JPH05222482A - Method for sintering stainless steel powder - Google Patents

Method for sintering stainless steel powder

Info

Publication number
JPH05222482A
JPH05222482A JP4022721A JP2272192A JPH05222482A JP H05222482 A JPH05222482 A JP H05222482A JP 4022721 A JP4022721 A JP 4022721A JP 2272192 A JP2272192 A JP 2272192A JP H05222482 A JPH05222482 A JP H05222482A
Authority
JP
Japan
Prior art keywords
argon
sintering
methane
atmosphere
propane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4022721A
Other languages
Japanese (ja)
Inventor
Katsuyuki Fujita
勝幸 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP4022721A priority Critical patent/JPH05222482A/en
Publication of JPH05222482A publication Critical patent/JPH05222482A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an attractive extenal appearance free from pinhole, clouding, and scratch of mirror-finished surface required of ornamental parts, such as time piece parts, at the time of producing ornamental sintered parts such as time piece parts for which stainless steel is used as a material by using an injection molding technique for metal powder. CONSTITUTION:This sintering method consists of a stage for which a green compact is heat-treated in vacuum at <=1200 deg.C, a stage heat-treatmented at 800-1200 deg.C in a gaseous mixture, such as methane, methane + argon, propane, propane + argon, butane, and butane + argon, and a stage heat-treatmented at >=1100 deg.C in a hydrogen, argon atmosphere. Since the sintering density can be increased to 7.8 (98% to the density of a melted material) and the structure of a section is free from oxides in the range between the surface and the position at the depth of 0.3mm from the surface, sintering is not hindered and also, as to the mirror-finished external appearance, and attractive mirror-finished external appearance free from pinhole, clouding, scratch, etc., can be obtained, and further, corrosion resistance to salt water and artificial sweat similar to that of the ordinary melted material, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ステンレスを素材と
した時計部品等の装飾用の焼結部品を金属粉末の射出成
形技術を用いて製造する際の焼結方法に関するものであ
る。ステンレス部品の粉末射出成形による製造方法は小
型で複雑形状の精密な焼結部品を大量に生産するのに適
した技術である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintering method for manufacturing a decorative sintered part such as a watch part made of stainless steel by using a metal powder injection molding technique. The manufacturing method of powder-injection molding of stainless steel parts is a technique suitable for mass-producing small-sized and complex-shaped precision sintered parts.

【0002】[0002]

【従来の技術】ステンレスの粉末射出成形においては、
通常5μ〜20μ程度の平均粒径をもつステンレスの粉
末に、可塑性を与え射出成形が可能となるような有機物
のバインダー類を混ぜ合わせ、通常のプラスチックスの
射出成形同様に1回で所望の形状に形成する。この場
合、射出成形体は通常5〜15重量%程度の有機物を含
むために体積的に目的とする焼結製品に対し約150%
〜200%である。この成形体を脱バインダー処理して
有機物の大半を除去した後焼結を行なう。脱バインダー
処理は通常バインダーの熱分解によるものであり、バイ
ンダーの種類及び処理条件によるが脱バインダー処理に
より85%〜95%が除去され、残ったバインダーは成
形体の形状を維持すると共にステンレスを焼結する際の
助材の働きをするものである。
2. Description of the Related Art In powder injection molding of stainless steel,
Usually, stainless steel powder with an average particle size of about 5μ to 20μ is mixed with organic binders that give plasticity and injection molding is possible, and the desired shape can be obtained in one step like ordinary plastic injection molding. To form. In this case, since the injection-molded body usually contains about 5 to 15% by weight of an organic substance, it is about 150% by volume with respect to the target sintered product.
~ 200%. This molded body is subjected to binder removal treatment to remove most of organic substances, and then sintered. The debinding process is usually by thermal decomposition of the binder. Depending on the type and processing conditions of the binder, 85% to 95% is removed by the debinding process, and the remaining binder maintains the shape of the molded body and burns stainless steel. It serves as an auxiliary material for binding.

【0003】従来ステンレスの粉末冶金においては粉末
を型に入れてプレス成形後焼結する方法が行なわれてき
た。この際の焼結雰囲気としては、真空、水素、アルゴ
ン、アンモニア分解ガス等である。しかしこのようなプ
レス法による粉末冶金では、使用される粉末の粒径が5
0μ〜100μと大きく、また、プレスの際の圧力を均
等にするのが困難なため焼結密度が90%〜95%と低
く、そのため焼結上がり製品の組織にはピンホールが散
在し、特に時計ケース等の装飾部品に適用するためには
光沢が充分でなくかつ耐食性が劣るものであった。
Conventionally, in powder metallurgy of stainless steel, a method has been used in which powder is put into a mold, press-molded, and then sintered. The sintering atmosphere at this time is vacuum, hydrogen, argon, ammonia decomposition gas, or the like. However, in powder metallurgy by such a pressing method, the particle size of the powder used is 5
The sintered density is as low as 90% to 95%, and pinholes are scattered in the structure of the product after sintering. It was not sufficiently glossy and was inferior in corrosion resistance for application to decorative parts such as watch cases.

【0004】しかるに粉末射出成形においては、成形体
を脱バインダーした後に焼結した場合、体積は半分近く
収縮するにもかかわらず全体が均一に収縮するため寸法
精度が高く、かつ焼結体の密度が容易に96%以上にで
きる利点がある。脱バインダーされた成形体はステンレ
ス材料の材質によって異なるが、最終的には1250℃
〜1350℃の温度で焼結が行なわれる。この場合、焼
結炉の雰囲気が製品の特性に大きな影響を及ぼす。従来
この焼結雰囲気としては通常の粉末冶金の場合と同様真
空雰囲気、水素ガス雰囲気、アンモニア分解ガス雰囲気
等が使用されてきた。
In powder injection molding, however, when the molded body is debindered and then sintered, the volume shrinks almost half, but the entire body contracts uniformly, so that the dimensional accuracy is high and the density of the sintered body is high. Has an advantage that it can be easily increased to 96% or more. The de-bindered molded product varies depending on the stainless steel material, but the final temperature is 1250 ° C.
Sintering is performed at a temperature of ~ 1350 ° C. In this case, the atmosphere of the sintering furnace greatly affects the characteristics of the product. Conventionally, as the sintering atmosphere, a vacuum atmosphere, a hydrogen gas atmosphere, an ammonia decomposition gas atmosphere, etc. have been used as in the case of ordinary powder metallurgy.

【0005】[0005]

【発明が解決しようとする課題】しかし、このような雰
囲気での熱処理では一般の構造用部品、機械部品等を製
造する際には、充分な特性、すなわち引っ張り強度、寸
法精度、靭性等が得られるが、時計ケース、バンド、そ
の他装飾部品等のように研磨された外観が重視される部
品に対しては不十分であった。
However, heat treatment in such an atmosphere provides sufficient properties, such as tensile strength, dimensional accuracy, and toughness, when manufacturing general structural parts, mechanical parts, and the like. However, it is insufficient for parts such as a watch case, a band, and other decorative parts where the polished appearance is important.

【0006】この粉末射出成形に使用されるステンレス
粉末はアトマイズ法、とくにコスト面から水アトマイズ
法によることが多いが、この粉末は、約4000〜60
00PPMの酸素を含んでいる。このため酸素と化合し
た金属酸化物が焼結を阻害し多くの微小ピンホールを生
じさせる。またステンレスの高耐食性を保つ元素である
Crは、酸化Crになり耐食性が悪い原因となる。
The stainless powder used in this powder injection molding is often an atomizing method, especially a water atomizing method from the viewpoint of cost, but this powder is about 4000 to 60.
It contains oxygen of 00PPM. Therefore, the metal oxide combined with oxygen hinders sintering and causes many fine pinholes. Further, Cr, which is an element that maintains the high corrosion resistance of stainless steel, becomes Cr oxide, which causes poor corrosion resistance.

【0007】このようなCrの金属酸化物を還元する方
法としては、露点の低い高純度水素ガスを使用する方法
がある。この際の還元反応を進めるには、水の分圧を下
げる必要があり特に焼結体内部からの酸素の除去には大
量の水素ガスを供給する必要があるが、これは作業上の
問題がありかつ非常にコストが高い。また真空雰囲気で
焼結を行なう場合特に高温での金属の蒸発が激しいた
め、焼結体の重量の減少があり、これに伴い寸法精度の
制御が困難になると共に蒸発金属の比率のアンバランス
により焼結金属の組織が変り、そのため耐食性を損う結
果となった。
As a method of reducing such a metal oxide of Cr, there is a method of using high-purity hydrogen gas having a low dew point. In order to promote the reduction reaction at this time, it is necessary to reduce the partial pressure of water, and in particular, it is necessary to supply a large amount of hydrogen gas to remove oxygen from the inside of the sintered body. Yes and very expensive. In addition, when sintering is performed in a vacuum atmosphere, the evaporation of the metal is particularly severe at high temperatures, which reduces the weight of the sintered body, which makes it difficult to control the dimensional accuracy and causes an imbalance in the ratio of the evaporated metal. The structure of the sintered metal changed, which resulted in a loss of corrosion resistance.

【0008】例えば、真空中でステンレス316Lの脱
バインダーした成形体を1340℃で2時間保持した場
合5〜6重量%もの重量減があった。
For example, when a debindered molded product of stainless steel 316L was held at 1340 ° C. for 2 hours in vacuum, the weight loss was 5 to 6% by weight.

【0009】[0009]

【課題を解決するための手段】この発明は、上記の欠点
を除くべくなされたものであり次のような焼結処理方法
によるものである。すなわち常温から真空中の1200
℃以下で熱処理をし、800℃〜1200℃で炭化水素
ガスのメタン、メタンとアルゴンガスの混合雰囲気、ま
たはプロパン、プロパンとアルゴンガス、ブタン、ブタ
ンとアルゴンガスの混合雰囲気にて熱処理をして、さら
に1100℃以上で水素、アルゴン等の雰囲気にて熱処
理をする。
The present invention has been made to eliminate the above drawbacks and is based on the following sintering treatment method. That is, from normal temperature to 1200 in vacuum
Heat treatment at 800 ° C to 1200 ° C in a mixed atmosphere of hydrocarbon gas such as methane, methane and argon gas, or mixed atmosphere of propane, propane and argon gas, butane, butane and argon gas. Further, heat treatment is performed at 1100 ° C. or higher in an atmosphere of hydrogen, argon or the like.

【0010】低温側で真空処理をすることにより粉末の
表面を活性にした後に炭化水素ガスを導入して表面の酸
化物と炭化水素ガスを反応させCOガスとして取り出
す。脱バインダーした成形体の中に残留している炭素C
はステンレス粉末の表面にある酸化物MOをMO+C→
CO+Mの形で還元する働きがあるが、酸素量に比べて
炭素量のコントロールは困難である。バインダーの中に
炭素が過剰に含まれていると焼結密度が低くなる。さら
には酸素に対して炭素が少ないと酸素量が多くなり耐食
性が劣る原因となる。
After activating the surface of the powder by performing vacuum treatment on the low temperature side, a hydrocarbon gas is introduced to react the oxide on the surface with the hydrocarbon gas and take out as CO gas. Carbon C remaining in the debindered compact
Is the oxide MO on the surface of the stainless powder MO + C →
It has a function of reducing in the form of CO + M, but it is difficult to control the carbon content compared to the oxygen content. If carbon is contained in excess in the binder, the sintered density becomes low. Furthermore, when the amount of carbon is less than that of oxygen, the amount of oxygen increases, which causes poor corrosion resistance.

【0011】そこで、メタン等の炭化水素ガスを導入す
ることにより表面からある一定以上の厚みだけ酸化物な
らびに炭素が少ない美しい組織を得ることができる。な
おかつ高温で最終焼結する際の金属成分の蒸発を水素、
アルゴンによって抑えるようにしたものである。
Therefore, by introducing a hydrocarbon gas such as methane, it is possible to obtain a beautiful structure containing a small amount of oxides and carbon from the surface by a certain thickness or more. In addition, the evaporation of the metal components during the final sintering at high temperature is hydrogen,
It was controlled by argon.

【0012】[0012]

【作用】この発明により酸素分圧の低い真空中の120
0℃以下で熱処理をし、800℃〜1200℃にて炭化
水素ガスのメタン、メタンとアルゴンガスの混合雰囲気
またはプロパン、プロパンとアルゴンガス、ブタン、ブ
タンとアルゴンガスの混合雰囲気にて熱処理をして、1
100℃以上で水素、アルゴン等の雰囲気にて熱処理を
することを特徴とするステンレス粉末の焼結方法におい
て、真空雰囲気でステンレスの金属酸化物を還元するこ
とにより酸化物等を少なくし、高温側では、メタンある
いはメタンとアルゴンの混合ガス、またプロパンあるい
はプロパンとアルゴンの混合雰囲気で表面から炭素を侵
入させて残存している酸化物をMO+C→COの反応に
より還元し、より高温側にて水素+アルゴンガス等の雰
囲気の中で焼結を完結することで金属成分の蒸発を防
ぎ、時計部品等の装飾部品に必要とされる鏡面外観を有
し、耐食性を向上させ寸法精度を安定させる効果があ
る。
According to the present invention, 120 in vacuum with a low oxygen partial pressure is used.
Heat treatment is performed at 0 ° C. or lower, and at 800 ° C. to 1200 ° C. in a hydrocarbon gas methane, a mixed atmosphere of methane and argon gas or a mixed atmosphere of propane, propane and argon gas, butane, butane and argon gas. 1
In a method of sintering a stainless powder characterized by performing a heat treatment in an atmosphere of hydrogen, argon, etc. at 100 ° C. or higher, the metal oxide of stainless is reduced in a vacuum atmosphere to reduce oxides, etc. Then, methane or a mixed gas of methane and argon, or propane or a mixed atmosphere of propane and argon is used to reduce carbon by invading carbon from the surface and reduce the remaining oxide by the reaction of MO + C → CO, and hydrogen is generated at a higher temperature side. + Prevents evaporation of metal components by completing the sintering in an atmosphere of argon gas, etc., and has the mirror surface appearance required for decorative parts such as watch parts, improving corrosion resistance and stabilizing dimensional accuracy There is.

【0013】[0013]

【実施例】【Example】

(実施例1)ステンレス粉末として平均粒径10μのS
US304の粉末を使用し、有機バインダーとしてはエ
チレン−酢酸ビニル共重合体、メタクリル酸エステル共
重合体、ソルビタンモノアルキレート、パラフィンワッ
クスからなる成分として両者を加熱しながら混合した。
バインダー量は全体重量の9.1%とした。この混合体
を時計ケースの形に射出成形した。
(Example 1) S having an average particle size of 10 μ as stainless powder
US 304 powder was used, and as an organic binder, ethylene-vinyl acetate copolymer, methacrylic acid ester copolymer, sorbitan monoalkylate, and paraffin wax were mixed together while heating.
The amount of binder was 9.1% of the total weight. This mixture was injection molded into a watch case.

【0014】成形体を常圧窒素雰囲気中で500℃まで
加熱し脱バインダーを行なった。脱バインダー後の成形
体に残留したバインダーは0.45%であった。脱バイ
ンダーされた成形体を真空雰囲気(10-4Torr)で
1150℃まで毎分6℃の速度で昇温した。その後メタ
ンとアルゴンの割合が1:3の混合ガスを焼結炉へ導入
して1150℃で1時間保持をした。なお、この熱処理
温度は800℃〜1200℃が適する。その後アンモニ
ア分解ガスにして水素の雰囲気で10℃/分の速度で1
340℃まで昇温し2時間保持し焼結した。
The molded body was heated to 500 ° C. in a nitrogen atmosphere at atmospheric pressure to remove the binder. The binder remaining in the molded body after debinding was 0.45%. The debindered molded body was heated to 1150 ° C. at a rate of 6 ° C./min in a vacuum atmosphere (10 −4 Torr). After that, a mixed gas in which the ratio of methane and argon was 1: 3 was introduced into the sintering furnace and kept at 1150 ° C. for 1 hour. The heat treatment temperature is preferably 800 ° C to 1200 ° C. After that, it is converted into ammonia decomposition gas, and it is 1 at a rate of 10 ° C./min in a hydrogen atmosphere.
The temperature was raised to 340 ° C., and the temperature was maintained for 2 hours for sintering.

【0015】このようにして製造された時計ケースは、
焼結密度7.81(溶製材密度に対し98%)であり、
切断面の組織を確認すると表面から0.3mmの厚みま
で酸化物のない層が確認できた。さらに鏡面研摩した場
合ピンホール、曇、傷を生ぜず、また塩水、人工汗に対
して通常の溶製材と同様の耐食性が良好であった。 (実施例2)ステンレス粉末として平均粒径5μのSU
S316L材を使用し実施例1と同じ組成のバインダー
を混合した。この際バインダー量は重量で全体の10%
とした。
The watch case manufactured in this way is
The sintered density is 7.81 (98% of the density of the ingot material),
When the structure of the cut surface was confirmed, an oxide-free layer was confirmed up to a thickness of 0.3 mm from the surface. Further, when it was mirror-polished, it did not cause pinholes, cloudiness, and scratches, and had good corrosion resistance against salt water and artificial sweat, similar to ordinary ingot materials. (Example 2) SU having an average particle size of 5μ as stainless powder
Using the S316L material, a binder having the same composition as in Example 1 was mixed. At this time, the amount of binder is 10% of the total weight.
And

【0016】実施例1と同様に射出成形、脱バインダー
した後焼結体中に残留したバインダーは0.56%であ
った。この成形体を真空雰囲気(10-4Torr)で2
時間保持した。その後、毎分5℃の速度で1200℃ま
で昇温した。1200℃になったところでアルゴンとプ
ロパンの混合比2:3の割合で混合ガスを導入し、1時
間保持し、その後ガスをアルゴンガス単独にしてアルゴ
ンの雰囲気で10℃/分の速度で1330℃まで昇温し
2時間保持し焼結を行なった。このようにして製造され
たケースは焼結密度7.86(溶製材密度に対し約98
%)であり、切断面の組織を確認すると表面から0.5
mmの厚みまで酸化物、ピンホールのない美しい組織が
確認できる。さらに鏡面研摩した場合、傷、曇等を生ず
ることはなく、また塩水、人工汗に対して通常の溶製材
と同様の耐食性を示した。
The binder remaining in the sintered body after injection molding and debinding as in Example 1 was 0.56%. This molded body is placed in a vacuum atmosphere (10 -4 Torr) for 2 minutes.
Held for hours. Then, the temperature was raised to 1200 ° C. at a rate of 5 ° C./min. When the temperature reached 1200 ° C., a mixed gas of argon and propane was introduced at a mixing ratio of 2: 3, and the mixture gas was held for 1 hour. After that, the gas was changed to argon gas alone, and the atmosphere was argon. At a rate of 10 ° C./min, 1330 ° C. The temperature was raised to 2 hours and held for sintering. The case manufactured in this way has a sintered density of 7.86 (about 98% of the density of the molten material).
%), And when confirming the structure of the cut surface, it is 0.5 from the surface.
A beautiful structure without oxides and pinholes can be confirmed up to a thickness of mm. Further, when it was mirror-polished, it did not cause scratches or fogging, and showed the same corrosion resistance to salt water and artificial sweat as ordinary ingots.

【0017】[0017]

【発明の効果】以上述べたように、この発明に示した焼
結条件を用いれば外観上優れ、耐食性のよいステンレス
部品を製造できるので特に装飾品のステンレス部品を作
るのに非常に有益である。
As described above, if the sintering conditions shown in the present invention are used, it is possible to manufacture a stainless part having excellent appearance and good corrosion resistance, which is very useful especially for making a decorative stainless part. ..

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ステンレス粉末に有機物のバインダーを
添加した後射出成形を行ない、成形体の脱バインダー、
焼結により部品を製造する焼結方法において、脱バイン
ダー後真空中で1200℃以下で熱処理をし、800℃
〜1200℃で、メタン、メタンとアルゴン混合ガス、
プロパン、プロパンとアルゴン混合ガス、ブタンまたは
ブタンとアルゴン混合ガスの雰囲気にて熱処理をして、
1100℃以上で水素、アルゴンの雰囲気にて熱処理を
することを特徴とするステンレス粉末の焼結方法。
1. Debinding of a molded body by injection molding after adding an organic binder to stainless steel powder,
In the sintering method for manufacturing parts by sintering, after debinding, heat treatment at 1200 ° C or less in vacuum
At ~ 1200 ° C, methane, mixed gas of methane and argon,
Heat treatment in an atmosphere of propane, a mixed gas of propane and argon, butane or a mixed gas of butane and argon,
A method of sintering a stainless powder, which comprises performing a heat treatment in an atmosphere of hydrogen and argon at 1100 ° C. or higher.
JP4022721A 1992-02-07 1992-02-07 Method for sintering stainless steel powder Pending JPH05222482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4022721A JPH05222482A (en) 1992-02-07 1992-02-07 Method for sintering stainless steel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4022721A JPH05222482A (en) 1992-02-07 1992-02-07 Method for sintering stainless steel powder

Publications (1)

Publication Number Publication Date
JPH05222482A true JPH05222482A (en) 1993-08-31

Family

ID=12090650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4022721A Pending JPH05222482A (en) 1992-02-07 1992-02-07 Method for sintering stainless steel powder

Country Status (1)

Country Link
JP (1) JPH05222482A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528979A (en) * 2000-03-24 2003-09-30 マンフレート エントリヒ How to complete metal parts
JP2010084825A (en) * 2008-09-30 2010-04-15 Ntn Corp Fluid dynamic pressure bearing arrangement and method of manufacturing the same
JP2019019401A (en) * 2017-07-21 2019-02-07 セイコーエプソン株式会社 Timepiece component, timepiece band and timepiece
EP3486009A1 (en) * 2017-11-17 2019-05-22 The Swatch Group Research and Development Ltd Method for sintering an austenitic stainless steel
WO2020158789A1 (en) * 2019-01-30 2020-08-06 住友電気工業株式会社 Sintered material, gear, and method for manufacturing sintered material
CN112808999A (en) * 2021-01-04 2021-05-18 深圳市鑫迪科技有限公司 Sintering process capable of improving surface heterochrosis of metal injection molding product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528979A (en) * 2000-03-24 2003-09-30 マンフレート エントリヒ How to complete metal parts
JP2010084825A (en) * 2008-09-30 2010-04-15 Ntn Corp Fluid dynamic pressure bearing arrangement and method of manufacturing the same
JP2019019401A (en) * 2017-07-21 2019-02-07 セイコーエプソン株式会社 Timepiece component, timepiece band and timepiece
EP3486009A1 (en) * 2017-11-17 2019-05-22 The Swatch Group Research and Development Ltd Method for sintering an austenitic stainless steel
US11185917B2 (en) 2017-11-17 2021-11-30 The Swatch Group Research And Development Ltd Austenitic stainless steel workpiece
WO2020158789A1 (en) * 2019-01-30 2020-08-06 住友電気工業株式会社 Sintered material, gear, and method for manufacturing sintered material
CN112808999A (en) * 2021-01-04 2021-05-18 深圳市鑫迪科技有限公司 Sintering process capable of improving surface heterochrosis of metal injection molding product

Similar Documents

Publication Publication Date Title
EP0635325B1 (en) Process for making a workpiece in titanium by sintering and a decorative article made by such a process
EP0356131B1 (en) Sintered bodies and production process thereof
US5108492A (en) Corrosion-resistant sintered alloy steels and method for making same
JP2588272B2 (en) Method for producing Fe-Co based sintered magnetic material
JPH05222482A (en) Method for sintering stainless steel powder
JPH0254733A (en) Manufacture of ti sintered material
JP2703939B2 (en) Method for producing Fe-Si soft magnetic sintered material
JPS6041634B2 (en) Method for manufacturing high-density silicon nitride reaction sintered body
JP3265463B2 (en) Method for producing Ti sintered body
JPH0257666A (en) Sintered alloy having excellent mirror-finishing characteristics and its manufacture
JPH0717983B2 (en) Method for producing high nitrogen stainless steel sintered body
KR930006442B1 (en) Sintered fe-co type magnetic materials
JP4331269B2 (en) Method for producing a titanium-based carbonitride alloy without a binder phase surface layer
JPH04176802A (en) Production of high density sintered body
JPS5929664B2 (en) Tantalum carbide-based sintered cemented carbide with deep golden color
JP3134405B2 (en) Method for producing indium oxide / tin oxide sintered body
JPH01184204A (en) Method for pretreating injecting molded body for producing sintered member
JPH0257605A (en) Production of sintered alloy having excellent dimensional precision
JPH07331379A (en) Production of high density stainless steel sintered product
JPS59152271A (en) Manufacture of high density silicon nitride reaction sintered body
JP2004076095A (en) Sintered titanium alloy and its manufacturing method
JPH0931588A (en) Production of invar (r) sintered compact
JPH0559405A (en) Production of high-hardness sintered hard alloy
JPH089721B2 (en) Manufacturing method of powder sintered product
JPH0931589A (en) Production of kovar sintered compact