JPH0931589A - Production of kovar sintered compact - Google Patents

Production of kovar sintered compact

Info

Publication number
JPH0931589A
JPH0931589A JP20857195A JP20857195A JPH0931589A JP H0931589 A JPH0931589 A JP H0931589A JP 20857195 A JP20857195 A JP 20857195A JP 20857195 A JP20857195 A JP 20857195A JP H0931589 A JPH0931589 A JP H0931589A
Authority
JP
Japan
Prior art keywords
weight
kovar
powder
sintered body
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20857195A
Other languages
Japanese (ja)
Inventor
Akihito Otsuka
昭仁 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP20857195A priority Critical patent/JPH0931589A/en
Publication of JPH0931589A publication Critical patent/JPH0931589A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a kovar sintered compact having a coefficient of thermal expansion equal to those of hard glass and ceramics and also having mechanical properties equal to those of a refined material. SOLUTION: Carbon powder is added to a powdered raw material which has a composition consisting of, by weight, 28-32% Ni, 15-18% Co, and the balance essentially Fe and containing >=0.3% oxygen as an inevitable impurity. The resultant powder mixture is compacted, or, a binder is added to the powder mixture to form a kneaded material and further this kneaded material is injection-molded. Then sintering is carried out in a nonoxidizing atmosphere. By this method, the sintered compact containing <=0.05wt.% C and <=0.3wt.% oxygen and having >=94% relative density can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、硬質ガラスやセラ
ミックと同程度の熱膨脹係数、および溶製材と同程度の
機械的特性を有するコバール焼結体の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Kovar sintered body having a coefficient of thermal expansion similar to that of hard glass or ceramics and mechanical properties similar to those of ingots.

【0002】[0002]

【従来の技術】コバール合金は、硬質ガラスやセラミッ
クと同程度の熱膨脹係数を有するので、硬質ガラスやセ
ラミックの封着合金として用いられ、代表的な組成とし
て、Niを29重量%およびCoを17重量%含み、残
部がFeおよび不可避不純物からなるもの(ASTM
F15)が知られている。上記コバール製品を製造する
には、一般に溶製材を機械加工する方法が行われてい
る。しかし、複雑な形状のコバール製品を製造する場
合、上記溶製材を機械加工する方法では高価になるた
め、粉末冶金法による方法が試みられている。ところ
で、粉末冶金法による方法は、複雑な形状の製品を製造
する上で利点を有するものの、製品の高密度化が難し
く、強いて高密度化を計ろうとすると、高価な微粉の使
用、長時間の焼結、熱間静水圧処理(HIP)などを行
わなければならなかった。
2. Description of the Related Art Kovar alloy is used as a sealing alloy for hard glass and ceramics because it has a thermal expansion coefficient similar to that of hard glass and ceramics. As a typical composition, Ni is 29% by weight and Co is 17%. % By weight, with the balance being Fe and inevitable impurities (ASTM
F15) is known. In order to manufacture the Kovar product, a method of machining an ingot is generally used. However, in the case of manufacturing a Kovar product having a complicated shape, the method of machining the ingot is expensive, so that a method by the powder metallurgy method has been attempted. By the way, although the method by the powder metallurgy has an advantage in manufacturing a product having a complicated shape, it is difficult to densify the product, and if the densification is attempted to be strong, use of expensive fine powder and long time Sintering, hot isostatic pressing (HIP) etc. had to be performed.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上記
の事情に鑑み、硬質ガラスやセラミックと同程度の熱膨
脹係数、および溶製材と同程度の機械的特性を有するコ
バール焼結体を製造する方法を提供することにある。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to produce a Kovar sintered body having a thermal expansion coefficient similar to that of hard glass and ceramics and mechanical properties comparable to those of ingots. To provide a way to do.

【0004】[0004]

【課題を解決するための手段】本発明は、上記目的を達
成するものであり、Niを28〜32重量%およびCo
を15〜18重量%含み、残部が実質的にFeからな
り、不可避不純物として酸素を0.3重量%以上含む原
料粉末にC粉末を添加し、得られた混合粉末を成形した
後、または該混合粉末にバインダーを添加して混練物を
得、さらに該混練物を射出成形した後、非酸化性雰囲気
で焼結し、Cを0.05重量%以下、酸素を0.3重量
%以下含み、かつ、相対密度が94%以上の焼結体を得
ることからなるコバール焼結体の製造方法である。上記
非酸化性雰囲気は、真空雰囲気、水素雰囲気が好まし
い。
The present invention achieves the above-mentioned object and comprises 28 to 32% by weight of Ni and Co.
After the addition of C powder to the raw material powder containing 15 to 18% by weight and the balance substantially consisting of Fe and containing 0.3% by weight or more of oxygen as an unavoidable impurity to obtain the mixed powder, or A binder is added to the mixed powder to obtain a kneaded product, which is further injection-molded and then sintered in a non-oxidizing atmosphere to contain C in an amount of 0.05 wt% or less and oxygen in an amount of 0.3 wt% or less. And a method for producing a Kovar sintered body, which comprises obtaining a sintered body having a relative density of 94% or more. The non-oxidizing atmosphere is preferably a vacuum atmosphere or a hydrogen atmosphere.

【0005】[0005]

【発明の実施の形態】本発明のコバール焼結体の製造方
法において、Niを28〜32重量%およびCoを15
〜18重量%含み、残部が実質的にFeからなり、不可
避不純物として酸素を0.3重量%以上含む原料粉末に
C粉末を添加することが重要である。上記C粉末を添加
することによって、後工程で非酸化性雰囲気で焼結する
際、被焼結体中のCと酸素が反応してCOガスを生成、
放出するので、製造される焼結体中の酸素が除去される
と共に、焼結が促進し、コバール焼結体の緻密化(相対
密度94%以上)が達成される。C粉末を添加する原料
粉末のNi含有量が28〜32重量%の範囲を外れる
か、あるいはCo含有量が15〜18重量%の範囲を外
れるかすると、製造されるコバール焼結体の熱膨脹係数
が硬質ガラスやセラミックの熱膨脹係数と同程度でなく
なり易くなる。また、C粉末を添加する上記原料粉末中
に不可避不純物として含まれる酸素の含有量が0.3重
量%未満では、該C粉末による上記コバール焼結体の緻
密化作用が十分に発揮されない。C粉末を添加する上記
原料粉末中に不可避不純物として含まれる酸素の含有量
の上限は、通常0.5重量%程度であるが、0.5重量
%程度を若干超えてもよい。ただし、酸素含有量が余り
に多過ぎると、添加されるべきC粉末の量が多くなり過
ぎて、製造されるコバール焼結体のC含有量を制御し難
く、該C含有量が0.05重量%を超え易くなる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a Kovar sintered body according to the present invention, Ni is 28 to 32% by weight and Co is 15%.
It is important to add the C powder to the raw material powder containing 18% by weight to 18% by weight, the balance substantially consisting of Fe, and containing 0.3% by weight or more of oxygen as an unavoidable impurity. By adding the above-mentioned C powder, when sintering in a non-oxidizing atmosphere in a later step, C in the material to be sintered reacts with oxygen to generate CO gas,
Since the oxygen is released, oxygen in the produced sintered body is removed, sintering is accelerated, and densification (relative density of 94% or more) of the Kovar sintered body is achieved. When the Ni content of the raw material powder to which the C powder is added deviates from the range of 28 to 32% by weight or the Co content deviates from the range of 15 to 18% by weight, the thermal expansion coefficient of the manufactured Kovar sintered body is increased. Tends to be less than the coefficient of thermal expansion of hard glass and ceramics. Further, if the content of oxygen contained as an unavoidable impurity in the raw material powder to which the C powder is added is less than 0.3% by weight, the densifying action of the Kovar sintered body by the C powder cannot be sufficiently exhibited. The upper limit of the content of oxygen contained as an unavoidable impurity in the raw material powder to which the C powder is added is usually about 0.5% by weight, but it may be slightly over about 0.5% by weight. However, if the oxygen content is too large, the amount of C powder to be added becomes too large, and it is difficult to control the C content of the manufactured Kovar sintered body, and the C content is 0.05% by weight. % Easily.

【0006】C粉末を添加する上記原料粉末の粒径は、
平均粒径で5〜50μmが好ましい。5μm未満では、
酸素含有量が0.5重量%程度以下のものが入手し難い
か、入手し得るにしても高価となり、一方、50μmを
超えると、C粉末を添加する上記原料粉末の焼結性が低
下する。本発明のコバール焼結体の製造方法において、
原料粉末に添加するC粉末は、通常、該C粉末を添加し
て得られる混合粉末のC含有量が、0.05〜0.4重
量%になるように添加するが、後工程の焼結でCを0.
05重量%以下、酸素を0.3重量%以下含む焼結体が
得られるように該C含有量を適宜定めることができる。
上記C粉末を添加して得られる混合粉末は、圧縮成形な
どに供される。また、バインダーを添加する場合、混練
物を射出成形し、射出成形体を脱バインダーする。この
バインダーは、射出成形体を脱バインダーした後にC分
が残留し難い、例えばワックスを主成分としたバインダ
ーが好ましい。圧縮成形や射出成形などの後、成形体を
非酸化性雰囲気で焼結することにより、コバール焼結体
を製造する。
The particle size of the raw material powder to which C powder is added is
The average particle size is preferably 5 to 50 μm. Below 5 μm,
If the oxygen content is about 0.5% by weight or less, it is difficult to obtain it, or if it is available, it becomes expensive. On the other hand, if it exceeds 50 μm, the sinterability of the above raw material powder to which the C powder is added deteriorates. . In the method for producing a Kovar sintered body of the present invention,
The C powder to be added to the raw material powder is usually added so that the C content of the mixed powder obtained by adding the C powder is 0.05 to 0.4% by weight. C to 0.
The C content can be appropriately determined so that a sintered body containing not more than 05% by weight and not more than 0.3% by weight of oxygen can be obtained.
The mixed powder obtained by adding the above C powder is subjected to compression molding and the like. When a binder is added, the kneaded product is injection-molded and the injection-molded product is debindered. This binder is preferably a binder whose main component is wax, for example, in which C content hardly remains after debinding the injection-molded article. After compression molding, injection molding, or the like, a Kovar sintered body is manufactured by sintering the molded body in a non-oxidizing atmosphere.

【0007】上記コバール焼結体の製造方法において、
C粉末を添加して混合粉末を得た後は、公知の方法を行
うが、製造するコバール焼結体は、C含有量が0.05
重量%以下、酸素含有量が0.3重量%以下であり、か
つ相対密度が94%以上である必要があるので、そのよ
うなコバール焼結体を製造するのに適当な条件を採用す
ることができる。製造するコバール焼結体のC含有量が
0.05重量%を超えると、該コバール焼結体の溶接性
や耐食性が低下するだけでなく、熱膨脹係数が硬質ガラ
スやセラミックの熱膨脹係数から掛け離れ易くなる。ま
た、酸素含有量が0.3重量%を超えると、相対密度が
94%以上の焼結体となり難い。相対密度が94%未満
では、溶製材と同程度の機械的特性を有する焼結体とは
なり難い。
In the method for manufacturing the above Kovar sintered body,
After the C powder is added to obtain a mixed powder, a publicly known method is carried out. However, the Kovar sintered body produced has a C content of 0.05.
Since it is necessary to have a weight percentage of less than or equal to 0, an oxygen content of less than or equal to 0.3% by weight, and a relative density of greater than or equal to 94%, it is necessary to adopt appropriate conditions for producing such a Kovar sintered body. You can When the C content of the Kovar sintered body to be produced exceeds 0.05% by weight, not only the weldability and corrosion resistance of the Kovar sintered body are deteriorated, but also the thermal expansion coefficient is easily separated from that of hard glass or ceramic. Become. Further, if the oxygen content exceeds 0.3% by weight, it becomes difficult to obtain a sintered body having a relative density of 94% or more. If the relative density is less than 94%, it will be difficult to obtain a sintered body having the same mechanical properties as the ingot material.

【0008】[0008]

【実施例】【Example】

[実施例1]Fe粉(平均粒径8μm、酸素含有量0.
35重量%)とNi粉(平均粒径7μm、酸素含有量
0.25重量%)とFe−50重量%Co粉(平均粒径
13μm、酸素含有量0.31重量%)を用いて、Ni
を29重量%およびCoを16重量%含み、残部が実質
的にFeからなり、不可避不純物として酸素を0.31
重量%含む原料粉末を調製した。次に、C粉末(平均粒
径30μm)をこの原料粉末への添加用として用い混合
して、Niを29重量%、Coを16重量%およびCを
0.1重量%含み、残部が実質的にFeからなり、不可
避不純物として酸素を0.31重量%含む混合粉末を得
た後、圧力を2000kgf/cm2 としてこの混合粉
末を圧縮成形した。得られた圧縮成形体(直径20m
m、厚さ10mm)を真空中1350℃の温度で2時間
焼結してコバール焼結体を製造した。そして、製造した
コバール焼結体のC含有量、酸素含有量、相対密度、2
5℃から300℃、400℃、450℃および500℃
までの熱膨脹係数、並びに溶接性を測定した。それらの
結果を表1に示す。なお、溶接性は良好であった。
Example 1 Fe powder (average particle size 8 μm, oxygen content 0.
35% by weight) and Ni powder (average particle size 7 μm, oxygen content 0.25% by weight) and Fe-50% by weight Co powder (average particle size 13 μm, oxygen content 0.31% by weight).
And 29% by weight of Co and 16% by weight of Co, the balance consisting essentially of Fe, and 0.31 of oxygen as an unavoidable impurity.
A raw material powder containing wt% was prepared. Next, C powder (average particle size: 30 μm) was used as an additive to the raw material powder and mixed to contain 29% by weight of Ni, 16% by weight of Co and 0.1% by weight of C, and the balance substantially. After obtaining a mixed powder made of Fe and containing 0.31% by weight of oxygen as an unavoidable impurity, the mixed powder was compression molded under a pressure of 2000 kgf / cm 2 . Obtained compression molded product (diameter 20 m
m, thickness 10 mm) was sintered in vacuum at a temperature of 1350 ° C. for 2 hours to produce a Kovar sintered body. And, the C content, oxygen content, relative density of the manufactured Kovar sintered body, 2
5 ° C to 300 ° C, 400 ° C, 450 ° C and 500 ° C
The coefficient of thermal expansion up to and as well as the weldability were measured. Table 1 shows the results. The weldability was good.

【0009】[実施例2]Niを29重量%、Coを1
6重量%およびCを0.27重量%含み、残部が実質的
にFeからなり、不可避不純物として酸素を0.31重
量%含む混合粉末を得た以外は、実施例1と同様に試験
した。それらの結果を表1に示す。なお、溶接性は良好
であった。
[Example 2] 29% by weight of Ni and 1% of Co
A test was performed in the same manner as in Example 1 except that a mixed powder containing 6% by weight and 0.27% by weight of C, the balance substantially consisting of Fe, and containing 0.31% by weight of oxygen as an unavoidable impurity was obtained. Table 1 shows the results. The weldability was good.

【0010】[実施例3]実施例1と同様にして混合粉
末を得た後、この混合粉末とワックス系バインダーの容
量比が55:45になるようにワックス系バインダーを
この混合粉末に添加して150℃で混練し、次にこの混
練物をペレット状に造粒した。この後、上記ペレットを
射出成形機を用いて射出成形し、次にこの射出成形体を
300℃に保持してワックス系バインダーを除去した。
得られた射出成形体(直径20mm、厚さ10mm)を
真空中1350℃の温度で2時間焼結してコバール焼結
体を製造した。そして、製造したコバール焼結体のC含
有量、酸素含有量、相対密度、25℃から300℃、4
00℃、450℃および500℃までの熱膨脹係数、並
びに溶接性を実施例1と同様に測定した。それらの結果
を表1に示す。なお、溶接性は良好であった。
Example 3 A mixed powder was obtained in the same manner as in Example 1, and then a wax binder was added to this mixed powder so that the volume ratio of this mixed powder to the wax binder was 55:45. And kneading at 150 ° C., and then the kneaded product was granulated into pellets. Then, the pellets were injection-molded using an injection molding machine, and then the injection-molded body was kept at 300 ° C. to remove the wax-based binder.
The obtained injection-molded body (diameter 20 mm, thickness 10 mm) was sintered in vacuum at a temperature of 1350 ° C. for 2 hours to produce a Kovar sintered body. Then, the C content, oxygen content, relative density, 25 ° C. to 300 ° C. of the manufactured Kovar sintered body, 4
The thermal expansion coefficients up to 00 ° C, 450 ° C and 500 ° C, and the weldability were measured in the same manner as in Example 1. Table 1 shows the results. The weldability was good.

【0011】[比較例1]原料粉末への添加用としての
C粉末を用いなかった以外は、実施例1と同様に試験し
た。それらの結果を表1に示す。なお、溶接性は良好で
あった。
[Comparative Example 1] A test was conducted in the same manner as in Example 1 except that C powder was not used as an additive to the raw material powder. Table 1 shows the results. The weldability was good.

【0012】[比較例2]原料粉末への添加用としての
C粉末(平均粒径30μm)の配合量を多くし、C粉末
を添加した混合粉末のC含有量を0.71重量%とした
以外は、実施例1と同様に試験した。それらの結果を表
1に示す。なお、溶接性は不良であった。
[Comparative Example 2] The blending amount of C powder (average particle size 30 μm) for addition to the raw material powder was increased, and the C content of the mixed powder to which C powder was added was 0.71% by weight. Other than that, it tested like Example 1. Table 1 shows the results. The weldability was poor.

【0013】[従来例]コバール合金を溶解鋳造してN
iを29重量%およびCoを16重量%含み、残部がF
eおよび不可避不純物からなる鋳塊を得、該鋳塊から直
径20mm、厚さ10mmの溶製材試料を採取した。こ
の溶製材試料のC含有量、酸素含有量、25℃から30
0℃、400℃、450℃および500℃までの熱膨脹
係数、並びに溶接性を実施例1と同様に測定した。それ
らの結果を表1に示す。なお、溶接性は良好であった。
[Conventional Example] Kovar alloy is melted and cast into N
i of 29% by weight and Co of 16% by weight, the balance being F
An ingot composed of e and unavoidable impurities was obtained, and a molten metal sample having a diameter of 20 mm and a thickness of 10 mm was sampled from the ingot. C content, oxygen content, 25 ° C. to 30 of this ingot sample
The thermal expansion coefficients up to 0 ° C, 400 ° C, 450 ° C and 500 ° C, and the weldability were measured in the same manner as in Example 1. Table 1 shows the results. The weldability was good.

【0014】[0014]

【表1】 混合粉末 成 焼結体または溶製材 中のC 形 (重量%) 法 C 酸素 相対 (重量%) (重量%) 密度(%) 実施例1 0.1 圧縮 0.006 0.007 95.7 実施例2 0.27 圧縮 0.019 0.008 96.3 実施例3 0.1 射出 0.008 0.008 95.5 比較例1 0.01 圧縮 0.007 0.31 86.4 比較例2 0.71 圧縮 0.19 0.007 97.8 従来例 − − − − − 焼結体の熱膨脹係数(×10-6/℃) 25〜300℃ 25〜400℃ 25〜450℃ 25〜500℃ 実施例1 4.87 4.82 5.13 5.80 実施例2 4.62 4.57 5.17 5.78 実施例3 4.91 4.95 5.27 5.96 比較例1 4.99 5.12 5.42 6.14 比較例2 5.19 5.17 5.45 6.31 従来例 4.83 4.87 5.18 6.03[Table 1] Type C (wt%) method C oxygen relative (wt%) (wt%) Density (%) in mixed powder-formed sintered compacts or ingots Example 1 0.1 compression 0.006 0.007 95.7 Example 2 0.27 compression 0.019 0.008 96.3 Example 3 0.1 Injection 0.008 0.008 95.5 Comparative example 1 0.01 Compression 0.007 0.31 86.4 Comparative example 2 0.71 Compression 0.19 0.007 97.8 Conventional example − − − − − Thermal expansion coefficient (× 10 −6 / ° C.) 25 to 300 ° C 25 to 400 ° C 25 to 450 ° C 25 to 500 ° C Example 1 4.87 4.82 5.13 5.80 Example 2 4.62 4.57 5.17 5.78 Example 3 4.91 4.95 5.27 5.96 Comparative Example 1 4.99 5.12 5.42 6.14 Comparative Example 2 5.19 5.17 5.45 6.31 Conventional Example 4.83 4.87 5.18 6.03

【0015】以上から次のことが分かる。即ち、(1)
実施例1〜3のコバール焼結体は、いずれも、C含有量
が0.05重量%以下、酸素含有量が0.3重量%以下
であり、相対密度が94%以上を有し、そして25℃か
ら300℃、400℃、450℃および500℃までの
熱膨脹係数がいずれも、硬質ガラスやセラミックと同程
度の熱膨脹係数を有する溶製材の熱膨脹係数に非常に近
似している、(2)比較例1のコバール焼結体は、酸素
含有量が0.31重量%と多く、相対密度が86.4%
と低いため、機械的特性が溶製材より劣る、(3)比較
例2のコバール焼結体は、C粉末の配合量が多過ぎてC
含有量が0.19重量%と多過ぎたため、溶接性が劣る
ものとなった。
From the above, the following can be seen. That is, (1)
The Kovar sintered bodies of Examples 1 to 3 all have a C content of 0.05% by weight or less, an oxygen content of 0.3% by weight or less, and a relative density of 94% or more, and The coefficients of thermal expansion from 25 ° C to 300 ° C, 400 ° C, 450 ° C and 500 ° C are all very close to the coefficients of thermal expansion of ingots having the same coefficient of thermal expansion as hard glass and ceramics, (2) The Kovar sintered body of Comparative Example 1 had a large oxygen content of 0.31% by weight and a relative density of 86.4%.
(3) In the Kovar sintered body of Comparative Example 2, the mechanical properties are inferior to those of the ingot, and the C powder content is too large.
Since the content was too large as 0.19% by weight, the weldability was poor.

【0016】[0016]

【発明の効果】本発明によれば、硬質ガラスやセラミッ
クと同程度の熱膨脹係数、および溶製材と同程度の機械
的特性を有するコバール焼結体を製造することができ
る。
According to the present invention, it is possible to manufacture a Kovar sintered body having a coefficient of thermal expansion similar to that of hard glass or ceramics and mechanical properties similar to those of ingots.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Niを28〜32重量%およびCoを1
5〜18重量%含み、残部が実質的にFeからなり、不
可避不純物として酸素を0.3重量%以上含む原料粉末
にC粉末を添加し、得られた混合粉末を成形した後、非
酸化性雰囲気で焼結し、Cを0.05重量%以下、酸素
を0.3重量%以下含み、かつ、相対密度が94%以上
の焼結体を得ることからなるコバール焼結体の製造方
法。
1. Ni to 28 to 32 wt% and Co to 1
C powder is added to a raw material powder containing 5 to 18% by weight, the balance consisting essentially of Fe, and containing 0.3% by weight or more of oxygen as an unavoidable impurity, and the obtained mixed powder is molded and then nonoxidizing. A method for producing a Kovar sintered body, comprising sintering in an atmosphere to obtain a sintered body containing 0.05% by weight or less of C, 0.3% by weight or less of oxygen, and having a relative density of 94% or more.
【請求項2】 Niを28〜32重量%およびCoを1
5〜18重量%含み、残部が実質的にFeからなり、不
可避不純物として酸素を0.3重量%以上含む原料粉末
にC粉末を添加し、得られた混合粉末にバインダーを添
加して混練物を得、さらに該混練物を射出成形した後、
非酸化性雰囲気で焼結し、Cを0.05重量%以下、酸
素を0.3重量%以下含み、かつ、相対密度が94%以
上の焼結体を得ることからなるコバール焼結体の製造方
法。
2. Ni to 28 to 32% by weight and Co to 1
A kneaded material containing 5 to 18% by weight, the balance substantially consisting of Fe, and C powder added to a raw material powder containing 0.3% by weight or more of oxygen as an unavoidable impurity, and a binder added to the obtained mixed powder. After further injection molding the kneaded product,
A Kovar sintered body obtained by sintering in a non-oxidizing atmosphere to obtain a sintered body containing 0.05% by weight or less of C, 0.3% by weight or less of oxygen, and having a relative density of 94% or more. Production method.
【請求項3】 非酸化性雰囲気は、真空雰囲気または水
素雰囲気である請求項1または2に記載のコバール焼結
体の製造方法。
3. The method for producing a Kovar sintered body according to claim 1, wherein the non-oxidizing atmosphere is a vacuum atmosphere or a hydrogen atmosphere.
【請求項4】 原料粉末は、酸素を0.5重量%以下含
む請求項1、2または3に記載のコバール焼結体の製造
方法。
4. The method for producing a Kovar sintered body according to claim 1, 2 or 3, wherein the raw material powder contains 0.5 wt% or less of oxygen.
【請求項5】 原料粉末に添加するC粉末は、添加量が
0.05〜0.4重量%である請求項1〜4のいずれか
に記載のコバール焼結体の製造方法。
5. The method for producing a Kovar sintered body according to claim 1, wherein the C powder added to the raw material powder has an addition amount of 0.05 to 0.4% by weight.
JP20857195A 1995-07-25 1995-07-25 Production of kovar sintered compact Pending JPH0931589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20857195A JPH0931589A (en) 1995-07-25 1995-07-25 Production of kovar sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20857195A JPH0931589A (en) 1995-07-25 1995-07-25 Production of kovar sintered compact

Publications (1)

Publication Number Publication Date
JPH0931589A true JPH0931589A (en) 1997-02-04

Family

ID=16558394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20857195A Pending JPH0931589A (en) 1995-07-25 1995-07-25 Production of kovar sintered compact

Country Status (1)

Country Link
JP (1) JPH0931589A (en)

Similar Documents

Publication Publication Date Title
EP0356131B1 (en) Sintered bodies and production process thereof
JPH05209247A (en) Cermet alloy and its production
JPH05271842A (en) Cermet alloy and its production
JPH0931589A (en) Production of kovar sintered compact
JPH0931588A (en) Production of invar (r) sintered compact
KR102012442B1 (en) The noble process for preparation of sintered oxide having high toughness
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JPH0350808B2 (en)
JPH10147833A (en) Manufacture of sintered compact
JPH01184203A (en) Alloy powder for injected-compacting
JPH0827536A (en) Production of sintered compact of stainless steel
JPH06279124A (en) Production of silicon nitride sintered compact
KR900002040B1 (en) Making process for super alloy of tungsten carbide
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH07300648A (en) High strength sintered w-base alloy and its production
JPH10147832A (en) Manufacture of &#39;permalloy(r)&#39; sintered compact
JPH03229832A (en) Manufacture of nb-al intermetallic compound
JP2720201B2 (en) Method for producing silicon nitride sintered body
JPS59152271A (en) Manufacture of high density silicon nitride reaction sintered body
JPH0478584B2 (en)
JP2760131B2 (en) Method for producing Fe-Co-V soft magnetic sintered alloy
JPH1030136A (en) Manufacture of sintered titanium alloy
JPS6365738B2 (en)
JPH02229767A (en) Process for sintered molding having controlled grain size
JPH06264158A (en) Production of tungsten carbide base sintered hard alloy having high strength and high hardness