JPS61287245A - Multilayer interconnection method - Google Patents

Multilayer interconnection method

Info

Publication number
JPS61287245A
JPS61287245A JP12820185A JP12820185A JPS61287245A JP S61287245 A JPS61287245 A JP S61287245A JP 12820185 A JP12820185 A JP 12820185A JP 12820185 A JP12820185 A JP 12820185A JP S61287245 A JPS61287245 A JP S61287245A
Authority
JP
Japan
Prior art keywords
photoresist
approx
wiring
psg
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12820185A
Other languages
Japanese (ja)
Inventor
Masaru Miyazaki
勝 宮崎
Yoshihiko Isobe
良彦 磯部
Jiyunji Masuki
舛木 順二
Hiroshi Yanagisawa
柳沢 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP12820185A priority Critical patent/JPS61287245A/en
Publication of JPS61287245A publication Critical patent/JPS61287245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain flat multilayer interconnection by forming a photoresist spacer near a wiring pattern, rotatably coating a photoresist, etching back it to uniformly cut a raised portion with good controllability. CONSTITUTION:A PSG 30 is coated approx. 1.5mum thick on a wiring layer 20 of approx. 1mum thick on a GaAs substrate 10. A resist spacer 80 of approx. 7mum thick is formed by photocomposing technique by avoiding on the layer 20, and a projection of an interval l 2mum is formed on the entire surface of a wafer. Then, a photoresist 85 is rotatably coated, and uniformly buried. Then, a photoresist and a PSG are etched at 900 at substantially equal speed with mixture gas of CF4+O2, and projections 35 of the PSG are simultaneously exposed. A light emitting spectrum of SiO2 is altered at the moment. Thereafter, when the PSG is etched back at approx. 800nm only for the prescribed time and the resist is removed, a step B is reduced by approx. 200nm, and a step C is restricted to the value of 200nm. Thereafter, a window 60 is opened to provide he second wiring 70. According to this construction, multilayer interconnections are formed efficiently with good yield.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体装置および集積回路等に用いられる多
層配線方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a multilayer wiring method used in semiconductor devices, integrated circuits, and the like.

〔発明の背景〕[Background of the invention]

半導体集積回路に使われる多層配線は、配線金属等で生
じた急峻な段差を平坦化しておこなわれている。これは
例えばAtやAuなど第1の配線金属層の厚さは約1μ
mあり、この凹凸を残したまま層間絶縁膜をつけ第2の
配線金属を形成したとき、これによって断線したシ加工
残シの原因となって好ましくないからである。このため
従来では第1の配線金属層の断面をテーパ状に加工した
り、急峻な第1の配線金属層を絶縁膜加工時に平坦化す
る処理をして解決していた。しかしながら、テーパ状の
加工は微細化にとって好ましくない。
Multilayer interconnects used in semiconductor integrated circuits are created by flattening steep steps caused by metal interconnects and the like. This means that the thickness of the first wiring metal layer, such as At or Au, is approximately 1 μm.
This is because, if an interlayer insulating film is attached and a second wiring metal is formed while leaving these unevenness, it is undesirable because it causes wire breakage and machining residue. Conventionally, this problem has been solved by processing the cross section of the first wiring metal layer into a tapered shape, or by flattening the steep first wiring metal layer during processing of the insulating film. However, tapered processing is not preferable for miniaturization.

そこで一般には例えば昭和58年度電子通信学会総合全
国大会、2−225(1983年)における浅井、上武
及び東坂による″GaASLSIの平坦化多層配線”の
文献でみられるように、エッチバック法と呼ばれる平坦
化技術を用いて多層配線が行なわれている。従来法では
第1図の製造工程図で示される如く、半導体基板l上に
形成された第1層配線2に層間絶縁膜3を被着したあと
ホトレジスト4を塗布し、凸起部を埋める(a)。この
後、ホトレジスト4を削り、さらに露出した層間絶縁膜
5を削って凸起部を平坦化しくb)、この後、コンタク
ト孔6を開けて第2層配線7を形成する(C)という手
順で形成される。このようなエッチバックの平坦化は、
ホトレジストの回転塗布ではパターン依存性があって、
平坦化後の層間絶縁膜の厚さはパターンサイズによって
異なってしまう欠点があった。つまり密集、小パターン
上では厚く、孤立。
Therefore, it is generally called the etch-back method, as can be seen in the document "Planarized Multilayer Interconnection of GaAS LSI" by Asai, Jobu, and Higashisaka in 1983 National Conference of the Institute of Electronics and Communication Engineers, 2-225 (1983). Multilayer wiring is performed using planarization technology. In the conventional method, as shown in the manufacturing process diagram of FIG. 1, an interlayer insulating film 3 is deposited on the first layer wiring 2 formed on the semiconductor substrate 1, and then a photoresist 4 is applied to fill the protrusions ( a). After this, the photoresist 4 is scraped, and the exposed interlayer insulating film 5 is further scraped to flatten the protrusion (b), and then the contact hole 6 is opened to form the second layer wiring 7 (C). is formed. This type of etchback flattening is
Rotating photoresist coating has pattern dependence,
There is a drawback that the thickness of the interlayer insulating film after planarization varies depending on the pattern size. In other words, it is dense, thick on small patterns, and isolated.

大パターン上では薄く加工された。この結果、極端な場
合には第1層、第2層間でショートの原因となることが
あった。また、層間絶縁膜の厚さばらつきが太きいため
コンタクト孔加工におけるエツチングむらを引き起こし
、これがスルーホールの導通不良の原因にもなっていた
。さらに露出する層間絶縁膜の面積が、エツチング時間
に対応して増えるため(例えば第1図のAの部分)、エ
ツチングの終点判定ができにくい欠点があった。第2図
は平坦化のエッチバックをおこなった試料100の表面
状態を表面からみた概略図である。
The large pattern was processed thinly. As a result, in extreme cases, a short circuit may occur between the first layer and the second layer. Further, large variations in the thickness of the interlayer insulating film cause uneven etching when forming contact holes, which also causes poor conductivity in the through holes. Furthermore, since the exposed area of the interlayer insulating film increases with the etching time (for example, the area A in FIG. 1), it is difficult to determine the end point of etching. FIG. 2 is a schematic diagram of the surface state of the sample 100 that has been subjected to etch-back for planarization, viewed from the surface.

ボンデングパッドの様な比較的大面積パターン200と
細い配線パターン201ではホトレジストの回転塗布で
平坦化むらがでることは良く知られている。つまシ細か
いパターン201や、犬ノくターン200の周辺部は厚
く、平地部は薄くぬれる傾向がある。このためエッチバ
ックするとAI。
It is well known that the rotational application of photoresist causes uneven flattening of relatively large-area patterns 200 such as bonding pads and thin wiring patterns 201. The periphery of the fine pattern 201 and the dog turn 200 tends to be thick, and the flat area tends to be thin. For this reason, when you etch back, it becomes AI.

A2に相当する部分はPSG300の表面が現われ、B
l、B2とB3に相当する部分はホトレジスト400に
覆われている。このようにエツチングが進むとAとBの
面積比がかわって、上述したような終点判定が難しい欠
点があった。
The surface of PSG300 appears in the part corresponding to A2, and the part corresponding to B
Portions corresponding to B2 and B3 are covered with photoresist 400. As the etching progresses in this manner, the area ratio of A and B changes, resulting in the drawback that it is difficult to determine the end point as described above.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、多層配線の平坦化において制御性があ
り、かつ均一性のよい方法を提供することにある。
An object of the present invention is to provide a method with good controllability and good uniformity in planarizing multilayer wiring.

〔発明の概要〕[Summary of the invention]

本発明は、エッチバックの平坦化法において、平坦化す
る配線パターンの大きさや形状によらず均一にホトレジ
ストで埋めて、エッチバックによって、凸起部を均一に
削ることを基本としている。
The present invention is based on the etch-back planarization method, in which the wiring pattern to be planarized is uniformly filled with photoresist regardless of its size or shape, and the protrusions are uniformly shaved off by etch-back.

配線のパターンサイズに依らず、均一にホトレジストで
埋めるために、本発明では配線パターンの近傍にホトレ
ジストスペーサを設け、この後ホトレジストを回転塗布
する方法でおこなうことを特徴とする。
In order to uniformly fill in the photoresist regardless of the wiring pattern size, the present invention is characterized in that a photoresist spacer is provided near the wiring pattern, and then the photoresist is spin-coated.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図によシ説明する。第3
図はGaAsLS Iプロセスにおける二層配線の工程
を述べたものである。基板結晶10上に第1層配線層2
0が約1μmの厚さで形成されているものを用いた。こ
れにPSG膜30を1.6μmの厚さで被着して層間絶
縁膜とした(a)。つづいて第1層配線層を2μmプロ
ーデンして反転処理したパターンを用いて厚さ〜1μm
のホトレジスペーサ80をホトリソグラフィの技術で形
成した。これにより、ウェーハ全面にギャップt(中2
μm)に相当する凹部を作った。これには通常ポジ形レ
ジスト(例えばOFP几−800,東京応化鋼)を使っ
た。この後、UV光(〜250nm前後の波長)を照射
して、ホトレジスペーサ80を硬化させてのち、〜50
 Q nmの厚さにホトレジスト85を回転塗布した(
b)。これによってウェーハ全面にわたって凸起部20
がホトレジストで均一に埋められた。この後、ホトレジ
スト、!:PSGがほぼ等しい速さで削れるドライエツ
チング条件(CFaとOlの混合ガスによる)で表面か
ら削ってゆく(900)と、やがてPSGの凸起部35
が一斉に露出するようになった。この瞬間に5iftが
関与する発光スペクトルに変化が現われた。この後、エ
ツチングレートから決めた時間だけエッチバックした。
An embodiment of the present invention will be described below with reference to FIG. Third
The figure describes the process of two-layer wiring in the GaAsLSI process. First layer wiring layer 2 on substrate crystal 10
0 was formed with a thickness of about 1 μm. A PSG film 30 with a thickness of 1.6 μm was deposited on this to form an interlayer insulating film (a). Next, the first layer wiring layer was coated with a thickness of 2 μm and a pattern that had been reversed was used to create a thickness of ~1 μm.
The photoresist spacer 80 was formed using photolithography technology. As a result, a gap t (middle 2
A concave portion corresponding to .mu.m) was made. For this purpose, a normal positive resist (for example, OFP 几-800, manufactured by Tokyo Ohka Steel) was used. After that, the photoresist spacer 80 is cured by irradiation with UV light (wavelength of about 250 nm), and then
Photoresist 85 was spin-coated to a thickness of Q nm (
b). As a result, the raised portions 20 are formed over the entire surface of the wafer.
were evenly filled with photoresist. After this, photoresist! : As the PSG is etched from the surface under dry etching conditions (using a mixed gas of CFa and Ol) at almost the same speed (900), the convex portions 35 of the PSG eventually become etched.
became exposed all at once. At this moment, a change appeared in the emission spectrum involving 5ift. After this, I etched it back for the time determined based on the etching rate.

ここでは約800 nmの厚さのP2Oをエッチバック
した(C)。この後、ホトレジストを除去した。約1μ
mあった段差Bはこれによって約200nmに減って、
かつウェーハ全面にわたっって、段差Cは2QQnmの
値におさまった。なおエッチバックの工程では、スペー
サに用いたホトレジストが完全に除けるまでエツチング
してもよい。この場合の終点検出はホトレジストに関す
る発光スペクトルをモニタしておこなえる。続いて、こ
の後は通常のプロセスと同じく、コンタクト孔60を開
け、第2層配線70を加工した。
Here, P2O was etched back to a thickness of about 800 nm (C). After this, the photoresist was removed. Approximately 1μ
As a result, the step B, which was m, was reduced to about 200 nm,
Moreover, the height difference C was suppressed to a value of 2QQnm over the entire wafer surface. In the etch-back process, etching may be performed until the photoresist used for the spacer is completely removed. In this case, the end point can be detected by monitoring the emission spectrum of the photoresist. Subsequently, the contact hole 60 was opened and the second layer wiring 70 was processed in the same manner as in a normal process.

第4図は第3図で述べた発明の実施例をエッチバンク後
に試料の上面から示したものである。ホトレジストのス
ペーサ400,401によって配線パターン200,2
01は均一に埋込まれ、エッチバックした後のホトレジ
ストは400,401゜450.451に残シ、凸起部
A1とA2はPSGが露出している。これによってパタ
ーン依存性なくエッチバックされた。
FIG. 4 shows the embodiment of the invention described in FIG. 3 from the top of the sample after the etch bank. Wiring patterns 200 and 2 are formed by photoresist spacers 400 and 401.
01 is uniformly buried, and after etching back, the photoresist remains at 400, 401°, 450, 451, and the PSG is exposed at the convex portions A1 and A2. This allowed etching back without pattern dependence.

本発明の他の実施例を以下に説明する。約1μm厚の第
1層配線層に層間絶縁膜を第1層配線層と同じ厚さかそ
れ以下の厚さ〜800nmで被着する。つづいてホトレ
ジストのスペーサパターンを形成したらと、ホトレジス
トの平坦化をする。この工程手順は第3図で説明した方
法と同じである。
Other embodiments of the invention will be described below. An interlayer insulating film is deposited on the first wiring layer having a thickness of about 1 μm to a thickness of 800 nm, which is the same thickness as the first wiring layer or less. Next, after forming a photoresist spacer pattern, the photoresist is planarized. This process procedure is the same as the method described in FIG.

つづいてエッチバックで約8001mのPSGを削って
、第1層配線層の表面を露出する。この後、ホトレジス
トを除去して、再び層間絶縁膜を〜600nmの厚さで
被着する。これによって、ウェーハ全面が約200 n
 m以下の凹凸で平坦化された。
Next, approximately 8001 m of PSG is removed by etch-back to expose the surface of the first wiring layer. After this, the photoresist is removed and an interlayer insulating film is deposited again to a thickness of ~600 nm. As a result, the entire surface of the wafer is approximately 200 nm
It was flattened with unevenness of less than m.

この後の第2層配線は今までと同じである。The subsequent second layer wiring is the same as before.

以上、本発明の実施例を述べたが、平坦化埋込みを十分
な効果をもたせるには、ホトレジストのスペーサパター
ンと第1層配線層でできるギャップt(第3.第4図の
t参照)を短かくした方がよい。実験の結果では〜5μ
m以下が好ましく、最小値はホトリソグラフィのアライ
ンメント精度で決まる値(〜0.5μm)である。
The embodiments of the present invention have been described above, but in order to have a sufficient effect on planarization and embedding, the gap t (see t in Figures 3 and 4) formed between the photoresist spacer pattern and the first wiring layer must be It's better to keep it short. According to the experimental results, ~5μ
m or less is preferable, and the minimum value is a value (~0.5 μm) determined by the alignment accuracy of photolithography.

以上、実施例では、平坦化を均一に行なうためホトレジ
ストのスペーサパターンと埋込み用ホトレジスト層を用
いて説明してきたが、エツチングレートを増すと温度上
昇によってホトレジス)4面が荒れることがある。これ
には上述したホトレジストの材料にかわってポリイミド
樹脂やシリコーン系樹脂などが使用できることは言うに
及ばない。
In the above embodiments, a spacer pattern of photoresist and a buried photoresist layer have been used to achieve uniform planarization, but when the etching rate is increased, the surface of the photoresist may become rough due to a rise in temperature. Needless to say, polyimide resin, silicone resin, etc. can be used instead of the above-mentioned photoresist material.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、埋込み平坦化がウェーハ面内で均一に
行なえるようになるので、従来のエツチングバックの欠
点であった、不均一性、終点検出の不確実性が、これに
よって解決された。そのため、作業能率1歩留シを著し
く向上させることができた。また工程は、スペーサパタ
ーン用のホトレジスト処理が一回追加されるだけの極め
て簡単なプロセスである。
According to the present invention, implant planarization can be performed uniformly within the wafer surface, thereby solving the disadvantages of conventional etching back, such as non-uniformity and uncertainty in end point detection. . Therefore, it was possible to significantly improve the working efficiency and the yield rate. Furthermore, the process is extremely simple, requiring only one additional photoresist process for the spacer pattern.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のエッチバックによる平坦化法の工程手順
に対する素子断面図、第2図はこの素子上面図、第3図
は本発明によ乞平坦化法の工程手順に対する素子断面図
、第4図はこの素子の上面図である。 1.10・・・半導体基板結晶、2.20・・・第1層
配線パターン、3.30・・・層間絶縁膜層、80・・
・スペーサパターン、85・・・埋込み用ホトレジスト
、7.70・・・第1層配線パターン、6.60・・・
コンタクト孔。 置 2 図 夏 、i 図
FIG. 1 is a cross-sectional view of the device for the process steps of the conventional etch-back planarization method, FIG. 2 is a top view of the device, and FIG. 3 is a cross-sectional view of the device for the process steps of the planarization method according to the present invention. FIG. 4 is a top view of this element. 1.10... Semiconductor substrate crystal, 2.20... First layer wiring pattern, 3.30... Interlayer insulating film layer, 80...
・Spacer pattern, 85... Photoresist for embedding, 7.70... First layer wiring pattern, 6.60...
contact hole. Figure 2, Figure i

Claims (3)

【特許請求の範囲】[Claims] 1.半導体基板結晶上に少なくとも二層以上の配線金属
層と少なくとも一層以上の層間絶縁層とを形成する多層
配線法において、第1の配線金属層に層間絶縁層を被着
する工程と、ホトレジストからなるスペーサパターンを
第1の配線金属層上をさけて設ける工程と、第1の配線
金属層とスペーサパターン上に層間絶縁層であるホトレ
ジストを塗布する工程と、一部のホトレジスト層と一部
の層間絶縁層をエッチングする工程と、上記層間絶縁膜
にコンタクト孔を設ける工程と、第2層の配線金属層を
設ける工程とを含んでなることを特徴とする多層配線法
1. In a multilayer wiring method for forming at least two or more wiring metal layers and at least one or more interlayer insulating layer on a semiconductor substrate crystal, a step of depositing an interlayer insulating layer on a first wiring metal layer, and a photoresist. A step of providing a spacer pattern on the first wiring metal layer, a step of applying a photoresist as an interlayer insulating layer on the first wiring metal layer and the spacer pattern, and a step of applying a photoresist as an interlayer insulating layer on the first wiring metal layer and the spacer pattern; A multilayer wiring method comprising the steps of etching an insulating layer, providing a contact hole in the interlayer insulating film, and providing a second wiring metal layer.
2.特許請求の範囲第1項において、前記エッチングす
る工程後に、ホトレジスト層を除去する工程を含むこと
を特徴とする多層配線法。
2. The multilayer wiring method according to claim 1, further comprising the step of removing the photoresist layer after the etching step.
3.特許請求の範囲第1項において、前記エッチングす
る工程後に、再び層間絶縁層を形成する工程を含むこと
を特徴とする多層配線法。
3. The multilayer wiring method according to claim 1, further comprising the step of forming an interlayer insulating layer again after the etching step.
JP12820185A 1985-06-14 1985-06-14 Multilayer interconnection method Pending JPS61287245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12820185A JPS61287245A (en) 1985-06-14 1985-06-14 Multilayer interconnection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12820185A JPS61287245A (en) 1985-06-14 1985-06-14 Multilayer interconnection method

Publications (1)

Publication Number Publication Date
JPS61287245A true JPS61287245A (en) 1986-12-17

Family

ID=14978965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12820185A Pending JPS61287245A (en) 1985-06-14 1985-06-14 Multilayer interconnection method

Country Status (1)

Country Link
JP (1) JPS61287245A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437840A (en) * 1987-07-21 1989-02-08 Philips Nv Manufacture of semiconductor device with planar structure
US5212114A (en) * 1989-09-08 1993-05-18 Siemens Aktiengesellschaft Process for global planarizing of surfaces for integrated semiconductor circuits
US5488007A (en) * 1992-04-16 1996-01-30 Samsung Electronics Co., Ltd. Method of manufacture of a semiconductor device
US5580826A (en) * 1993-11-17 1996-12-03 Nec Corporation Process for forming a planarized interlayer insulating film in a semiconductor device using a periodic resist pattern

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893327A (en) * 1981-11-30 1983-06-03 Toshiba Corp Minute processing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893327A (en) * 1981-11-30 1983-06-03 Toshiba Corp Minute processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437840A (en) * 1987-07-21 1989-02-08 Philips Nv Manufacture of semiconductor device with planar structure
US5212114A (en) * 1989-09-08 1993-05-18 Siemens Aktiengesellschaft Process for global planarizing of surfaces for integrated semiconductor circuits
US5488007A (en) * 1992-04-16 1996-01-30 Samsung Electronics Co., Ltd. Method of manufacture of a semiconductor device
US5580826A (en) * 1993-11-17 1996-12-03 Nec Corporation Process for forming a planarized interlayer insulating film in a semiconductor device using a periodic resist pattern

Similar Documents

Publication Publication Date Title
US4545852A (en) Planarization of dielectric films on integrated circuits
JPS5982746A (en) Electrode wiring method of semiconductor device
JPH0360055A (en) Manufacturing method of integrated circuit
US5437763A (en) Method for formation of contact vias in integrated circuits
JP2002093904A (en) Method for forming dual damascene wiring
JPH0645330A (en) Flattening method of integrated circuit
JPH06295908A (en) Manufacture of semiconductor device
JPH10261624A (en) Etching and multilayered interconnection structure
JPS61287245A (en) Multilayer interconnection method
JPH0669351A (en) Manufacture of contact of multilayer metal interconnection structure
JPS607737A (en) Manufacture of semiconductor device
US6143644A (en) Method to prevent passivation from keyhole damage and resist extrusion
JPS6360539B2 (en)
JPS586306B2 (en) Handout Taisouchino Seizouhouhou
JP2535908B2 (en) Method for manufacturing semiconductor device
JPS59205735A (en) Manufacture of semiconductor device
JP3130726B2 (en) Semiconductor device and manufacturing method thereof
JP2544750B2 (en) Method for manufacturing semiconductor device
JP2783898B2 (en) Method for manufacturing semiconductor device
JPH07147225A (en) Semiconductor device and its manufacture
JP2637726B2 (en) Method for manufacturing semiconductor integrated circuit device
US5200880A (en) Method for forming interconnect for integrated circuits
JPH0220141B2 (en)
JPS6134956A (en) Method for forming wiring layer
JPH05308073A (en) Manufacture of semiconductor device