JPH05266735A - 化合物超電導線の製造方法 - Google Patents

化合物超電導線の製造方法

Info

Publication number
JPH05266735A
JPH05266735A JP4065097A JP6509792A JPH05266735A JP H05266735 A JPH05266735 A JP H05266735A JP 4065097 A JP4065097 A JP 4065097A JP 6509792 A JP6509792 A JP 6509792A JP H05266735 A JPH05266735 A JP H05266735A
Authority
JP
Japan
Prior art keywords
powder
type compound
metal
tube
flake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4065097A
Other languages
English (en)
Inventor
Wataru Ishikawa
渡 石川
Kadomasa Sato
矩正 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4065097A priority Critical patent/JPH05266735A/ja
Publication of JPH05266735A publication Critical patent/JPH05266735A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

(57)【要約】 【目的】縮径加工時の断線発生を防止し、かつ高電流密
度のA3 B型化合物超電導線を製造する。 【構成】フレーク状のCu粉末及びフレーク状のA3
型化合物を構成するBから選択される金属からなる粉末
(以下、B金属粉末と称す)をCu管内に充填した後、
スウェージング加工を施して前記Cu管内のCu粉末及
びB金属粉末を高密度化した成形体を形成する工程と、
3 B型化合物を構成するAから選択される金属からな
る管内に前記成形体を挿入した後、冷間での縮径加工を
施す工程と、熱処理によりA3 B型化合物を生成する工
程とを具備する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明はA3 B型化合物超電導線
の製造方法に関する。
【0002】
【従来の技術】A3 B型化合物超電導線としては、Nb
3 Sn、V3 Ga、V3 Si、Nb3Al等の化合物超
電導線が知られている。
【0003】従来、Nb3 Sn化合物超電導線の製造方
法としては、ブロンズ法、内部拡散法、外部拡散法、イ
ンサイチュー法などが採用されている。しかし、これら
の方法では、縮径加工(伸線加工)中に硬いCuSn合
金が析出されるため加工上の問題が多い。
【0004】このようなことから、Nb管を用いるNb
チューブ法が検討されている。Nbチューブ法は、Nb
管内に銅及び錫の芯材を挿入するか、或いはNb管内に
フレーク状の銅粉末及びフレーク状の錫粉末を高密度に
充填した後、これに冷間にて各種の加工を施すことによ
り、中間焼鈍を行なうことなく線材とするものである。
従って、かかるNbチューブ法では、銅及び錫の純金属
を用いているため、錫組成を高めても加工上の問題はな
く、高電流密度の超電導線を製造できる利点がある。
【0005】ところで、粉末法では、銅と錫の混合粉
末、複合粉末、或いは触媒を含む混合粉末を圧縮して圧
粉成形体を形成し、つづいて、Nb管内に前記圧粉成形
体を充填し、このNb管の両端を真空密封した後、冷間
加工を施してフィラメントとし、ひきつづき、このフィ
ラメントを数十〜数百本まとめて一体化して複合線を形
成した後、この複合線に静水圧押し出しや冷間加工を施
して線材を形成する方法が提案されている。
【0006】しかしながら、上述した粉末法では、加工
途中で断線することが多かった。この原因の一つとし
て、線材長手方向に均一な圧粉成形体を得ることができ
ず、縮径加工時に不連続となった圧粉成形体の部分から
亀裂が入って断線することが挙げられる。即ち、従来の
粉末法では、圧粉成形体を油圧プレスや静水圧プレスに
より形成していたため、Nb管が長い場合には圧粉成形
体を多数個充填することになり、その結果、圧粉成形体
間のつなぎ目の部分が不連続になり、縮径加工時にこの
部分から亀裂が入って断線することが多かった。
【0007】
【発明が解決しようとする課題】本発明は、従来の問題
点を解決するためになされたもので、縮径加工時の断線
発生を防止することが可能で、かつ高電流密度のA3
型化合物超電導線を製造し得る方法を提供しようとする
ものである。
【0008】
【課題を解決するための手段】本発明は、フレーク状の
Cu粉末及びフレーク状のA3 B型化合物を構成するB
から選択される金属からなる粉末(以下、B金属粉末と
称す)をCu管内に充填した後、スウェージング加工を
施して前記Cu管内のCu粉末及びB金属粉末を高密度
化した成形体を形成する工程と、A3 B型化合物を構成
するAから選択される金属からなる管(以下、A金属管
と称す)内に前記成形体を挿入した後、冷間での縮径加
工を施す工程と、熱処理によりA3 B型化合物を生成す
る工程とを具備することを特徴とするA3 B型化合物超
電導線の製造方法である。
【0009】以下、本発明の方法をより詳細に説明す
る。
【0010】まず、フレーク状のCu粉末及びフレーク
状のB金属粉末を、例えば混合状態、或いはプレスによ
りペレット状態にして薄肉のCu管内に充填する。つづ
いて、好ましくは前記Cu管を真空密封した後、スウェ
ージング加工を施すことにより、前記Cu管内のCu粉
末及びB金属粉末を高密度化した成形体を形成する。前
記B金属粉末を形成する金属としては、Sn、Ga、S
i、Alなどが挙げられる。前記Cu粉末及びB金属粉
末のフレーク形状としては、縮径加工時の延伸性を更に
高めて断線発生をより確実に防止する観点から、なるべ
く薄く、例えばアスペクト比(長径/厚さ)が15以上
であるものが望ましく、また、楕円板状のものが望まし
い。前記スウェージング加工には、通常の加工装置を用
いればよい。
【0011】次いで、得られた成形体をA金属管内に挿
入した後、冷間での縮径加工を施すことより、所望の線
材を形成する。前記A金属管を形成する金属としては、
Nb、Vなどが挙げられる。前記縮径加工としては、ス
ウェージング加工、引き抜き加工、静水圧押し出しなど
を挙げることができ、具体的には次のような加工例が挙
げられる。即ち、前記成形体が挿入されたA金属管にス
ウェージング加工やダイスでの引き抜き加工を施して対
辺距離が2〜3mmの六角線状のフィラメントを形成し
た後、このフィラメントを数百本束ねてCu管内に挿入
し、更に静水圧押し出しや引き抜き加工を施して最終的
には直径1mm程度の線材を形成する。
【0012】次いで、得られた線材に熱処理を施してA
3 B型化合物を生成させることにより、A3 B型化合物
超電導線を製造する。前記A3 B型化合物としては、N
3Sn、V3 Ga、V3 Si、Nb3 Alなどが挙げ
られる。前記熱処理は、各フィラメント内の環状A金属
の内側にCuとB金属の合金を形成すると共にこの合金
からB金属を環状A金属に拡散させてA3 B型化合物を
生成するためのものであり、通常、真空中或いは不活性
ガス中で500〜800℃の温度で10〜300時間程
度加熱することにより行なわれる。
【0013】
【作用】本発明の方法は、まず、フレーク状のCu粉末
及びフレーク状のB金属粉末をCu管内に充填した後、
スウェージング加工を施す。これにより、前記Cu粉末
及びB金属粉末が油圧プレスや静水圧プレスでは達成で
きない程度まで高密度化され、かつ長手方向に均一な成
形体を簡単に形成することができる。更に、この成形体
の形成工程では、その後の工程でA金属管内に挿入する
のに好適なように、数mm〜数十mmの直径で長さが数
m程度の長尺であって真直ぐな成形体を得ることができ
る。
【0014】こうして得られた成形体をA金属管内に挿
入した後、冷間での縮径加工を施す工程では、縮径加工
時の断線等のトラブルの発生を防止することができる。
このような冷間での縮径加工性の良さは、前記Cu粉末
及びB金属粉末として延伸性に優れたフレーク状のもの
が用いられていると共に、前記Cu粉末及びB金属粉末
が長手方向に均一に高密度化されているため、縮径加工
時においてCu粉末及びB金属粉末の不連続点をつくら
ないことに起因している。
【0015】また、本発明の方法は、Cu粉末及びB金
属粉末を用いる粉末法であるため、従来のブロンズ法等
のような加工上の組成制限がない。このため、熱処理に
より化学量論組成に近似したA3 B型化合物を十分に生
成させることができ、高電流密度のA3 B型化合物超電
導線を製造できる。
【0016】従って、本発明の方法によれば、縮径加工
時の断線発生を防止することができ、かつ高電流密度の
3 B型化合物超電導線を製造できる。
【0017】
【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。
【0018】実施例1 まず、図1(a)に示すようにボールミルで十分に混合
されたアスペクト比20〜30のフレーク状Cu粉末1
とアスペクト比20〜30のフレーク状Sn粉末2との
混合粉末を、外径30mmφ、内径27mmφの純Cu
管3内に充填し、更に前記純Cu管3内を真空ポンプで
0.001Torrまで真空引きしながら該純Cu管3
の両端を電子ビーム溶接して密封する。つづいて、これ
にスウェージング加工を施すことにより、図1(b)に
示すように直径10mmφまで縮径された成形体4を形
成する。
【0019】次いで、図2(a)に示すように前記成形
体4を外径14mmφ、内径10.1mmφのNb管5
を挿入し、更に前記Nb管5を外径18mmφ、内径1
4.1mmφのCu管6内に挿入する。つづいて、これ
にスウェージング加工を施して直径8mmφまで縮径さ
れた複合材を形成する。ひきつづき、この複合材にドロ
ーベンチ及び伸線機を用いて引き抜き加工を施すことに
より、図2(b)に示すように対辺距離が2mmの六角
線状のフィラメント7を形成する。
【0020】次いで、図3(a)に示すように前記フィ
ラメント7を350本まとめて外径55mmφ、内径5
0mmφの純Cu管8内に入れ、前記純Cu管8の両端
を真空中で電子ビーム溶接してインゴットを作製する。
このインゴットにスウェージング加工と引き抜き加工を
施すことにより、図3(b)に示すような直径0.5m
mの線材9を形成する。つづいて、前記線材9を高純度
アルゴンガス中、温度700℃で200時間熱処理する
ことにより、各フィラメントの環状Nb部にNb3 Sn
が生成された化合物超電導線を製造した。
【0021】得られた化合物超電導線について、4.2
Kの液体ヘリウム中に浸漬し、8テスラ,10テスラ,
12テスラの印加磁界中での臨界電流密度を測定した。
その結果、8テスラで1000A/mm2 、10テスラ
で680A/mm2 、12テスラで380A/mm2
測定値が得られた。
【0022】以上より、直径0.5mmの線材まで縮径
しても断線することなく、高電流密度の化合物超電導線
を製造できることが確認された。
【0023】比較例1 まず、ボールミルで十分に混合されたアスペクト比20
以下のフレーク状Cu粉末とアスペクト比20以下のフ
レーク状Sn粉末との混合粉末を静水圧プレスにより圧
縮して圧粉成形体を形成する。つづいて、外径14mm
φ、内径10.1mmφのNb管に前記圧粉成形体を隙
間がないように多数個充填する。
【0024】次いで、その後の工程を実施例1と同様に
行なって化合物超電導線の製造を試みた。即ち、前記N
b管を外径18mmφ、内径14.1mmφのCu管内
に挿入する。つづいて、これにスウェージング加工を施
して直径8mmφまで縮径された複合材を形成する。ひ
きつづき、この複合材にドローベンチ及び伸線機を用い
て引き抜き加工を施すことにより対辺距離が2mmの六
角線状のフィラメントを形成したところ、直径4mmφ
以下の加工時に既に断線が発生した。その後、更に実施
例1と同様にしてインゴットを作製し、このインゴット
にスウェージング加工と引き抜き加工を施して直径0.
5mmの線材の形成を試みたところ、断線が多発して直
径4mm以下の線材はできなかった。
【0025】
【発明の効果】以上詳述した如く、本発明によれば縮径
加工時の断線発生を防止することが可能で、かつ高電流
密度のA3 B型化合物超電導線を製造し得る方法を提供
することができる。かかる方法により得られるA3 B型
化合物超電導線は、高性能の機器を得るためのマグネッ
ト等に好適に利用できるものである。
【図面の簡単な説明】
【図1】実施例1のNb3 Sn化合物超電導線の製造工
程を示す説明図。
【図2】実施例1のNb3 Sn化合物超電導線の製造工
程を示す説明図。
【図3】実施例1のNb3 Sn化合物超電導線の製造工
程を示す説明図。
【符号の説明】
1…フレーク状Cu粉末、2…フレーク状Sn粉末、3
…純Cu管、4…成形体、5…Nb管、7…フィラメン
ト、9…線材。

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 フレーク状のCu粉末及びフレーク状の
    3 B型化合物を構成するBから選択される金属からな
    る粉末(以下、B金属粉末と称す)をCu管内に充填し
    た後、スウェージング加工を施して前記Cu管内のCu
    粉末及びB金属粉末を高密度化した成形体を形成する工
    程と、A3 B型化合物を構成するAから選択される金属
    からなる管内に前記成形体を挿入した後、冷間での縮径
    加工を施す工程と、熱処理によりA3 B型化合物を生成
    する工程とを具備することを特徴とするA3 B型化合物
    超電導線の製造方法。
JP4065097A 1992-03-23 1992-03-23 化合物超電導線の製造方法 Pending JPH05266735A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4065097A JPH05266735A (ja) 1992-03-23 1992-03-23 化合物超電導線の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4065097A JPH05266735A (ja) 1992-03-23 1992-03-23 化合物超電導線の製造方法

Publications (1)

Publication Number Publication Date
JPH05266735A true JPH05266735A (ja) 1993-10-15

Family

ID=13277075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4065097A Pending JPH05266735A (ja) 1992-03-23 1992-03-23 化合物超電導線の製造方法

Country Status (1)

Country Link
JP (1) JPH05266735A (ja)

Similar Documents

Publication Publication Date Title
US4411959A (en) Submicron-particle ductile superconductor
US7566414B2 (en) Method for manufacturing power-metallurgy processed Nb3Sn superconducting wire, precursor to powder-metallurgy processed Nb3Sn superconducting wire
US4687883A (en) Method for producing superconductive wires
US4402768A (en) Method for producing superconductive wires of multifilaments which are encased in copper or a copper alloy and contain niobium and aluminum
WO2018198515A1 (ja) Nb3Sn超伝導線材の製造方法、Nb3Sn超伝導線材用の前駆体、及びこれを用いたNb3Sn超伝導線材
EP0045584B1 (en) Methods of making multifilament superconductors
JPS61194155A (ja) Nb↓3Sn系超電導線材の製造方法
US6699821B2 (en) Nb3Al superconductor and method of manufacture
WO2006030744A1 (ja) 粉末法Nb3Sn超電導線材の製造方法
JPH05266735A (ja) 化合物超電導線の製造方法
JP4652938B2 (ja) 粉末法Nb3Sn超電導線材の製造方法
JPH0855527A (ja) Nb3 Sn超電導線の製造方法
JP3050576B2 (ja) 化合物線状体の製造方法
JPS58169712A (ja) 複合超電導線の製造方法
JPH0528860A (ja) Nb3Sn系超電導線材の製造方法
JPH04277416A (ja) Nb3Sn超電導線の製造方法
JPH0528859A (ja) Nb3Sn系超電導線材の製造方法
JPH11353961A (ja) Nb3Sn化合物超電導体の前駆線材およびその製造方法、Nb3Sn化合物超電導導体の製造方法、並びにNb3Sn化合物超電導コイルの製造方法
JPH04141916A (ja) Nb↓3Sn化合物超電導線材の製造方法
JPS62252014A (ja) 超電導部材の製造方法
JPH04155714A (ja) Nb↓3Sn系超電導線材の製造方法
JPH04138820A (ja) 極細多芯超電導線の製造方法
JPH08339726A (ja) Nb▲3▼Sn系超電導線材の製造方法
JP3061208B2 (ja) 銅安定化多芯Nb−Ti超電導線の製造方法
JPH05298947A (ja) Nb3 Sn超電導線の製造方法