JPH0536394B2 - - Google Patents

Info

Publication number
JPH0536394B2
JPH0536394B2 JP59114790A JP11479084A JPH0536394B2 JP H0536394 B2 JPH0536394 B2 JP H0536394B2 JP 59114790 A JP59114790 A JP 59114790A JP 11479084 A JP11479084 A JP 11479084A JP H0536394 B2 JPH0536394 B2 JP H0536394B2
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
pseudo
seed crystal
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59114790A
Other languages
Japanese (ja)
Other versions
JPS60260492A (en
Inventor
Takashi Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11479084A priority Critical patent/JPS60260492A/en
Publication of JPS60260492A publication Critical patent/JPS60260492A/en
Publication of JPH0536394B2 publication Critical patent/JPH0536394B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、多結晶又は非晶質の半導体薄膜を加
熱溶融して再結晶化させる半導体薄膜の結晶化方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for crystallizing a semiconductor thin film in which a polycrystalline or amorphous semiconductor thin film is melted by heating and recrystallized.

背景技術とその問題点 絶縁物基板又は絶縁層上に形成した多結晶シリ
コン(又は非晶質シリコン)の薄膜をレーザ・ビ
ーム、エレクトロン・ビーム、ランプ、カーボ
ン・ヒータ等の加熱手段を用いて溶融し、再結晶
化して得られた単結晶シリコン薄膜に各種半導体
素子を製作することが行なわれている(いわゆる
SOI技術)。しかし、石英、ガラス等の絶縁基板
を使用して多結晶シリコン薄膜を再結晶化させる
場合、種結晶を利用することができないため、種
結晶なしの多結晶シリコン薄膜には個々に無秩序
な結晶方位をもつ結晶粒が成長する。但し、表面
方位は揃うが、面内方位の制御は無理である。従
つて、それぞれの結晶粒の結晶方位が異ることに
より、隣接する結晶粒の境界に結晶粒界が発生し
ていたため、このようにして得られた半導体薄膜
を用いて半導体素子を製作する際の大きな障害と
なつていた。
Background technology and its problems A thin film of polycrystalline silicon (or amorphous silicon) formed on an insulating substrate or an insulating layer is melted using a heating means such as a laser beam, electron beam, lamp, or carbon heater. However, various semiconductor devices are being manufactured using single-crystal silicon thin films obtained by recrystallization (so-called
SOI technology). However, when recrystallizing polycrystalline silicon thin films using insulating substrates such as quartz or glass, seed crystals cannot be used, so polycrystalline silicon thin films without seed crystals have individual disordered crystal orientations. Grains with . However, although the surface orientation is aligned, it is impossible to control the in-plane orientation. Therefore, due to the different crystal orientations of each crystal grain, grain boundaries were generated at the boundaries of adjacent crystal grains, which made it difficult to fabricate semiconductor devices using the semiconductor thin film obtained in this way. This had become a major obstacle.

発明の目的 本発明は、上述の点に鑑みて、従来のような種
結晶を使用しないで結晶方位の揃つた再結晶化薄
膜を得ることができる半導体薄膜の結晶化方法を
提供するものである。
Purpose of the Invention In view of the above-mentioned points, the present invention provides a method for crystallizing a semiconductor thin film that can obtain a recrystallized thin film with uniform crystal orientation without using a conventional seed crystal. .

発明の概要 本発明は、基板に形成された半導体薄膜に加熱
溶融手段に走査することにより半導体薄膜を再結
晶化させる半導体薄膜の結晶化方法において、半
導体薄膜に結晶方位を揃えるための方形状又は三
角形状の凹部又は凸部からなる疑似種結晶を設け
るとともに、この疑似種結晶を含む上述の半導体
薄膜の表面にキヤツプ層を設け、さらに、この疑
似種結晶が方形状の場合に上記加熱溶融手段の走
査方向に1辺に対して直交方向とする一方、三角
形状の場合には、底辺に対して垂直としたことを
特徴とする半導体薄膜の結晶化方法である。
Summary of the Invention The present invention provides a semiconductor thin film crystallization method in which a semiconductor thin film formed on a substrate is scanned by a heating melting means to recrystallize the semiconductor thin film. A pseudo-seed crystal consisting of a triangular concave or convex portion is provided, and a cap layer is provided on the surface of the above-mentioned semiconductor thin film containing this pseudo-seed crystal, and further, when this pseudo-seed crystal is rectangular, the above-mentioned heating and melting means is applied. This method of crystallizing a semiconductor thin film is characterized in that the scanning direction is perpendicular to one side, while in the case of a triangular shape, the scanning direction is perpendicular to the base.

上記結晶化方法により、加熱溶融時の流動、蒸
発等を防止しつつ、再結晶化時の半導体薄膜の結
晶方向を揃えることが可能になる。
The crystallization method described above makes it possible to align the crystal orientation of the semiconductor thin film during recrystallization while preventing flow, evaporation, etc. during heating and melting.

実施例 本発明における結晶方位を揃えるための疑似種
結晶は、第1図〜第5図に示すように、石英基板
1上に形成した多結晶シリコン薄膜2の適当な箇
所に多結晶シリコンが被着されていない孔部3を
設けることにより構成する。この孔部3の形状と
しては、例えば第2図に示すように正方形であつ
て一対の辺がレーザ・ビームの走査方向Lに対し
て平行となるように配したもの、第3図に示すよ
うに正三角形であつてレーザ・ビームの走査方向
Lに対して正三角形の底辺が垂直となるように配
したもの、第4図に示すように凹凸形状を連続的
に配したもの、第5図に示すように三角形の波形
形状を連続的に配したものなどがある。これら
の、孔部3の形状、大きさ、分布等は任意に設定
することができるが、中でも特に第2図に示す正
方形が好ましく、一辺の長さは1000Å〜100μm、
中でも1000Å〜1μm位が適当である。また、正
方形の孔部3間の間隔は、サブグレインの発生を
抑えるために1mm以下とする。
Example As shown in FIGS. 1 to 5, the pseudo seed crystal for aligning the crystal orientation in the present invention is a polycrystalline silicon thin film 2 formed on a quartz substrate 1, which is covered with polycrystalline silicon at appropriate locations. It is constructed by providing a hole 3 which is not covered. The shape of the hole 3 may be, for example, a square as shown in FIG. 2, with a pair of sides parallel to the scanning direction L of the laser beam, or as shown in FIG. 4, an equilateral triangle arranged so that the base of the equilateral triangle is perpendicular to the scanning direction L of the laser beam, a concavo-convex shape arranged continuously as shown in Fig. 4, and Fig. 5. As shown in the figure, there is one in which triangular waveform shapes are arranged continuously. The shape, size, distribution, etc. of these holes 3 can be set arbitrarily, but the square shown in FIG. 2 is particularly preferable, and the length of each side is 1000 Å to 100 μm.
Among them, a thickness of about 1000 Å to 1 μm is suitable. Further, the interval between the square holes 3 is set to 1 mm or less in order to suppress the generation of subgrains.

このように、孔部3を有する多結晶シリコン薄
膜2を形成した後、第1図に示すように、加熱溶
融時の流動、蒸発を防止するためのキヤツプ層と
なるSiO2層4を1層、又は複数層にして第6図
に示すように、SiO2層4とSi3N4層5を2層被着
する。
After forming the polycrystalline silicon thin film 2 having the holes 3 in this way, as shown in FIG. , or in a plurality of layers, as shown in FIG. 6, two layers of SiO 2 layer 4 and Si 3 N 4 layer 5 are deposited.

この石英基板1上の多結晶シリコン薄膜2に対
してレーザ・ビームをL方向に走査させると、第
2図〜第5図の細線で示す方向に疑似種結晶の形
状に起因した面内方位をもつ単結晶シリコンが成
長し、<100>等の結晶方位の揃つた再結晶化シリ
コン薄膜を石英基板1の全体又は一部に得ること
ができる。このとき、孔部3を含んで多結晶シリ
コン薄膜2の表面全体にキヤツプ層が被着形成さ
れているので、レーザ・ビームによる加熱溶融
時、シリコン薄膜2の流動、蒸発が防止され、平
坦性の良い表面を有する再結晶化シリコン薄膜が
得られる。なお、第3図で11は、<100>軸と<
010>軸の再結晶化シリコンが会することにより
生ずる結晶粒界である。このような効果が得られ
ることは、例えば多結晶シリコンを再結晶化する
と、多結晶シリコンとSiO2の界面では界面の自
由エネルギーが最小となるように(100)面の単
結晶シリコンが形成されることより類推される。
When a laser beam is scanned in the L direction on the polycrystalline silicon thin film 2 on the quartz substrate 1, the in-plane orientation due to the shape of the pseudo-seed crystal is determined in the direction shown by the thin line in FIGS. 2 to 5. A recrystallized silicon thin film with a uniform crystal orientation such as <100> can be obtained on the whole or part of the quartz substrate 1. At this time, since a cap layer is formed on the entire surface of the polycrystalline silicon thin film 2 including the holes 3, the silicon thin film 2 is prevented from flowing and evaporating when heated and melted by the laser beam, and the flatness is maintained. A recrystallized silicon thin film with a good surface is obtained. In addition, 11 in Fig. 3 is the <100> axis and <
010> This is a grain boundary caused by the meeting of recrystallized silicon along the axis. This effect is obtained because, for example, when polycrystalline silicon is recrystallized, single crystal silicon with a (100) plane is formed so that the free energy of the interface is minimized at the interface between polycrystalline silicon and SiO 2 . It can be inferred from that.

第7図〜第12図に本発明の他の実施例を示
す。
Other embodiments of the present invention are shown in FIGS. 7 to 12.

第7図に示す実施例は、第1図に示す多結晶シ
リコンの被着されていない孔部3に異物質6を充
填することにより、本発明に係る疑似種結晶とし
たものである。同様にして、第2図〜第5図に係
る多結晶シリコン薄膜2の孔部3に異物質6を充
填するようにしてもよい。4はキヤツプ層となる
SiO2層である。
In the embodiment shown in FIG. 7, a pseudo seed crystal according to the present invention is created by filling the hole 3 shown in FIG. 1 to which polycrystalline silicon is not deposited with a foreign substance 6. Similarly, the holes 3 of the polycrystalline silicon thin film 2 shown in FIGS. 2 to 5 may be filled with the foreign substance 6. 4 is the cap layer
It is two layers of SiO.

第8図及び第9図に示す実施例は、多結晶シリ
コン薄膜2に形成した凹部7又は凸部8により、
本発明に係る疑似種結晶効果を持たせるようにし
たものである。
In the embodiment shown in FIGS. 8 and 9, the concave portions 7 or convex portions 8 formed in the polycrystalline silicon thin film 2 allow
It is designed to have the pseudo-seed crystal effect according to the present invention.

第10図及び第11図に示す実施例において
は、多結晶シリコン薄膜2の下地層9の厚さに変
化を持たせて、多結晶シリコン薄膜2に凹部7又
は凸部8が形成されるようにしたものである。こ
れらの凹部7又は凸部8を疑似種結晶とする結晶
方位の制御効果は上記実施例と同じである。
In the embodiments shown in FIGS. 10 and 11, the thickness of the base layer 9 of the polycrystalline silicon thin film 2 is varied so that recesses 7 or protrusions 8 are formed in the polycrystalline silicon thin film 2. This is what I did. The effect of controlling the crystal orientation using these concave portions 7 or convex portions 8 as pseudo seed crystals is the same as in the above embodiment.

第12図に示す実施例においては、下地層9の
上の適当な場所に異物質6を正方形状、正三角形
状等に被着し、この上から多結晶シリコン薄膜2
を形成することにより、凸状となつた部分10を
疑似種結晶として利用するようにしたものであ
る。
In the embodiment shown in FIG. 12, a foreign substance 6 is deposited in a square, equilateral triangle, etc. at an appropriate location on a base layer 9, and a polycrystalline silicon thin film 2 is applied on top of this.
By forming the convex portion 10, the convex portion 10 is used as a pseudo seed crystal.

発明の効果 本発明によれば、従来の種結晶の代わりに、半
導体薄膜の形状を変えることにより形成した疑似
種結晶を使用するので、種結晶を利用することが
できない基板についても再結晶化される半導体薄
膜の結晶方位を制御することが可能なる。従つ
て、本発明により得られた再結晶化半導体薄膜の
面内方位は、基板の全体又は一部について一様で
ある。また、キヤツプ層によつて加熱溶融時の半
導体薄膜の流動、蒸発が防止されるので、平坦性
のよい表面を有する再結晶化半導体薄膜を形成す
ることができる。
Effects of the Invention According to the present invention, a pseudo-seed crystal formed by changing the shape of a semiconductor thin film is used instead of a conventional seed crystal, so that even substrates that cannot use a seed crystal can be recrystallized. It becomes possible to control the crystal orientation of the semiconductor thin film. Therefore, the in-plane orientation of the recrystallized semiconductor thin film obtained by the present invention is uniform over the entire or part of the substrate. Further, since the cap layer prevents the semiconductor thin film from flowing and evaporating during heating and melting, it is possible to form a recrystallized semiconductor thin film having a surface with good flatness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る第2図の断面
図、第2図〜第5図は本発明の実施例を示すキヤ
ツプ層を除いた状態の平面図、第6図〜第12図
は他の実施例に係る断面図である。 1は石英基板、2は多結晶シリコン薄膜、3は
孔部、6は異物質、7は凹部、8は凸部、10は
凸部分である。
FIG. 1 is a sectional view of FIG. 2 according to an embodiment of the present invention, FIGS. 2 to 5 are plan views of the embodiment of the present invention with the cap layer removed, and FIGS. 6 to 12 FIG. 3 is a sectional view according to another embodiment. 1 is a quartz substrate, 2 is a polycrystalline silicon thin film, 3 is a hole, 6 is a foreign substance, 7 is a concave part, 8 is a convex part, and 10 is a convex part.

Claims (1)

【特許請求の範囲】[Claims] 1 基板に形成された半導体薄膜に加熱溶融手段
を走査することにより上記半導体薄膜を再結晶化
させる半導体薄膜の結晶化方法において、上記半
導体薄膜に結晶方位を揃えるための方形状又は三
角形状の凹部又は凸部からなる疑似種結晶を設け
るとともに、該疑似種結晶を含む上記半導体薄膜
の表面にキヤツプ層を設け、さらに、上記疑似種
結晶が方形状の場合に上記加熱溶融手段の走査方
向を1辺に対して直交方向とする一方、三角形状
の場合には底辺に対して垂直としたことを特徴と
する半導体薄膜の結晶化方法。
1. In a semiconductor thin film crystallization method in which the semiconductor thin film is recrystallized by scanning the semiconductor thin film formed on a substrate with a heating melting means, a rectangular or triangular recess for aligning the crystal orientation in the semiconductor thin film. Alternatively, a pseudo-seed crystal consisting of a convex portion is provided, and a cap layer is provided on the surface of the semiconductor thin film including the pseudo-seed crystal, and further, when the pseudo-seed crystal is rectangular, the scanning direction of the heating and melting means is set to 1. A method for crystallizing a semiconductor thin film, characterized in that the crystallization direction is perpendicular to the sides, or perpendicular to the base in the case of a triangular shape.
JP11479084A 1984-06-05 1984-06-05 Crystallization method of semiconductor thin film Granted JPS60260492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11479084A JPS60260492A (en) 1984-06-05 1984-06-05 Crystallization method of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11479084A JPS60260492A (en) 1984-06-05 1984-06-05 Crystallization method of semiconductor thin film

Publications (2)

Publication Number Publication Date
JPS60260492A JPS60260492A (en) 1985-12-23
JPH0536394B2 true JPH0536394B2 (en) 1993-05-28

Family

ID=14646743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11479084A Granted JPS60260492A (en) 1984-06-05 1984-06-05 Crystallization method of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS60260492A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151390A (en) * 1982-02-16 1983-09-08 ザ・ベンデイツクス・コ−ポレ−シヨン Formation of single crystal film on amorphous substrate
JPS58190899A (en) * 1982-04-30 1983-11-07 Nec Corp Formation of single crystal silicon film
JPS59128292A (en) * 1983-01-05 1984-07-24 Seiko Instr & Electronics Ltd Method for crystallizing thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151390A (en) * 1982-02-16 1983-09-08 ザ・ベンデイツクス・コ−ポレ−シヨン Formation of single crystal film on amorphous substrate
JPS58190899A (en) * 1982-04-30 1983-11-07 Nec Corp Formation of single crystal silicon film
JPS59128292A (en) * 1983-01-05 1984-07-24 Seiko Instr & Electronics Ltd Method for crystallizing thin film

Also Published As

Publication number Publication date
JPS60260492A (en) 1985-12-23

Similar Documents

Publication Publication Date Title
US6172380B1 (en) Semiconductor material
JP2003168645A (en) Semiconductor thin film device, its manufacturing method, and image display device
JP4237278B2 (en) Formation method of silicon single crystal using nucleation site
JPS59161014A (en) Crystallization of semiconductor thin film
JPS5939790A (en) Production of single crystal
JPH0536394B2 (en)
JPH0232527A (en) Formation of single-crystal thin film
JPS5939791A (en) Production of single crystal
JPS6147627A (en) Manufacture of semiconductor device
JPS58184720A (en) Manufacture of semiconductor film
JPH0442358B2 (en)
JPH03286520A (en) Manufacture of thin crystalline semiconductor film
JPH0236052B2 (en)
JPS6083322A (en) Crystallizing method of semiconductor thin-film
JPS6091622A (en) Manufacture of semiconductor substrate
JPS62226621A (en) Forming method for single crystal silicon thin film
JPH027414A (en) Formation of soi thin film
JPS60183718A (en) Crystallizing method of semiconductor thin film
JPS60164318A (en) Beam annealing
JPH0652711B2 (en) Semiconductor device
JPS6379953A (en) Production of thin single crystal film
JPS60260124A (en) Manufacture of semiconductor substrate
JPS5978999A (en) Manufacture of semiconductor single crystal film
JPS62165908A (en) Forming method for single crystal thin-film
JPS61170017A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term