JPH05283068A - Metal hydride storage battery - Google Patents

Metal hydride storage battery

Info

Publication number
JPH05283068A
JPH05283068A JP4077524A JP7752492A JPH05283068A JP H05283068 A JPH05283068 A JP H05283068A JP 4077524 A JP4077524 A JP 4077524A JP 7752492 A JP7752492 A JP 7752492A JP H05283068 A JPH05283068 A JP H05283068A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
hydrogen
intercalation compound
graphite intercalation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4077524A
Other languages
Japanese (ja)
Other versions
JP3071026B2 (en
Inventor
Akifumi Yamawaki
章史 山脇
Takashi Ueda
高士 上田
Shinsuke Nakahori
真介 中堀
Tsukane Ito
束 伊藤
Yoshikazu Ishikura
良和 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4077524A priority Critical patent/JP3071026B2/en
Publication of JPH05283068A publication Critical patent/JPH05283068A/en
Application granted granted Critical
Publication of JP3071026B2 publication Critical patent/JP3071026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the consumption speed of oxygen gas, and improve the cycle lifetime of a metal hydride storage battery. CONSTITUTION:In a battery having a hydrogen storage alloy negative electrode 2, which is mainly composed of hydrogen storage alloy, and a separator 3 impregnated with the electrolyte and a positive electrode 1, at the time of manufacture of the negative electrode 2, a layer made of graphite interlaminar compound, which can store and discharge hydrogen, or a layer made of the mixture of metal powder and graphite interlaminar compound is provided on the surface of an active material layer of the negative electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素を吸蔵および放出
することのできる水素吸蔵合金を負極材料として用いた
金属水素化物蓄電池に関す。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal hydride storage battery using, as a negative electrode material, a hydrogen storage alloy capable of storing and releasing hydrogen.

【0002】[0002]

【従来の技術】従来からよく用いられる蓄電池として
は、ニッケル−カドミウム蓄電池、あるいは鉛蓄電池な
どがある。しかし、近年、これらの電池より軽量且つ高
容量で高エネルギー密度となる可能性があるということ
で、水素吸蔵合金を負極材料として用いた水素吸蔵電極
を備えたニッケル−水素アルカリ蓄電池が注目されてい
る。
2. Description of the Related Art Conventionally used storage batteries include nickel-cadmium storage batteries and lead storage batteries. However, in recent years, nickel-hydrogen alkaline storage batteries equipped with a hydrogen storage electrode using a hydrogen storage alloy as a negative electrode material have attracted attention because they may be lighter in weight, have higher capacity, and have higher energy density than these batteries. There is.

【0003】ここで、水素吸蔵合金電極の製造方法とし
ては、特開昭61−66366号公報に示されるよう
に、ポリテトラフルオロエチレンやポリエチレンオキサ
イドなどの結着剤と水素吸蔵合金粉末とを混練したペー
ストを、パンチングメタルやエキスパンドメタル等の芯
体に塗着、乾燥するような方法が一般的に用いられる。
また、このように作製された水素吸蔵電極と、ニッケル
−カドミウム蓄電池に用いられる焼結式ニッケル正極と
の間にセパレータを介在させて渦巻状に捲回したもの
を、電池外装缶に収容することにより、ニッケル−水素
アルカリ蓄電池が作製される。
Here, as a method for producing a hydrogen storage alloy electrode, as disclosed in JP-A-61-66366, a binder such as polytetrafluoroethylene or polyethylene oxide and a hydrogen storage alloy powder are kneaded. A method of applying the paste to a core body such as punching metal or expanded metal and drying it is generally used.
Further, the hydrogen storage electrode thus produced and the spirally wound nickel positive electrode used in the nickel-cadmium storage battery with a separator interposed between the spirally wound one should be housed in a battery outer can. Thus, a nickel-hydrogen alkaline storage battery is manufactured.

【0004】ここで、このように作製された電池におい
ては、過充電時に電池内で正極から酸素ガスが発生す
る。そして、発生した酸素ガスは、以下に示す反応式の
ように、負極の水素吸蔵合金により消費される。 1/2 O2 + H2 O + 2e- OH- MH + 1/4 O2 M + 1/2 H2 O ところが、上記の酸素ガス消費反応が速やかに行われな
いと、電池内部圧力が上昇してしまうという問題が生じ
る。
In the battery thus manufactured, oxygen gas is generated from the positive electrode in the battery during overcharge. Then, the generated oxygen gas is consumed by the hydrogen storage alloy of the negative electrode as in the reaction formula shown below. 1/2 O 2 + H 2 O + 2e - OH - MH + 1/4 O 2 M + 1/2 H 2 O However, if the above oxygen gas consumption reaction does not occur promptly, the battery internal pressure will rise. There is a problem of doing.

【0005】そこで、上記反応を迅速に進行し、酸素ガ
スの消費能力を向上するために、特開昭63−1959
60号公報では、負極の水素吸蔵合金電極の表面に炭素
粉末層を形成し、負極表面の導電性を向上させることが
提案されている。このような構成であれば、以下の理由
により酸素ガスの消費能力が向上する。即ち、通常は、
充電時には、導電性の支持体の近傍から充電されていく
ので、負極表面の近傍の水素吸蔵合金は充電され難い。
しかしながら上記構成の如く、負極の表面に炭素粉末の
ような導電層を形成すれば、負極表面近傍の水素吸蔵合
金も充電されやすくなる。従って、充電時の早い時期か
ら負極表面に水素を存在させておくことが可能となるの
で、負極表面において、酸素ガスと水素吸蔵合金に吸蔵
された水素との間で酸素ガス消費反応が速やかに進行す
るという理由による。
Therefore, in order to accelerate the above reaction and improve the oxygen gas consumption capacity, Japanese Patent Laid-Open No. 63-1959 has been proposed.
In JP-A-60, it is proposed to form a carbon powder layer on the surface of the hydrogen storage alloy electrode of the negative electrode to improve the conductivity of the negative electrode surface. With such a configuration, the oxygen gas consumption capacity is improved for the following reasons. That is, normally
At the time of charging, the hydrogen storage alloy near the surface of the negative electrode is hard to be charged because it is charged from near the conductive support.
However, if a conductive layer such as carbon powder is formed on the surface of the negative electrode as in the above structure, the hydrogen storage alloy near the surface of the negative electrode is also easily charged. Therefore, it becomes possible to allow hydrogen to be present on the negative electrode surface from an early stage of charging, so that the oxygen gas consuming reaction quickly occurs between the oxygen gas and the hydrogen stored in the hydrogen storage alloy on the negative electrode surface. It depends on the reason to proceed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の方法では、負極の最表面に炭素粉末層が存在するた
め、この炭素粉末が酸素ガスと水素の接触を妨害してし
まう。また、負極表面の導電性を向上させることだけで
は、十分な酸素ガス消費能力は得られないという問題が
ある。また炭素粉末層を形成した場合、その分量だけ水
素吸蔵合金の充填量が減少するため、負極の容量密度の
低下を招くという新たな問題が生じる。
However, in the above-mentioned conventional method, since the carbon powder layer exists on the outermost surface of the negative electrode, the carbon powder interferes with the contact between oxygen gas and hydrogen. Further, there is a problem that sufficient oxygen gas consumption capacity cannot be obtained only by improving the conductivity of the negative electrode surface. Further, when the carbon powder layer is formed, the filling amount of the hydrogen storage alloy is reduced by that amount, which causes a new problem of lowering the capacity density of the negative electrode.

【0007】本発明は、上記の問題を解決するものであ
り、酸素ガス消費速度を向上させると共に、サイクル寿
命をも向上させることができる金属水素化物蓄電池の提
供を目的とする。
The present invention solves the above problems, and an object of the present invention is to provide a metal hydride storage battery capable of improving the oxygen gas consumption rate and the cycle life.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、水素吸蔵合金を主成分とする負極と、電解液を浸透
させたセパレータと、正極とを有する金属水素化物蓄電
池において、前記負極表面に、水素の吸蔵、放出が可能
な黒鉛層間化合物からなる層、または、前記黒鉛層間化
合物と金属粉末の混合物からなる層が形成されているこ
とを特徴とする。
In order to achieve the above object, in a metal hydride storage battery having a negative electrode containing a hydrogen storage alloy as a main component, a separator impregnated with an electrolytic solution, and a positive electrode, the negative electrode surface In addition, a layer made of a graphite intercalation compound capable of occluding and releasing hydrogen or a layer made of a mixture of the graphite intercalation compound and metal powder is formed.

【0009】また、前記黒鉛層間化合物、または、黒鉛
層間化合物と金属粉末の混合物の量が、1cm2 あたり
0.0001g以上0.01g以下であることを特徴と
する。 更に、前記黒鉛層間化合物が、黒鉛中にカリウ
ム、ナトリウムまたはリチウムからなる少なくとも一種
の金属をドープした化合物であることを特徴とする
Further, the amount of the graphite intercalation compound or the mixture of the graphite intercalation compound and the metal powder is 0.0001 g or more and 0.01 g or less per 1 cm 2 . Further, the graphite intercalation compound is a compound obtained by doping graphite with at least one metal consisting of potassium, sodium or lithium.

【0010】[0010]

【作用】上記構成の如く、水素の吸蔵および放出が可能
な黒鉛層間化合物を負極表面に形成すれば、充電時に
は、表面近傍の水素吸蔵合金が水素を吸蔵するだけでな
く、黒鉛層間化合物中にも水素が吸蔵されるようにな
る。従って、黒鉛層間化合物が酸素ガスと水素との接触
に妨げとなることはなく、酸素ガスは、負極表面で速や
かに水素の供給を受け、水に還元される。
When a graphite intercalation compound capable of occluding and releasing hydrogen is formed on the surface of the negative electrode as in the above structure, not only the hydrogen occluding alloy near the surface occludes hydrogen during charging, but Will also absorb hydrogen. Therefore, the graphite intercalation compound does not hinder the contact between oxygen gas and hydrogen, and oxygen gas is promptly supplied with hydrogen on the surface of the negative electrode and reduced to water.

【0011】更に、上記黒鉛層間化合物近傍に、酸素ガ
スの水への還元反応に対する触媒性及び導電性を有する
ニッケルなどの金属粉末を存在させることにより、水へ
の還元反応がより速やかに進行する。このような酸素ガ
ス消費速度の向上は、過充電時の安全性を向上させ、ま
た弁作動によるリークおよび水素吸蔵合金の酸化による
劣化を防止し、サイクル寿命を向上させる。
Further, the presence of a metal powder such as nickel having a catalytic property and a conductivity for the reduction reaction of oxygen gas to water near the graphite intercalation compound allows the reduction reaction to water to proceed more quickly. .. Such improvement of the oxygen gas consumption rate improves safety during overcharge, prevents leakage due to valve operation and deterioration due to oxidation of the hydrogen storage alloy, and improves cycle life.

【0012】加えて、黒鉛層間化合物は、充電時に水素
の吸蔵を行うことができるので、層を形成することによ
る水素の吸蔵量の減少を抑制することができる。尚、負
極表面に、黒鉛中にカリウム等をドープした黒鉛層間化
合物を配すれば、負極表面の導電性が向上して、負極表
面は充電されやすくなるので、酸素ガスの消費を一層向
上させることができる。
In addition, since the graphite intercalation compound can store hydrogen during charging, it is possible to suppress a decrease in the storage amount of hydrogen due to the formation of the layer. In addition, if a graphite intercalation compound in which potassium or the like is doped in graphite is arranged on the negative electrode surface, the conductivity of the negative electrode surface is improved and the negative electrode surface is easily charged, so that the consumption of oxygen gas should be further improved. You can

【0013】[0013]

【実施例】【Example】

〔実施例1〕図1は本発明の一例に係る円筒密閉型ニッ
ケル−水素電池の断面図であり、焼結式ニッケルからな
る正極1と水素吸蔵合金粉末を有する負極2と、これら
正負両極1・2間に介挿されたセパレータ3とからなる
電極群4は渦巻状に捲回されている。この電極群4は負
極端子兼用の外装缶6内に配置されており、この外装缶
6と上記負極2とは負極用導電タブ5により接続されて
いる。上記外装缶6の上部開口にはパッキング7を介し
て封口体8が装着されており、この封口体8の内部には
コイルスプリング9が設けられている。このコイルスプ
リング9は電池内部の電池内部圧力が異常上昇したとき
に矢印A方向に押圧されて内部のガスが大気中に放出さ
れるように構成されている。また、上記封口体8と前記
正極1とは正極用導電タブ10にて接続されている。
[Embodiment 1] FIG. 1 is a cross-sectional view of a cylindrical sealed nickel-hydrogen battery according to an example of the present invention. A positive electrode 1 made of sintered nickel, a negative electrode 2 having a hydrogen storage alloy powder, and positive and negative electrodes 1 are provided. The electrode group 4 including the separator 3 inserted between the two is wound in a spiral shape. The electrode group 4 is arranged in an outer can 6 that also serves as a negative electrode terminal, and the outer can 6 and the negative electrode 2 are connected by a negative electrode conductive tab 5. A sealing body 8 is attached to the upper opening of the outer can 6 through a packing 7, and a coil spring 9 is provided inside the sealing body 8. This coil spring 9 is configured to be pressed in the direction of arrow A when the internal pressure of the battery inside the battery rises abnormally, and the gas inside is released into the atmosphere. Further, the sealing body 8 and the positive electrode 1 are connected by a positive electrode conductive tab 10.

【0014】ここで上記構造の円筒密閉型ニッケル−水
素電池を以下のようにして作製した。先ず、初めに、水
素吸蔵合金の原料として、市販のミッシュメタル(M
m、希土類元素の混合物)とニッケルとコバルトとアル
ミニウムとマンガンとを元素比で1.0:3.2:1.
0:0.2:0.6となるように秤量した後、これらを
混合し、高周波誘導炉内で溶解、鋳造する。これによ
り、MmNi3.2 CoAl 0.2 Mn0.6 という組成の合
金が得られる。次いで、この合金塊を機械的に粉砕して
平均粒径が50μmの水素吸蔵合金粉末を作製した。
Here, the cylindrical closed type nickel-water having the above structure is used.
A unit cell was produced as follows. First of all, water
Commercially available misch metal (M
m, a mixture of rare earth elements), nickel, cobalt and al.
The element ratio of minium and manganese is 1.0: 3.2: 1.
Weigh these to 0: 0.2: 0.6 and
Mix, melt and cast in a high frequency induction furnace. By this
MmNi3.2CoAl 0.2Mn0.6The composition of
You get money. The alloy mass was then mechanically crushed
A hydrogen storage alloy powder having an average particle size of 50 μm was produced.

【0015】更に、この合金粉末に対して1wt%のポ
リエチレンオキサイドと、分散媒としての水とを前記合
金粉末に加えスラリーを作製し、パンチングメタルから
なる導電性支持体の表面に塗着したのち、乾燥および加
圧を行いベース電極を得た。次に、天然黒鉛中にカリウ
ムをドープした黒鉛層間化合物に結着剤としてのポリビ
ニルアルコール及び分散媒としての水を添加してスラリ
ーを得、このスラリーを前記ベース電極の両面に塗着
し、乾燥および圧延を行って水素吸蔵電極を得た。
Further, 1 wt% of polyethylene oxide with respect to the alloy powder and water as a dispersion medium are added to the alloy powder to prepare a slurry, which is applied to the surface of a conductive support made of punching metal. The base electrode was obtained by performing drying and pressurization. Next, polyvinyl alcohol as a binder and water as a dispersion medium are added to a graphite intercalation compound in which potassium is doped in natural graphite to obtain a slurry, and the slurry is applied to both surfaces of the base electrode and dried. And it rolled and the hydrogen storage electrode was obtained.

【0016】尚、前記黒鉛層間化合物の前記ベース電極
1cm2 当たりの塗着量は、0.001gとした。正極
1として焼結式ニッケル極、負極2として前記のように
作製した水素吸蔵電極を使用して、これら正負両極1・
2間に不織布からなるセパレータ3を介して捲回させ、
渦巻状の電極群4を得た。そしてこの電極群4を外装缶
6に挿入し、30重量%の水酸化カリウム水溶液を電解
液として注液したのち、封口して公称容量1000mA
hの密閉型ニッケル水素電池を作製した。
The amount of the graphite intercalation compound applied per cm 2 of the base electrode was 0.001 g. Using a sintered nickel electrode as the positive electrode 1 and the hydrogen storage electrode prepared as described above as the negative electrode 2, these positive and negative electrodes 1
Wrap between the two via a separator 3 made of a non-woven fabric,
A spiral electrode group 4 was obtained. Then, this electrode group 4 was inserted into the outer can 6, and after pouring 30% by weight potassium hydroxide aqueous solution as an electrolytic solution, it was sealed and the nominal capacity was 1000 mA.
A sealed nickel-metal hydride battery of h was manufactured.

【0017】このように作製した電池を以下、(a) 電
池と称する。 〔実施例2〕ニッケル粉末と、天然黒鉛中にカリウムを
ドープした黒鉛層間化合物との混合物に結着剤としての
ポリビニルアルコールおよび分散媒としての水を添加し
てスラリーを得、このスラリーを前記実施例1で作製し
たのと同様なベース電極の両面に塗着した以外は、上記
実施例1と同様に電池を作製した。
The battery thus manufactured is hereinafter referred to as (a) battery. [Example 2] To a mixture of nickel powder and a graphite intercalation compound in which potassium was doped in natural graphite, polyvinyl alcohol as a binder and water as a dispersion medium were added to obtain a slurry. A battery was produced in the same manner as in Example 1 except that the same base electrode as that produced in Example 1 was coated on both sides.

【0018】尚、ニッケル粉末は黒鉛層間化合物に対し
て20wt%混合し、ニッケル粉末と黒鉛層間化合物と
の混合物のベース電極1cm2 当たりの塗着量は、0.
001gとした。このように作製した電池を以下、
(b)電池と称する。 〔比較例1〕上記実施例1で作製したベース電極を完成
電極とする、即ちベース電極上に黒鉛層間化合物の層を
形成しない以外は、上記実施例1と同様に電池を作製し
た。
The nickel powder was mixed in an amount of 20 wt% with respect to the graphite intercalation compound, and the coating amount of the mixture of the nickel powder and the graphite intercalation compound per cm 2 of the base electrode was 0.
It was 001 g. The battery thus produced is
(B) This is called a battery. Comparative Example 1 A battery was produced in the same manner as in Example 1 except that the base electrode produced in Example 1 was used as a completed electrode, that is, the graphite intercalation compound layer was not formed on the base electrode.

【0019】このように作製した電池を以下、(x1
電池と称する。 〔比較例2〕アセチレンブラックに結着剤としてのポリ
ビニルアルコールおよび分散媒としての水を添加してス
ラリーを得、このスラリーを上記実施例1と同様のベー
ス電極に塗着した以外は上記実施例1と同様に電池を作
製した。
The battery thus produced is referred to below as (x 1 )
It is called a battery. [Comparative Example 2] The above-mentioned Example except that polyvinyl alcohol as a binder and water as a dispersion medium were added to acetylene black to obtain a slurry, and this slurry was applied to the same base electrode as in Example 1 above. A battery was prepared in the same manner as in 1.

【0020】尚、アセチレンブラックのベース電極1c
2 当たりの塗着量は、0.001g塗着した。このよ
うに作製した電池を以下、(x2 )電池と称する。 〔比較例3〕アセチレンブラックに代えて、ニッケル粉
末を用いた以外は、上記比較例2と同様に電池を作製し
た。
The acetylene black base electrode 1c
The amount applied per m 2 was 0.001 g. The battery thus produced is hereinafter referred to as a (x 2 ) battery. [Comparative Example 3] A battery was produced in the same manner as in Comparative Example 2 except that nickel powder was used instead of acetylene black.

【0021】このように作製した電池を以下、(x3
電池と称する。 〔実験1〕本発明の(a) 、(b)電池と比較例の(x
1 )〜(x3 )電池を用いて充電時の電池内部の圧力を
測定したのでその結果を表1に示す。尚、電池内部圧力
は、低率の充放電を繰り返すことによって活性化した
後、電池外装缶の底部に孔を設け、この孔部に電池内部
圧力測定用の圧力センサーを取付け、この圧力センサー
により電池内部圧力測定を行なった。
The battery thus produced is referred to below as (x 3 )
It is called a battery. [Experiment 1] (a) and (b) batteries of the present invention and (x
The pressure inside the battery during charging was measured using the batteries 1 ) to (x 3 ) and the results are shown in Table 1. The internal pressure of the battery is activated by repeating low-rate charging / discharging, and then a hole is provided at the bottom of the battery case, and a pressure sensor for measuring the internal pressure of the battery is attached to this hole. The internal pressure of the battery was measured.

【0022】測定条件としては、電池を1000mAの
電流で充電を行い、電池電圧がピーク値に達したのち、
このピーク値から10mV低下した時点で充電を停止さ
せ、この間の電池内部圧力を測定した。
As the measurement conditions, the battery was charged with a current of 1000 mA, and after the battery voltage reached the peak value,
Charging was stopped when the voltage dropped by 10 mV from this peak value, and the battery internal pressure was measured during this period.

【0023】[0023]

【表1】 [Table 1]

【0024】表1から明らかなように、本発明の(a)
電池、(b)電池は、比較例の(x 1 )電池〜(x3
電池と比べて、電池内部圧力の上昇が抑制されているこ
とが認められる。即ち、本発明(a)電池については、
水素吸蔵合金表面に天然黒鉛中にカリウムをドープさせ
た黒鉛層間化合物の層が形成されているので、導電性が
向上すると同時に、表面層の黒鉛層間化合物中に吸蔵さ
れている水素と正極からの酸素ガスが直接負極の最表面
で接触することにより、速やかに水の生成が起こり、酸
素ガス消費速度が促進されるものと考えられる。
As is clear from Table 1, (a) of the present invention
The battery and the battery (b) are (x) of the comparative example. 1) Battery ~ (x3)
Compared to the battery, the rise in internal pressure of the battery is suppressed.
Is recognized. That is, regarding the battery of the present invention (a),
Dope potassium into natural graphite on the surface of hydrogen storage alloy
Since a layer of graphite intercalation compound is formed,
At the same time, it is occluded in the graphite intercalation compound of the surface layer.
Hydrogen and oxygen gas from the positive electrode are directly on the outermost surface of the negative electrode
By contacting with
It is considered that the consumption rate of elementary gas is accelerated.

【0025】更に本発明(b)電池については、上記の
効果に加えて、酸素ガスの水への還元反応に対する触媒
性及び導電性を有するニッケル粉末を添加することによ
って、より速やかに負極表面での酸素ガスの水への還元
反応が進行すると考えられる。一方、比較例の(x1
電池〜(x3 )電池の電池内部圧力の上昇は以下のよう
な理由によるものと考えられる。
Further, in the battery of the present invention (b), in addition to the above effects, nickel powder having catalytic property and conductivity for reduction reaction of oxygen gas to water is added, so that the surface of the negative electrode can be more quickly. It is considered that the reduction reaction of oxygen gas to water proceeds. On the other hand, (x 1 ) of the comparative example
It is considered that the increase of the battery internal pressure of the battery to the (x 3 ) battery is due to the following reasons.

【0026】比較例の(x1 )電池については、負極表
面の導電性が低く、充電時に負極表面近傍に水素が吸蔵
されにくいために、酸素ガス消費能力が低下して電池内
部圧力が上昇したと考えられる。また比較例の(x2
電池については、負極表面の導電性は向上して表面近傍
の水素吸蔵合金が充電初期から水素を吸蔵するが、最表
面のアセチレンブラックは水素を吸蔵することはできな
い。したがって、このアセチレンブラックが酸素と水素
との接触の妨げになり、酸素ガス消費反応に対して効果
が得られなかったものと考えられる。
In the battery (x 1 ) of the comparative example, the negative electrode surface has low conductivity, and hydrogen is less likely to be occluded in the vicinity of the negative electrode surface during charging, so that the oxygen gas consumption capacity is lowered and the battery internal pressure is increased. it is conceivable that. In addition, (x 2 ) of the comparative example
Regarding the battery, the conductivity of the negative electrode surface is improved and the hydrogen storage alloy near the surface absorbs hydrogen from the beginning of charging, but the acetylene black on the outermost surface cannot absorb hydrogen. Therefore, it is considered that this acetylene black hindered the contact between oxygen and hydrogen and was not effective for the oxygen gas consumption reaction.

【0027】更に、比較例の(x3 )電池については、
ニッケル粉末を負極表面に塗着することにより、酸素ガ
ス消費反応の触媒性は向上するが、導電性が充分でない
ため、表面近傍の水素吸蔵合金は充電初期から十分に水
素を吸蔵することができない。また、アセチレンブラッ
ク同様に、水素を吸蔵することができないため、水素と
酸素ガスの接触の妨げとなり、酸素ガス消費反応に対し
て効果が得られなかったものと考えられる。 〔実験2〕本発明の(a) 電池、(b)電池と比較例の
(x1 )〜(x3 )電池を用いて電池のサイクル寿命を
測定したので、その結果を表2に示す。
Further, regarding the (x 3 ) battery of the comparative example,
By coating nickel powder on the surface of the negative electrode, the catalytic property of the oxygen gas consumption reaction is improved, but since the conductivity is insufficient, the hydrogen storage alloy near the surface cannot store hydrogen sufficiently from the beginning of charging. .. Further, it is considered that, like acetylene black, it cannot occlude hydrogen, which hinders the contact between hydrogen and oxygen gas, resulting in no effect on the oxygen gas consumption reaction. (A) cell Experiment 2] In the present invention, since the measurement of (b) of Comparative Example battery (x 1) ~ (x 3 ) cycle life by using a battery, the results are shown in Table 2.

【0028】尚、測定時のサイクル条件は、各電池を5
00mAの電流で2.5時間充電した後、500mAの
電流で放電し、電池電圧が1.0Vに達した時点で放電
を終了するというものである。そして、電池の放電容量
が初期容量の50%になったサイクル数をサイクル寿命
とした。
The cycle conditions at the time of measurement are 5 for each battery.
The battery is charged at a current of 00 mA for 2.5 hours, then discharged at a current of 500 mA, and terminated when the battery voltage reaches 1.0 V. The cycle life was defined as the number of cycles at which the discharge capacity of the battery reached 50% of the initial capacity.

【0029】[0029]

【表2】 [Table 2]

【0030】表2から明らかなように、本発明の(a)
電池、(b)電池は、比較例の(x 1 )電池〜(x3
電池と比べて、サイクル寿命が長いことが認められる。
これは、比較例の(x1 )電池〜(x3 )電池において
は、充放電サイクル中にそれぞれ電池内部圧力が上昇
し、安全弁が作動して、電池内のガスが放出される。こ
のガス放出の際に、電解液の一部も電池外部に放出さ
れ、この結果、サイクルの進行とともに電池内の電解液
量が不足してくる。これに対して本発明の(a) 電池、
(b)電池は、電池内部圧力の上昇が抑制されるので、
電解液量が十分に保たれるという理由による。 〔実験3〕上記実施例1の(a)電池について、ベース
電極に塗着する黒鉛層間化合物の塗着量を変化させたと
きの、電池内部圧力、およびサイクル数の変化を調べた
ので表3にその結果を示す。
As is clear from Table 2, (a) of the present invention
The battery and the battery (b) are (x) of the comparative example. 1) Battery ~ (x3)
It is noted that the cycle life is longer than that of the battery.
This is (x1) Battery ~ (x3) In batteries
Increases the battery internal pressure during the charge / discharge cycle.
Then, the safety valve is activated and the gas in the battery is released. This
When the gas is released, part of the electrolyte is also released to the outside of the battery.
As a result, as the cycle progresses, the electrolyte in the battery
The quantity is running short. On the other hand, the battery (a) of the present invention,
(B) Since the battery internal pressure is suppressed from increasing in the battery,
This is because the amount of electrolytic solution can be maintained sufficiently. [Experiment 3] Base on the battery (a) of Example 1
When the amount of graphite intercalation compound applied to the electrode was changed
Mushroom, internal pressure of battery and change of cycle number were investigated
Therefore, the results are shown in Table 3.

【0031】尚、実験条件としては、上記実験1、2と
同様の条件で行った。
The experimental conditions were the same as those in Experiments 1 and 2 above.

【0032】[0032]

【表3】 [Table 3]

【0033】上記表3に示されるように、塗着量が増加
するに従って、負極表面での水の生成反応が容易におこ
るため電池内部圧力の低減に対して効果が見られる。し
かしながら、塗着量が0.015gになると、サイクル
寿命が大幅に低下してしまう。これは、塗着量が増加す
ることにより、負極に吸収される電解液の量も増加する
ため、セパレータの電解液の保液性が低下してしまい、
サイクルの進行とともに内部抵抗が増大し、サイクル寿
命の低下を引き起こすためであると考えられる。
As shown in Table 3 above, as the amount of coating increases, the reaction of water generation on the surface of the negative electrode easily occurs, which is effective in reducing the internal pressure of the battery. However, when the applied amount is 0.015 g, the cycle life is significantly reduced. This is because as the coating amount increases, the amount of the electrolytic solution absorbed by the negative electrode also increases, and the liquid retaining property of the electrolytic solution of the separator decreases.
It is considered that this is because the internal resistance increases as the cycle progresses, causing a decrease in cycle life.

【0034】上記結果より、黒鉛層間化合物の塗着量
は、0.0001g〜0.01gが望ましい。 〔実験4〕実施例2の(b)電池について、ベース電極
に塗着する黒鉛層間化合物とニッケル粉末との混合物の
塗着量を変化させたときの電池内部圧力、およびサイク
ル数の変化を調べたので表4にその結果を示す。
From the above results, the amount of graphite intercalation compound applied is preferably 0.0001 g to 0.01 g. [Experiment 4] With respect to the battery (b) of Example 2, changes in the internal pressure of the battery and the number of cycles when the amount of the mixture of the graphite intercalation compound and the nickel powder applied to the base electrode was changed were examined. Table 4 shows the results.

【0035】尚、実験条件としては、上記実験1、2と
同様の条件で行った。
The experimental conditions were the same as those in Experiments 1 and 2 above.

【0036】[0036]

【表4】 [Table 4]

【0037】塗着量が増加するに従って、負極表面での
水の生成反応が容易におこるため電池内部圧力の低減に
対して効果が見られるが、塗着量が0.015gになる
と、上記実験3と同様の理由で、サイクル寿命の低下を
引き起こすと考えられる。上記結果より、黒鉛層間化合
物とニッケル粉末との混合物の塗着量は、0.0001
g〜0.01gが望ましい。 〔実験5〕実施例2の(b)電池について、ベース電極
に塗着する黒鉛層間化合物とニッケル粉末との混合物の
黒鉛層間化合物に対するニッケル粉末の添加量を変化さ
せたときの電池内部圧力、およびサイクル寿命の変化を
調べたので表5にその結果を示す。
As the coating amount increases, the reaction for producing water on the surface of the negative electrode easily occurs, which is effective in reducing the internal pressure of the battery. However, when the coating amount was 0.015 g, the above experiment was conducted. For the same reason as in No. 3, it is considered that the cycle life is shortened. From the above results, the coating amount of the mixture of the graphite intercalation compound and the nickel powder was 0.0001.
g to 0.01 g is desirable. [Experiment 5] Regarding the battery (b) of Example 2, the battery internal pressure when the addition amount of the nickel powder to the graphite intercalation compound of the mixture of the graphite intercalation compound and the nickel powder applied to the base electrode was changed, and The change in cycle life was investigated, and the results are shown in Table 5.

【0038】尚、実験条件としては、上記実験1、2と
同様の条件で行った。
The experimental conditions were the same as those in Experiments 1 and 2 above.

【0039】[0039]

【表5】 [Table 5]

【0040】ニッケル粉末の添加量が増加するにつれ
て、負極の酸素ガスの水への還元反応の触媒性が向上し
て負極表面での水への還元反応が速やかに進行し、電池
内部圧力が低減されてサイクル寿命が向上するものと考
えられる。但し、添加量が50wt%になるとニッケル
粉末の添加量が高いため、水素吸蔵合金電極の水素過電
圧が低下し、充電途中で水素ガスの発生が生じて電池内
部圧力が上昇したものと考えられる。
As the amount of nickel powder added increases, the catalytic property of the reduction reaction of oxygen gas in the negative electrode to water improves, and the reduction reaction to water on the surface of the negative electrode rapidly proceeds, reducing the internal pressure of the battery. Therefore, it is considered that the cycle life is improved. However, it is considered that when the addition amount is 50 wt%, the addition amount of the nickel powder is high, so that the hydrogen overvoltage of the hydrogen storage alloy electrode is lowered, hydrogen gas is generated during charging, and the battery internal pressure is increased.

【0041】上記結果により、ニッケルの添加量は5w
t%〜40wt%が望ましい。 〔その他の事項〕上記実施例では、黒鉛層間化合物とし
て天然黒鉛中にカリウムをドープしたものが用いられて
いるが、カリウムの他に、ナトリウム、またはリチウム
等をドープしても同様の効果が得られる。
From the above results, the amount of nickel added was 5 w.
t% to 40 wt% is desirable. [Other Matters] In the above-mentioned examples, a graphite intercalation compound in which natural graphite is doped with potassium is used, but in addition to potassium, the same effect can be obtained by doping sodium, lithium, or the like. Be done.

【0042】また、上記実施例では黒鉛層間化合物と金
属粉末との混合物を作製する際に、金属粉末としてニッ
ケル粉末を用いたが、ニッケル粉末の代わりに、コバル
トや銅などの金属粉末を用いても同様の効果が得られ
る。
Further, in the above embodiment, nickel powder was used as the metal powder when the mixture of the graphite intercalation compound and the metal powder was prepared. However, metal powder such as cobalt or copper was used instead of nickel powder. Also has the same effect.

【0043】[0043]

【発明の効果】以上説明したように、本発明では、水素
吸蔵合金を主成分として用いた負極上に形成された黒鉛
層間化合物層が、負極表面の導電性を向上させ、さらに
黒鉛層間化合物自体が水素の吸蔵および放出を行なうの
で、酸素ガス消費反応が円滑に行なわれる。
As described above, in the present invention, the graphite intercalation compound layer formed on the negative electrode using the hydrogen storage alloy as the main component improves the conductivity of the surface of the negative electrode, and further the graphite intercalation compound itself. Occludes and releases hydrogen, so that the oxygen gas consumption reaction is smoothly performed.

【0044】また、上記黒鉛層間化合物層に代えて、負
極上に金属粉末と黒鉛層間化合物との混合物の層を形成
することで、より円滑に酸素ガス消費がおこなわれる。
このように、酸素ガス消費反応の速度が向上され、電池
内部圧力の上昇が抑制されることにより、電池のサイク
ル寿命の大幅な向上をもたらすという効果を奏する。
Further, instead of the graphite intercalation compound layer, by forming a layer of a mixture of metal powder and graphite intercalation compound on the negative electrode, oxygen gas consumption can be carried out more smoothly.
As described above, the oxygen gas consumption reaction rate is improved, and the increase in the battery internal pressure is suppressed, so that the cycle life of the battery is significantly improved.

【0045】[0045]

【簡単な図面の説明】[Simple Drawing Description]

【0046】[0046]

【図1】本発明の一例に係る密閉型ニッケル−水素電池
の断面図である。
FIG. 1 is a cross-sectional view of a sealed nickel-hydrogen battery according to an example of the present invention.

【0047】[0047]

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 1 Positive electrode 2 Negative electrode 3 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 束 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 石倉 良和 守口市京阪本通2丁目18番地 三洋電機株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tsukasa Ito 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. (72) Inventor Yoshikazu Ishikura 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. Within

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金を主成分とする負極と、電
解液を浸透させたセパレータと、正極とを有する金属水
素化物蓄電池において、 前記負極表面に、水素の吸蔵、放出が可能な黒鉛層間化
合物からなる層、または、前記黒鉛層間化合物と金属粉
末の混合物からなる層が形成されていることを特徴とす
る金属水素化物蓄電池。
1. A metal hydride storage battery having a negative electrode containing a hydrogen storage alloy as a main component, a separator impregnated with an electrolytic solution, and a positive electrode, wherein a graphite layer capable of storing and releasing hydrogen on the surface of the negative electrode. A metal hydride storage battery, wherein a layer made of a compound or a layer made of a mixture of the graphite intercalation compound and metal powder is formed.
【請求項2】前記黒鉛層間化合物、または、黒鉛層間化
合物と金属粉末の混合物の量が、1cm2 あたり0.0
001g以上0.01g以下であることを特徴とする請
求項1記載の金属水素化物蓄電池。
2. The amount of the graphite intercalation compound or the mixture of the graphite intercalation compound and the metal powder is 0.0 per cm 2.
The metal hydride storage battery according to claim 1, wherein the amount is 001 g or more and 0.01 g or less.
【請求項3】前記黒鉛層間化合物が、黒鉛中にカリウ
ム、ナトリウムまたはリチウムからなる少なくとも一種
の金属をドープした化合物であることを特徴とする請求
項1記載の金属水素化物蓄電池。
3. The metal hydride storage battery according to claim 1, wherein the graphite intercalation compound is a compound in which graphite is doped with at least one metal consisting of potassium, sodium or lithium.
JP4077524A 1992-03-31 1992-03-31 Metal hydride storage battery Expired - Fee Related JP3071026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4077524A JP3071026B2 (en) 1992-03-31 1992-03-31 Metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4077524A JP3071026B2 (en) 1992-03-31 1992-03-31 Metal hydride storage battery

Publications (2)

Publication Number Publication Date
JPH05283068A true JPH05283068A (en) 1993-10-29
JP3071026B2 JP3071026B2 (en) 2000-07-31

Family

ID=13636362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4077524A Expired - Fee Related JP3071026B2 (en) 1992-03-31 1992-03-31 Metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP3071026B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2735618A1 (en) * 1995-03-17 1996-12-20 Samsung Display Devices Co Ltd HYDROGEN STORAGE ALLOY ANODE AND METHOD FOR THE PRODUCTION THEREOF
US5932372A (en) * 1997-01-02 1999-08-03 Lightyear Technologies Inc. Composite materials, processes for manufacturing the composites, composite electrode, hydrogen occluding composite, and electrochemical cell utilizing the composite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2735618A1 (en) * 1995-03-17 1996-12-20 Samsung Display Devices Co Ltd HYDROGEN STORAGE ALLOY ANODE AND METHOD FOR THE PRODUCTION THEREOF
US5932372A (en) * 1997-01-02 1999-08-03 Lightyear Technologies Inc. Composite materials, processes for manufacturing the composites, composite electrode, hydrogen occluding composite, and electrochemical cell utilizing the composite

Also Published As

Publication number Publication date
JP3071026B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
EP0284333B1 (en) Sealed type nickel-hydride battery and production process thereof
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2604282B2 (en) Alkaline storage battery
JP3071026B2 (en) Metal hydride storage battery
JP2966627B2 (en) Metal hydride storage battery
JP2944152B2 (en) Method for manufacturing nickel-hydrogen storage battery
JP3802703B2 (en) Nickel metal hydride battery
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
JP3895985B2 (en) Nickel / hydrogen storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JPH05335015A (en) Hydrogen storage electrode
JPH0763004B2 (en) Sealed alkaline storage battery
JP3071033B2 (en) Hydrogen storage electrode
JP3229672B2 (en) Metal hydride storage battery
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JPH05144432A (en) Electrode with hydrogen storage alloy
JP3407989B2 (en) Metal hydride electrode
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2919544B2 (en) Hydrogen storage electrode
JPH01134862A (en) Alkaline zinc storage battery
JPH0620681A (en) Metal-hydrogen alkaline battery
JP4067524B2 (en) Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same
JP2689598B2 (en) Cylindrical sealed nickel-cadmium storage battery and its manufacturing method
JP3362400B2 (en) Nickel-metal hydride storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees