を初期の穴径に保ちながら配線接続穴
の拡大する位置を自由に設定できる。その効果としては
配線接続穴の合わせマージンの減少を招くことなく、配
線接続穴における段差の急峻さが緩和されることにな
り、微細な配線接続穴にいたるまで配線のつきまわりが
改善される結果、配線接続歩留りの向上が実現できる。
As described above, in the present invention, the over-etching time of the wiring connection hole can be reduced. As an effect, the amount of etching of the wiring connection hole base due to over-etching is reduced, so that the wiring connection yield is improved. Further, as an effect, the enlargement of the wiring connection hole due to the side etching accompanying the over-etching is reduced, so that the controllability of the pattern conversion difference at the time of wiring connection hole etching is improved. This is advantageous for miniaturization of the wiring pitch. According to the present invention, the inclination of the side wall of the wiring connection hole can be controlled. Further, in the present invention, the position at which the wiring connection hole is enlarged can be set freely while maintaining the lowermost hole diameter of the wiring connection hole at the initial hole diameter. The effect is that the steepness of the step in the wiring connection hole is reduced without reducing the alignment margin of the wiring connection hole, and the result is that wiring coverage is improved up to the fine wiring connection hole. In addition, an improvement in the wiring connection yield can be realized.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図、および第3図は、本発明による半導体
装置の一実施例をしめす断面図、第4図(a)〜(h)
は、第1図に示した半導体装置の製造方法の一実施例を
工程順に示す断面図、第5図(a)〜(d)は、第3図
に示した半導体装置の製造方法の一実施例を工程順に示
す断面図、第6図(a)〜(f)は本発明による半導体
装置の構成原理を工程順に示す断面図、第7図(A)〜
(B)は従来の半導体装置の製造方法の一例を工程順に
示す断面図である。 1……半導体デバイスを集積してなる基板 2……絶縁膜 3……最上部絶縁膜の表面 4,5……配線接続穴 6,7……配線 8,9……配線6、7の露出部分 10……基板1の主面 11……ホトレジスト 12……有機高分子材層 13,14……ホトレジスト11の配線接続穴4,5の開口部 16,17……不純物拡散層 20……絶縁膜2とは異なる材質の絶縁膜
FIGS. 1, 2, and 3 are cross-sectional views showing one embodiment of a semiconductor device according to the present invention, and FIGS. 4 (a) to 4 (h).
5A to 5D are cross-sectional views showing one embodiment of the method for manufacturing the semiconductor device shown in FIG. 1 in the order of steps, and FIGS. 5A to 5D are one embodiment of the method for manufacturing the semiconductor device shown in FIG. 6 (a) to 6 (f) are cross-sectional views showing the configuration principle of the semiconductor device according to the present invention in the order of steps, and FIGS. 7 (A) to 7 (f).
FIG. 2B is a cross-sectional view showing an example of a conventional method for manufacturing a semiconductor device in the order of steps. DESCRIPTION OF SYMBOLS 1 ... The board | substrate which integrates a semiconductor device 2 ... Insulating film 3 ... Surface of the uppermost insulating film 4,5 ... Wiring connection hole 6,7 ... Wiring 8,9 ... Exposure of wiring 6,7 Part 10: Main surface of substrate 1 11: Photoresist 12: Organic polymer material layer 13, 14: Openings of wiring connection holes 4, 5 of photoresist 11 16, 17: Impurity diffusion layer 20: Insulation Insulation film of a different material from film 2

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電極配線を形成すべき半導体基板の一表面
に段差の互いに異なる導電層を有する半導体装置の製造
方法において、該導電層の形成後、リアクティブイオン
エッチングにおけるエッチングレートが互いに異なり、
第1の絶縁層に対して第2の絶縁層の該エッチングレー
トが大きくできる絶縁層を第1および第2の絶縁膜の順
に形成して後に表面を平坦化する工程と、配線接続穴形
成のためにホトレジストでマスクする工程と、上記第2
の絶縁層のエッチングレートが第1の絶縁層のエッチン
グレートより大きいリアクティブイオンエッチングを用
いて深さが異なる配線接続穴を形成する工程を含むこと
を特徴とする半導体装置の製造方法。
In a method of manufacturing a semiconductor device having conductive layers having different steps on one surface of a semiconductor substrate on which electrode wirings are to be formed, after the conductive layers are formed, etching rates in reactive ion etching are different from each other.
Forming an insulating layer capable of increasing the etching rate of the second insulating layer with respect to the first insulating layer in the order of the first and second insulating films, and thereafter planarizing the surface; Masking with a photoresist for
Forming a wiring connection hole having a different depth by using reactive ion etching in which the etching rate of the insulating layer is higher than that of the first insulating layer.
JP63116557A 1988-05-13 1988-05-13 Method for manufacturing semiconductor device Expired - Lifetime JP2628339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63116557A JP2628339B2 (en) 1988-05-13 1988-05-13 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63116557A JP2628339B2 (en) 1988-05-13 1988-05-13 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH01286443A JPH01286443A (en) 1989-11-17
JP2628339B2 true JP2628339B2 (en) 1997-07-09

Family

ID=14690063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63116557A Expired - Lifetime JP2628339B2 (en) 1988-05-13 1988-05-13 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2628339B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0516334A3 (en) * 1991-05-30 1992-12-09 American Telephone And Telegraph Company Method of etching a window in a dielectric layer on an integrated circuit and planarization thereof
US6294799B1 (en) 1995-11-27 2001-09-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US5940732A (en) 1995-11-27 1999-08-17 Semiconductor Energy Laboratory Co., Method of fabricating semiconductor device
JP4668764B2 (en) * 2005-10-25 2011-04-13 Okiセミコンダクタ株式会社 Manufacturing method of semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918454A (en) * 1982-07-22 1984-01-30 Yuji Takayama Carrier gas controlling apparatus for on-column capillary chromatograph
DE3686721D1 (en) * 1986-10-08 1992-10-15 Ibm METHOD FOR PRODUCING A CONTACT OPENING WITH A DESIRED SLOPE IN A COMPOSED LAYER MASKED WITH PHOTORESIST.

Also Published As

Publication number Publication date
JPH01286443A (en) 1989-11-17

Similar Documents

Publication Publication Date Title
US5109267A (en) Method for producing an integrated circuit structure with a dense multilayer metallization pattern
JPH09205145A (en) Integrated circuit and its manufacture
JPH0982804A (en) Semiconductor device and manufacture thereof
JPH0563940B2 (en)
JPH07122638A (en) Fabrication of semiconductor device
JP2628339B2 (en) Method for manufacturing semiconductor device
JPH11162982A (en) Manufacture of semiconductor device
US6376357B1 (en) Method for manufacturing a semiconductor device with voids in the insulation film between wirings
JPH0669351A (en) Manufacture of contact of multilayer metal interconnection structure
JPH08279488A (en) Fabrication of semiconductor device
JP2950059B2 (en) Method for manufacturing semiconductor device
JPH05226333A (en) Manufacture of semiconductor device
JPH0766178A (en) Fabrication of semiconductor device
KR100290466B1 (en) Method of manufacturing a semiconductor device
JPH08236619A (en) Semiconductor device and fabrication thereof
JPH01272121A (en) Through-hole structure and manufacture thereof
KR100315457B1 (en) a manufacturing method of a semiconductor device
JP2637726B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2855981B2 (en) Method for manufacturing semiconductor device
JP3196847B2 (en) Wiring structure and method of manufacturing the same
JPH04345054A (en) Semiconductor device and its manufacture
JPS61187251A (en) Manufacture of semiconductor device
KR0124646B1 (en) Manufacturing method of metal film for semiconductor device
JPH05343371A (en) Manufacture of semiconductor device
KR980011972A (en) Method for manufacturing semiconductor device having large steps

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12