JPH0525372B2 - - Google Patents

Info

Publication number
JPH0525372B2
JPH0525372B2 JP62219896A JP21989687A JPH0525372B2 JP H0525372 B2 JPH0525372 B2 JP H0525372B2 JP 62219896 A JP62219896 A JP 62219896A JP 21989687 A JP21989687 A JP 21989687A JP H0525372 B2 JPH0525372 B2 JP H0525372B2
Authority
JP
Japan
Prior art keywords
capacitor
plating
coupling agent
multilayer ceramic
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62219896A
Other languages
Japanese (ja)
Other versions
JPS6461904A (en
Inventor
Akio Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiken Kagaku Kogyo KK
Original Assignee
Daiken Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiken Kagaku Kogyo KK filed Critical Daiken Kagaku Kogyo KK
Priority to JP62219896A priority Critical patent/JPS6461904A/en
Publication of JPS6461904A publication Critical patent/JPS6461904A/en
Publication of JPH0525372B2 publication Critical patent/JPH0525372B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、チツプ型および外装型積層セラミツ
クコンデンサの製造方法に関する。更に詳しくは
外部電極に対する金属メツキの工程においてメツ
キ液の侵入のない信頼性に優れた積層セラミツク
コンデンサの製造方法に関する。 従来の技術 近年、セラミツクコンデンサは電子機器並びに
回路の小型化、高速化、信頼性向上のため不可欠
な部品として広く使用されるようになつた。 第3図は、外部電極を取り付ける前の積層セラ
ミツクコンデンサの概略斜視図、第4図は外部電
極を取り付けた積層セラミツクコンデンサの概略
斜視図である。 かかる積層セラミツクコンデンサ1を製造する
には、チタン酸バリウム系等のセラミツク粉末に
有機溶剤、可塑剤、バインダー等を加えて混練
し、泥しよう化した後、ドクターブレード法等を
用いて長尺のセラミツクグリーンシート2を得
る。つぎにこのグリーンシートを所定の大きさに
切断し、その上の所定の位置にスクリーン印刷法
等により内部電極3を被着形成する。しかる後、
この素子を複数枚積層し、その上下に保護層とし
てグリーンシート膜を積層し、加圧一体化して積
層体を得る。次にこの積層体を所定の寸法に切断
分離し、積層セラミツクコンデンサ生チツプを得
る。ついで、該生チツプをセラミツク粉末の焼成
に適した温度で焼成する。さらに、第4図に示す
ごとく、得られたコンデンサチツプの両端の内部
電極導出部にAgあるいはAg−Pdからなる外部接
続用電極4を被着して積層セラミツクコンデンサ
が得られる。 このようにして製造された積層セラミツクコン
デンサは、プリント配線基板上の導体ランド上に
外部電極を対向して配置され、熔融した半田に浸
漬する半田浸漬法か、クリーム半田を用いたリフ
ロー半田法を用いて電子機器中に組み込まれる。 しかしながら、外部電極を直接半田付けにより
基板に取り付けると、外部電極が“半田くわれ”
によつて薄くなり、コンデンサの取付強度が弱く
なるという問題がある。このような積層セラミツ
クコンデンサ外部電極の半田くわれを防止するた
め、従来導電AgペーストまたはAg−Pdペースト
を用いて形成した外部電極上に、さらにNiまた
はCuメツキを施して半田くわれ防止バリアとし、
更にこの上に半田メツキ(またはSn,Pbメツキ)
を行いハンダの流れをよくした積層チツプコンデ
ンサがある。 発明が解決しようとする問題点 しかしながらNi,Cuなどのメツキを行うにあ
たつては、PH4.5程度の酸性電解メツキ液中に、
また半田メツキを行うにはPH1〜4またはそれ以
下の酸性電解メツキ液中に積層チツプコンデンサ
を浸漬する必要があり、メツキ液が積層コンデン
サ内に浸入し電気容量の低下、電流損失の増大な
どコンデンサ性能の劣化を招く。 本発明は、かかる従来の積層セラミツクコンデ
ンサのメツキ工程における品質低下を防止し、容
易に信頼性の高いコンデンサを得る方法を提供す
ることを目的とする。 問題点を解決するための手段 本発明は、積層セラミツクコンデンサの製造方
法であつて、セラミツクシートと内部電極とが積
層した板状コンデンサ集合体に外部電極を被着す
る工程と、該外部電極に金属メツキを行う工程と
の間にカツプリング剤にて処理する工程を設けた
ことを特徴とする積層セラミツクコンデンサの製
造方法を提供するものである。 本発明において、外部電極を被着し焼成された
積層セラミツクコンデンサは、従来の方法により
製造されたものであつてよい。例えば、セラミツ
クグリーンシートと内部電極(Ag−Pd,Pb,
Ni,Cuなど)とが積層した板状コンデンサ集合
体の内部電極導出部を外部電極用のAgまたはAg
合金のペーストに浸漬または塗布し、600〜850℃
にて焼き付けを行う。 つぎに、このようにして得られた積層セラミツ
クコンデンサをカツプリング剤にて処理する。カ
ツプリング剤としては、各種のシランカツプリン
グ剤をいずれも使用することができ、例えば ClC3H6Si(OCH33,CH2=CHSiCl3, CH2=CHSi(OC2H53,CH2=CHSi(OCH33, CH2=CHSi(OC2H4OCH33, CH2=CCH3COOC3H6Si(OCH33 HSC3H6Si(OCH33,NH2C3H6Si(OC2H53, NH2C2H4NHC3H6Si(OCH33, NH2CONHC3H6Si(OC2H53 などの構造式で示されるシランカツプリング剤を
用いることができる。カツプリング処理は、焼成
し外部電極を被着した積層セラミツクコンデンサ
をカツプリング剤(またはその溶液)中に浸漬
し、デシケーター内にて減圧下に行う。ついで該
セラミツクコンデンサを取り出し乾燥する。かか
る浸漬および乾燥は2〜3回行うのが好ましい。 このようにしてカツプリング剤にて処理したコ
ンデンサは、つぎに従来のものと同様Niまたは
Cuなどによる電解金属メツキ(約PH4.5)、さらに
は電解半田(またはSn,Pb)メツキ(<PH1〜
4.5)が行われれ、チツプ型コンデンサとするか、
あるいは更にリード線を付けて外装を施し外装型
コンデンサとする。 実施例 つぎに本発明を実施例により更に具体的に説明
する。 (i) チツプ型積層セラミツクコンデンサ セラミツクシート:チタン酸バリウム 内部電極 Ag−Pd 外部電極 Agペースト コンデンサ寸法 3.2×1.6mm (ii) シランカツプリング剤: (γ−グリシドキシプロピル トリメトキシシラン) 上記の積層コンデンサ22個をカツプリング剤中
に浸漬して、減圧下30分間デシケータ内に置き、
ポーラス部分へのカツプリング剤の浸透をはかつ
た。浸漬後、コンデンサを引き上げ約150℃にて
乾燥した。 このコンデンサのうち17個を再度カツプリング
剤中に浸漬し、乾燥処理した。うち13個について
はさらに3回目の浸漬、乾燥処理を行つた。 これらのチツプコンデンサーの外部電極に、つ
ぎの条件でNiメツキ、ついで半田メツキを施し
た。 (Niメツキ) 電解液:NiSO4 220g/,NiCl2 45g/、 H3BO3 40g/,PH4〜4.5 電極:Ni板、電圧1V、電流3A (半田メツキ) メツキ液:ソルダロンSG(ジヤパンメタル(株)製)
PH4 電極:Pb−Sn板、電圧:1.5V、電流:0.6A 得られたチツプコンデンサのメツキ後の電気損
失(tanδ)を焼成工程後の値と比較して第1表お
よび第1図に示す。 比較例 カツプリング処理を行わなかつた以外は、実施
例と同様にして5個のチツプに金属メツキ行いチ
ツプコンデンサを得た。その物性を前記と同様に
第1表および第1図に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing chip-type and exterior-type multilayer ceramic capacitors. More specifically, the present invention relates to a method for manufacturing a highly reliable multilayer ceramic capacitor that does not allow penetration of plating solution during the process of metal plating external electrodes. BACKGROUND OF THE INVENTION In recent years, ceramic capacitors have come into widespread use as essential components for making electronic devices and circuits smaller, faster, and more reliable. FIG. 3 is a schematic perspective view of a multilayer ceramic capacitor before external electrodes are attached, and FIG. 4 is a schematic perspective view of the multilayer ceramic capacitor with external electrodes attached. In order to manufacture such a laminated ceramic capacitor 1, barium titanate ceramic powder is mixed with an organic solvent, a plasticizer, a binder, etc. to form a slurry, and then a long piece is formed using a doctor blade method or the like. A ceramic green sheet 2 is obtained. Next, this green sheet is cut into a predetermined size, and the internal electrodes 3 are formed on the cut sheet at a predetermined position by screen printing or the like. After that,
A plurality of these elements are laminated, green sheet films are laminated on top and bottom thereof as protective layers, and the elements are integrated under pressure to obtain a laminate. Next, this laminate is cut and separated into predetermined dimensions to obtain raw laminated ceramic capacitor chips. The raw chips are then fired at a temperature suitable for firing ceramic powder. Furthermore, as shown in FIG. 4, external connection electrodes 4 made of Ag or Ag-Pd are applied to the internal electrode lead-out portions at both ends of the obtained capacitor chip, thereby obtaining a multilayer ceramic capacitor. The multilayer ceramic capacitor manufactured in this way is arranged with the external electrodes facing each other on the conductor lands on the printed wiring board, and is soldered using either the solder dipping method, in which the external electrodes are immersed in molten solder, or the reflow soldering method, using cream solder. It is used and incorporated into electronic equipment. However, if the external electrode is attached to the board by direct soldering, the external electrode will be "soldered".
There is a problem in that the capacitor becomes thinner and the mounting strength of the capacitor becomes weaker. In order to prevent solder cracking of the external electrodes of multilayer ceramic capacitors, Ni or Cu plating is further applied to the external electrodes, which were conventionally formed using conductive Ag paste or Ag-Pd paste, as a barrier to prevent solder cracking. ,
Furthermore, solder plating (or Sn, Pb plating) is applied on top of this.
There are multilayer chip capacitors that improve solder flow. Problems to be Solved by the Invention However, when plating Ni, Cu, etc., in an acidic electrolytic plating solution with a pH of about 4.5,
In addition, to perform solder plating, it is necessary to immerse the multilayer chip capacitor in an acidic electrolytic plating solution with a pH of 1 to 4 or lower, which may cause the plating solution to seep into the multilayer capacitor, resulting in a decrease in capacitance, an increase in current loss, etc. This results in performance deterioration. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for easily obtaining a highly reliable capacitor by preventing quality deterioration in the conventional plating process of multilayer ceramic capacitors. Means for Solving the Problems The present invention is a method for manufacturing a multilayer ceramic capacitor, which includes a step of attaching an external electrode to a plate-shaped capacitor assembly in which a ceramic sheet and an internal electrode are laminated, and a step of attaching an external electrode to the external electrode. The present invention provides a method for manufacturing a multilayer ceramic capacitor, characterized in that a step of treating with a coupling agent is provided between the step of metal plating. In the present invention, the multilayer ceramic capacitor coated with external electrodes and fired may be manufactured by a conventional method. For example, ceramic green sheets and internal electrodes (Ag-Pd, Pb,
Ag or Ag for the external electrode
Dip or apply in alloy paste, 600~850℃
Baking is performed. Next, the multilayer ceramic capacitor thus obtained is treated with a coupling agent. As the coupling agent, any of various silane coupling agents can be used, such as ClC 3 H 6 Si(OCH 3 ) 3 , CH 2 =CHSiCl 3 , CH 2 =CHSi(OC 2 H 5 ) 3 , CH2 =CHSi( OCH3 ) 3 , CH2 =CHSi( OC2H4OCH3 ) 3 , CH2 = CCH3COOC3H6Si ( OCH3 ) 3 , HSC 3 H 6 Si (OCH 3 ) 3 , NH 2 C 3 H 6 Si (OC 2 H 5 ) 3 , NH 2 C 2 H 4 NHC 3 H 6 Si (OCH 3 ) 3 , NH 2 CONHC 3 H 6 Si A silane coupling agent represented by a structural formula such as (OC 2 H 5 ) 3 can be used. The coupling treatment is performed by immersing a fired laminated ceramic capacitor with external electrodes in a coupling agent (or its solution) under reduced pressure in a desiccator. The ceramic capacitor is then taken out and dried. It is preferable to carry out such dipping and drying two to three times. Capacitors treated with coupling agents in this way are then treated with Ni or
Electrolytic metal plating (approx. PH4.5) using Cu, etc., and electrolytic solder (or Sn, Pb) plating (<PH1~
4.5) is carried out, and a chip type capacitor is used, or
Alternatively, a lead wire can be attached to the capacitor to form an exterior capacitor. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples. (i) Chip-type multilayer ceramic capacitor Ceramic sheet: Barium titanate Internal electrode Ag-Pd External electrode Ag paste Capacitor dimensions 3.2 x 1.6 mm (ii) Silane coupling agent: (γ-glycidoxypropyl trimethoxysilane) The above 22 multilayer capacitors were immersed in a coupling agent and placed in a desiccator under reduced pressure for 30 minutes.
The penetration of the coupling agent into the porous portion was facilitated. After immersion, the capacitor was pulled up and dried at approximately 150°C. Seventeen of these capacitors were again immersed in the coupling agent and dried. Thirteen of them underwent a third immersion and drying process. The external electrodes of these chip capacitors were plated with Ni and then soldered under the following conditions. (Ni plating) Electrolyte: NiSO 4 220g/, NiCl 2 45g/, H 3 BO 3 40g/, PH4~4.5 Electrode: Ni plate, voltage 1V, current 3A (Solder plating) Plating liquid: Solderon SG (Japan Metal) Co., Ltd.)
PH4 Electrode: Pb-Sn plate, voltage: 1.5V, current: 0.6A The electrical loss (tan δ) of the obtained chip capacitor after plating is compared with the value after the firing process and is shown in Table 1 and Figure 1. . Comparative Example Chip capacitors were obtained by metal plating five chips in the same manner as in the example except that the coupling treatment was not performed. Its physical properties are shown in Table 1 and FIG. 1 in the same manner as above.

【表】 第1表および第1図より明らかなごとく、カツ
プリング剤による処理を行つていないものではメ
ツキ処理後、著しくtanδ値の増大するものが存在
し電気損失が大きい。これに対してカツプリング
剤にて処理を行つたものは1回→3回と処理回数
の増加に伴いメツキ後もtanδ値の増大がなく3回
の処理では焼成後とメツキ後との間に殆ど差が認
められない。 さらに、第2図にカツプリング剤にて処理を行
つたコンデンサのたわみテストの結果を示した。
処理回数の増加にともない“たわみ量”が増大
し、ほぼすべての試験品が2〜3回の処理でたわ
みテスト(日本電子工業会規格RC−3402)の規
格2mmを満たした。 発明の効果 以上のごとく、本発明の製造方法によれば、カ
ツプリング剤による処理により、コンデンサ電流
損失の増大のない信頼性に優れた積層コンデンサ
が得られる。また本発明方法によれば、高いたわ
み特性を有する積層コンデンサが得られる。
[Table] As is clear from Table 1 and Figure 1, some of the samples that were not treated with a coupling agent showed a marked increase in tan δ value after the plating treatment, resulting in large electrical losses. On the other hand, for those treated with a coupling agent, the tan δ value did not increase even after plating as the number of treatments increased from once to three times, and with three treatments, there was almost no increase in the tanδ value between after firing and after plating. No difference observed. Furthermore, FIG. 2 shows the results of a deflection test of a capacitor treated with a coupling agent.
As the number of treatments increased, the amount of deflection increased, and almost all test products satisfied the 2 mm deflection test (Japan Electronics Industry Association standard RC-3402) after 2 to 3 treatments. Effects of the Invention As described above, according to the manufacturing method of the present invention, a highly reliable multilayer capacitor without an increase in capacitor current loss can be obtained by treatment with a coupling agent. Furthermore, according to the method of the present invention, a multilayer capacitor having high deflection characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各処理における金属メツキ前後のtanδ
値を示すグラフ、第2図はカツプリング処理回数
とたわみ量の関係を示すグラフ、第3図は外部電
極被着前のチツプコンデンサを示す概略斜視図、
第4図は外部電極を取り付けたチツプコンデンサ
を示す概略斜視図である。図中の符号はつぎのと
おりである。 1……セラミツクコンデンサ、2……セラミツ
クグリーンシート、3……内部電極、4……外部
電極。
Figure 1 shows tanδ before and after metal plating in each treatment.
Figure 2 is a graph showing the relationship between the number of coupling treatments and the amount of deflection; Figure 3 is a schematic perspective view showing the chip capacitor before external electrodes are attached;
FIG. 4 is a schematic perspective view showing a chip capacitor with external electrodes attached. The symbols in the figure are as follows. 1... Ceramic capacitor, 2... Ceramic green sheet, 3... Internal electrode, 4... External electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 積層セラミツクコンデンサの製造方法であつ
て、セラミツクシートと内部電極とが積層した板
状コンデンサ集合体に外部電極を被着する工程
と、該外部電極に金属メツキを行う工程との間に
カツプリング剤にて処理する工程を設けたことを
特徴とする積層セラミツクコンデンサの製造方
法。
1. A method for manufacturing a multilayer ceramic capacitor, in which a coupling agent is used between the step of attaching an external electrode to a plate-shaped capacitor assembly in which ceramic sheets and internal electrodes are laminated, and the step of plating the external electrode with metal. 1. A method for manufacturing a multilayer ceramic capacitor, comprising a step of processing.
JP62219896A 1987-09-01 1987-09-01 Manufacture of laminated ceramic capacitor Granted JPS6461904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62219896A JPS6461904A (en) 1987-09-01 1987-09-01 Manufacture of laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62219896A JPS6461904A (en) 1987-09-01 1987-09-01 Manufacture of laminated ceramic capacitor

Publications (2)

Publication Number Publication Date
JPS6461904A JPS6461904A (en) 1989-03-08
JPH0525372B2 true JPH0525372B2 (en) 1993-04-12

Family

ID=16742735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62219896A Granted JPS6461904A (en) 1987-09-01 1987-09-01 Manufacture of laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JPS6461904A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656824B2 (en) * 1991-01-25 1994-07-27 太陽誘電株式会社 Chip-shaped electronic component and manufacturing method thereof
JP4167360B2 (en) * 1999-09-30 2008-10-15 京セラ株式会社 Chip-type electronic components
US6876537B2 (en) 1999-10-07 2005-04-05 Matsushita Electric Industrial Co., Ltd. Ceramic electronic component and method for manufacturing the same
JPWO2002082480A1 (en) 2001-04-05 2004-07-29 松下電器産業株式会社 Ceramic electronic component and its manufacturing method
CN101346786B (en) 2006-03-15 2011-07-27 株式会社村田制作所 Laminated electronic component and method for manufacturing same
JP6852326B2 (en) * 2016-09-20 2021-03-31 株式会社村田製作所 Multilayer ceramic electronic components
JP6852327B2 (en) * 2016-09-20 2021-03-31 株式会社村田製作所 Multilayer ceramic electronic components
JP7243487B2 (en) * 2019-06-27 2023-03-22 株式会社村田製作所 Manufacturing method of multilayer ceramic capacitor

Also Published As

Publication number Publication date
JPS6461904A (en) 1989-03-08

Similar Documents

Publication Publication Date Title
US10615327B2 (en) Monolithic ceramic electronic component
US20070242416A1 (en) Surface-mounting ceramic electronic component
JP2852372B2 (en) Multilayer ceramic capacitors
US6310757B1 (en) Electronic component having external electrodes and method for the manufacture thereof
JP3497840B2 (en) Manufacturing method of chip varistor having glass coating film
JPH09180957A (en) Multilayered ceramic capacitor
JPH0525372B2 (en)
JP2830456B2 (en) Ceramic capacitors
JPH037130B2 (en)
JPH09190950A (en) Outer electrode of electronic part
JP2016171236A (en) Ceramic electronic component and method of manufacturing the same
JP4544896B2 (en) Electronic components
JP2019096862A (en) Multilayer ceramic capacitor and method of manufacturing the same
JP2973558B2 (en) Conductive paste for chip-type electronic components
JPH0563928B2 (en)
JP4710204B2 (en) Method for forming end face electrode of electronic component
JPH04329616A (en) Laminated type electronic component
JPH0864029A (en) Paste for terminal electrode
JP2002299154A (en) Method for manufacturing electronic component
JP3000825B2 (en) Ceramic electronic components
JP2003163135A (en) Laminated chip element
JP2000260654A (en) Ultra-small chip type electronic component
JPH06204076A (en) Ceramic chip capacitor and its manufacture
JPH09120932A (en) Laminated electronic component
JPH04105310A (en) Multilayered ceramic capacitor