JPH10147833A - Manufacture of sintered compact - Google Patents

Manufacture of sintered compact

Info

Publication number
JPH10147833A
JPH10147833A JP32220096A JP32220096A JPH10147833A JP H10147833 A JPH10147833 A JP H10147833A JP 32220096 A JP32220096 A JP 32220096A JP 32220096 A JP32220096 A JP 32220096A JP H10147833 A JPH10147833 A JP H10147833A
Authority
JP
Japan
Prior art keywords
weight
sintered body
less
oxygen
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32220096A
Other languages
Japanese (ja)
Inventor
Akihito Otsuka
昭仁 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP32220096A priority Critical patent/JPH10147833A/en
Publication of JPH10147833A publication Critical patent/JPH10147833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacture of a sintered compact having a low coefficient of thermal expansion and excellent in mechanical properties. SOLUTION: A metal powder, containing C, is added to a powdered raw material consisting of, by weight, 33-40% Ni and the balance essentially Fe and containing >=0.1% oxygen as an inevitable impurity. The resultant powder mixture is compacted and then sintered in a nonoxidizing atmosphere, by which a sintered compact, containing <=0.1wt.% C and 0.2wt.% or <=0.3wt.% oxygen and having >=92% relative density, is obtained. By this method, excellent various sintered compact products, having >=92% relative density and low coefficient of thermal expansion, can be manufactured extremely easily, and remarkable effects can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アンバー、スーパ
ーアンバーおよびコバール焼結体の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing amber, superamber, and a Kovar sintered body.

【0002】[0002]

【従来の技術】FeにNiを添加して合金とする場合、
Niの添加量を増量して行くと、生成する合金の熱膨張
係数が変化することが認められ、Niの添加量が36.
5重量%となった時点で熱膨張係数がFeの約1/10
程度を示すようになる。しかして、この合金は、実用温
度付近で熱膨脹係数が極めて小さく、したがって、「I
nvarlable」の略でアンバー合金、インバー合
金あるいは不変鋼と呼ばれている。このアンバー合金の
一般的な組成としては、Niを33〜40重量%含み、
残部がFeからなり、各合金組成に調合された原材料を
溶解した後に塑性加工によって得られた素材を基に機械
加工して部品を製造している。
2. Description of the Related Art When Ni is added to Fe to form an alloy,
It was recognized that as the amount of Ni added was increased, the coefficient of thermal expansion of the resulting alloy was changed.
When the weight becomes 5% by weight, the coefficient of thermal expansion is about 1/10 of Fe.
To show the degree. Thus, this alloy has a very low coefficient of thermal expansion near the practical temperature, and therefore, the "I
"Nvarable" is called an invar alloy, an invar alloy or an invariable steel. The general composition of this invar alloy contains 33 to 40% by weight of Ni,
The balance is made of Fe, and the raw materials prepared for the respective alloy compositions are melted and then machined based on the raw material obtained by plastic working to manufacture parts.

【0003】前記合金にさらにCoを添加した場合、合
金の熱膨張係数は、より小さくなるもので、この合金
は、スーパーアンバー合金と称されている。このような
スーパーアンバー合金の一般的な組成としては、Niが
30〜33重量%、Coが5〜7重量%、残部がFeか
らなり、各合金組成に調合された原材料を溶解した後
に、塑性加工により得られた素材を基に機械加工して部
品を製造している。
[0003] When Co is further added to the above alloy, the coefficient of thermal expansion of the alloy becomes smaller, and this alloy is called a super invar alloy. As a general composition of such a superamber alloy, Ni is 30 to 33% by weight, Co is 5 to 7% by weight, and the balance is Fe. After melting the raw materials prepared for each alloy composition, Parts are manufactured by machining based on the raw material obtained by processing.

【0004】また、硬質ガラスやセラミックと同程度の
熱膨張係数を有するものとしてコバール合金が知られ、
硬質ガラスやセラミックの封着合金として用いられてい
る。その代表的な組成としては、Niを29重量%、C
oを17重量%、残部がFeおよび不可避不純物からな
るもの(ASTM F15)が知られている。
Further, Kovar alloy is known as having a thermal expansion coefficient comparable to that of hard glass or ceramic,
It is used as a sealing alloy for hard glass and ceramic. As a typical composition, 29% by weight of Ni and C
It is known that o is 17% by weight and the balance is Fe and unavoidable impurities (ASTM F15).

【0005】このコバール合金も前記アンバー合金、ス
ーパーアンバー合金と同様に溶解法による方法で製造す
るのが主流となっている。
[0005] As with the amber alloy and the superamber alloy, the Kovar alloy is mainly produced by a melting method.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、一般的
に、成形加工に際して不要部分が多く発生するものであ
って、高価な素材を用いて部品とする場合には製品の最
終価格を高価なものとする原因となっている。
However, in general, a lot of unnecessary parts are generated at the time of molding, and when parts are formed using expensive materials, the final price of the products is expensive. Is causing it.

【0007】これに対して、粉末を成形した後、焼結し
て製品とする粉末冶金法を採用する場合には、使用材料
が製品となる割合は遥かに高くなり、大幅に安価となし
得ることが考えられる。しかしながら、前記合金の製造
に際して、単に通常の粉末冶金法を採用する場合には、
Ni粉末、Ni粉末およびCo粉末の粒子間における拡
散反応が進行しにくく、結果として製品としての十分な
密度を得ることが難しく、密度を高くするには、超微粒
原料を選択し、焼結時間を遥かに長くし、さらに、高価
なHIP処理(熱間静水圧圧縮成形)などを採用しなけ
ればならないという問題が生じた。
On the other hand, when the powder metallurgy method is employed in which a product is formed by sintering a powder and then sintering the product, the ratio of the material used as a product is much higher, and the cost can be significantly reduced. It is possible. However, in the case of simply adopting ordinary powder metallurgy in producing the alloy,
The diffusion reaction between the particles of Ni powder, Ni powder and Co powder is difficult to progress, and as a result, it is difficult to obtain a sufficient density as a product. Has to be made much longer, and expensive HIP processing (hot isostatic pressing) or the like must be employed.

【0008】したがって本発明は、熱膨張係数が低く、
機械的特性にも優れている焼結体の製造方法を提供する
ことを目的とするものである。
Therefore, the present invention has a low coefficient of thermal expansion,
It is an object of the present invention to provide a method for producing a sintered body having excellent mechanical properties.

【0009】[0009]

【課題を解決するための手段】本発明者は、前記問題を
解決し前記目的を達成するために研究を重ねた結果、C
を含む金属粉末を添加した特定組成の原料粉末を成形加
工した後、特定量のCと酸素を含有し、特定相対密度に
なるように焼結することによって目的を達し得ることを
見出して本発明を完成するに至った。すなわち、本発明
の第1の実施態様は、Niを33〜40重量%含み、残
部が実質的にFeからなり、不可避不純物として酸素を
0.1重量%以上含む原料粉末に、Cを含む金属粉末を
添加し、得られた混合粉末を成形した後、非酸化性雰囲
気中で焼結し、Cを0.1重量%以下、酸素を0.2重
量%以下含み、かつ相対密度が92%以上の焼結体を得
るアンバー焼結体の製造方法を特徴とするものであり、
また第2の実施態様は、Niを33〜40重量%含み、
残部が実質的にFeからなり、不可避不純物として酸素
を0.1重量%以上含む原料粉末に、Cを含む金属粉末
を添加し、得られた混合粉末にバインダーを添加して混
練物を調製し、さらに該混練物を射出成形した後、非酸
化性雰囲気中で焼結し、Cを0.1重量%以下、酸素を
0.2重量%以下含み、かつ相対密度が92%以上の焼
結体を得るアンバー焼結体の製造方法を特徴とするもの
である。
Means for Solving the Problems The present inventor has conducted extensive research to solve the above-mentioned problems and achieve the above-mentioned object.
The present invention has been found to be able to attain the object by molding and processing a raw material powder having a specific composition to which a metal powder containing is added, and then containing a specific amount of C and oxygen and sintering to a specific relative density. Was completed. That is, in the first embodiment of the present invention, the raw material powder containing 33 to 40% by weight of Ni and substantially the balance of Fe and containing 0.1% by weight or more of oxygen as an unavoidable impurity is added to a metal powder containing C. After adding the powder and shaping the resulting mixed powder, sintering is performed in a non-oxidizing atmosphere, containing 0.1% by weight or less of C, 0.2% by weight or less of oxygen, and a relative density of 92%. It is characterized by a method for producing an amber sintered body to obtain the above sintered body,
Further, the second embodiment contains 33 to 40% by weight of Ni,
A metal powder containing C is added to a raw material powder containing 0.1% by weight or more of oxygen as an unavoidable impurity, and a binder is added to the obtained mixed powder to prepare a kneaded product. Further, after the kneaded material is injection-molded, it is sintered in a non-oxidizing atmosphere, containing 0.1% by weight or less of C, 0.2% by weight or less of oxygen, and having a relative density of 92% or more. The present invention is characterized by a method for producing an invar sintered body for obtaining a body.

【0010】また本発明の第3の実施態様は、Niを3
3〜40重量%、Coを5〜7重量%含み、残部が実質
的にFeからなり、不可避不純物として酸素を0.1重
量%以上含む原料粉末に、Cを含む金属粉末を添加し、
得られた混合粉末を成形した後、非酸化性雰囲気中で焼
結し、Cを0.1重量%以下、酸素を0.2重量%以下
含み、かつ相対密度が92%以上の焼結体を得るスーパ
ーアンバー焼結体の製造方法を特徴とするものであり、
さらに第4の実施態様は、Niを33〜40重量%、C
oを5〜7重量%含み、残部が実質的にFeからなり、
不可避不純物として酸素を0.1重量以上%含む原料粉
末に、Cを含む金属粉末を添加し、得られた混合粉末に
バインダーを添加して混練物を調製し、さらに該混練物
を射出成形した後、非酸化性雰囲気中で焼結し、Cを
0.1重量%以下、酸素を0.2重量%以下含み、かつ
相対密度が92%以上の焼結体を得るスーパーアンバー
焼結体の製造方法を特徴とするものである。
In a third embodiment of the present invention, Ni is 3
A metal powder containing C is added to a raw material powder containing 3 to 40% by weight, 5 to 7% by weight of Co, the balance being substantially Fe, and containing 0.1% by weight or more of oxygen as an unavoidable impurity,
After molding the obtained mixed powder, it is sintered in a non-oxidizing atmosphere, and contains 0.1% by weight or less of C, 0.2% by weight or less of oxygen, and a relative density of 92% or more. Characterized by the method of manufacturing a super amber sintered body to obtain
Further, the fourth embodiment is characterized in that 33 to 40% by weight of Ni, C
o in an amount of 5 to 7% by weight, with the balance substantially consisting of Fe;
A metal powder containing C was added to a raw material powder containing 0.1% by weight or more of oxygen as an inevitable impurity, a binder was added to the obtained mixed powder to prepare a kneaded product, and the kneaded product was injection-molded. Then, sintering is performed in a non-oxidizing atmosphere to obtain a superamber sintered body containing 0.1% by weight or less of C and 0.2% by weight or less of oxygen and having a relative density of 92% or more. It is characterized by a manufacturing method.

【0011】さらに本発明の第5の実施態様は、Niを
28〜32重量%、Coを15〜18重量含み、残部が
実質的にFeからなり、不可避不純物として酸素を0.
1重量%以上含む原料粉末に、Cを含む金属粉末を添加
し、得られた混合粉末を成形した後、非酸化性雰囲気中
で焼結し、Cを0.1重量%以下、酸素を0.3重量%
以下含み、かつ相対密度が92%以上の焼結体を得るコ
バール焼結体の製造方法を特徴とするものであり、また
第6の実施態様は、Niを28〜32重量%、Coを1
5〜18重量%含み、残部が実質的にFeからなり、不
可避不純物として酸素を0.1重量%以上含む原料粉末
に、Cを含む金属粉末を添加し、得られた混合粉末にバ
インダーを添加して混練物を調製し、さらに該混練物を
射出成形した後、非酸化性雰囲気中で焼結し、Cを0.
1重量%以下、酸素を0.3重量%以下含み、かつ相対
密度が92%以上の焼結体を得るコバール焼結体の製造
方法を特徴とするものである。
Further, a fifth embodiment of the present invention comprises 28 to 32% by weight of Ni and 15 to 18% by weight of Co, with the balance substantially consisting of Fe and oxygen as an inevitable impurity.
A metal powder containing C is added to a raw material powder containing 1% by weight or more, and the obtained mixed powder is molded and then sintered in a non-oxidizing atmosphere. 0.3% by weight
The sixth embodiment is characterized by a method for producing a Kovar sintered body that obtains a sintered body having a relative density of 92% or more, and a Ni content of 28 to 32% by weight and a Co content of 1%.
A metal powder containing C is added to a raw material powder containing 5 to 18% by weight, the balance being substantially Fe, and containing 0.1% by weight or more of oxygen as an unavoidable impurity, and a binder added to the obtained mixed powder. To prepare a kneaded product, and after injection-molding the kneaded product, sintering was performed in a non-oxidizing atmosphere to reduce C to 0.1.
The present invention is characterized by a method for producing a Kovar sintered body containing 1% by weight or less, oxygen of 0.3% by weight or less, and a sintered body having a relative density of 92% or more.

【0012】本発明において、非酸化性雰囲気は真空雰
囲気または水素雰囲気であることが好ましく、また原料
粉末は、酸素を0.6重量%以下含むものであることが
好ましいものである。さらに、原料粉末に添加する金属
粉末は、Fe−Cであり、その添加量は5〜50重量%
であり、粒径が3〜20μmであることが好ましいもの
である。
In the present invention, the non-oxidizing atmosphere is preferably a vacuum atmosphere or a hydrogen atmosphere, and the raw material powder preferably contains 0.6% by weight or less of oxygen. Further, the metal powder to be added to the raw material powder is Fe-C, and the added amount is 5 to 50% by weight.
It is preferable that the particle size is 3 to 20 μm.

【0013】[0013]

【発明の実施の形態】本発明のアンバー焼結体の製造法
においては、Niを33〜40重量%含み、残部が実質
的にFeからなり、不可避不純物として酸素を0.1重
量%以上、特に0.6重量%をわずか超える程度を上限
とすることが好ましい原料粉末に、Cを含む金属粉末を
添加することが必要であり、一方スーパーアンバー焼結
体の製造方法においては、Niを30〜33重量%およ
びCoを5〜7重量%含み、残部が実質的にFeからな
り、不可避不純物として酸素を0.1重量%以上含む原
料粉末に、Cを含む金属粉末を添加することが必要であ
り、またコバール焼結体の製造方法においては、Niを
28〜32重量%およびCoを15〜18重量%含み、
残部が実質的にFeからなり、不可避不純物として酸素
を0.1重量%以上含む原料粉末に、Cを含む金属粉末
を添加することが必要である。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing an invar sintered body according to the present invention, Ni is contained in an amount of 33 to 40% by weight, and the balance is substantially made of Fe. In particular, it is necessary to add a metal powder containing C to the raw material powder whose upper limit is preferably slightly more than 0.6% by weight. It is necessary to add a metal powder containing C to a raw material powder containing up to 33% by weight, 5 to 7% by weight of Co, the balance being substantially Fe, and containing 0.1% by weight or more of oxygen as an unavoidable impurity. In a method for producing a Kovar sintered body, Ni is contained in an amount of 28 to 32% by weight and Co in an amount of 15 to 18% by weight,
It is necessary to add a metal powder containing C to a raw material powder substantially consisting of Fe and containing 0.1% by weight or more of oxygen as an unavoidable impurity.

【0014】したがって、前記いずれの焼結体の製造方
法においても、所望の合金組成に原料粉末を調合した
後、Cを含む金属粉末を添加することによって、C成分
を添加することが重要である。前記Cを含む金属粉末を
添加することによって、後工程の非酸化性雰囲気で焼結
する際、Cと原料粉末中の酸素とが反応してCOガスを
生成し放出するので、製造される焼結体中の酸素が除去
されるとともに、焼結が促進され、アンバー、スーパー
アンバー、コバール焼結体の緻密化(相対密度92%以
上)が達成されるものである。
Therefore, in any of the above-mentioned methods for producing a sintered body, it is important to add the C component by adding the metal powder containing C after mixing the raw material powder with the desired alloy composition. . By adding the metal powder containing C, when sintering in a non-oxidizing atmosphere in a later step, C reacts with oxygen in the raw material powder to generate and release CO gas. Oxygen in the compact is removed, sintering is promoted, and densification (relative density of 92% or more) of the invar, superinvar, and kovar sintered bodies is achieved.

【0015】添加するC源としては、C粉末を添加する
方法もあるが、C粉末を均一に分散させることが難し
く、不均一の場合には、部分的にCが凝集してしまいC
Oガスの生成反応が抑制される。したがってCOガスの
生成反応を促進させるために、高温で焼結を行ったり、
保持時間を長くする必要があった。そこで、Cを含む金
属粉末、例えばFe−C粉末などを添加することによ
り、均一に分散されてCOガスの生成反応も促進される
ものである。
As a C source to be added, there is a method of adding C powder. However, it is difficult to uniformly disperse the C powder.
O gas generation reaction is suppressed. Therefore, in order to accelerate the reaction of generating CO gas,
It was necessary to extend the holding time. Therefore, by adding a metal powder containing C, for example, Fe-C powder, the metal powder is uniformly dispersed and the reaction of generating CO gas is promoted.

【0016】Cを含む金属粉末を添加する原料粉末の組
成は、目的とする焼結体がアンバー焼結体、スーパーア
ンバー焼結体あるいはコバール焼結体かによってNi、
またはNi、Coの含有量が前記組成範囲内とすべきで
あるが、これらが前記組成範囲から外れると、製造され
るアンバー、スーパーアンバー焼結体の熱膨張係数が実
用的に膨張しない程度になり難くなるものであり、コバ
ール焼結体においては硬質ガラスやセラミックと同程度
の熱膨脹係数を有しなくなる。また、Cを含む金属粉末
を添加する前記原料粉末中に不可避不純物として含まれ
る酸素の含有量は、前記範囲とすることが必要である。
これは、酸素含有量が0.1重量%未満では、Cを含む
金属粉末による前記焼結体の緻密化作用が十分に発揮し
得ない。さらに、Cを含む金属粉末を添加する前記原料
粉末中に不可避不純物として含まれる酸素の上限量は、
通常0.6重量%であるが、0.6重量%をわずかに超
えてもよいものである。ただし酸素含有量が余り多すぎ
ると添加されるべきCを含む金属粉末の量が多くなり過
ぎて、製造される焼結体のC含有量を制御し難くなり、
焼結後の製品のC含有量が0.1重量%を超えやすくな
るものである。
The composition of the raw material powder to which the metal powder containing C is added depends on whether the target sintered body is an amber sintered body, a superamber sintered body or a Kovar sintered body.
Alternatively, the contents of Ni and Co should be within the above-mentioned composition range. However, if these contents are out of the above-mentioned composition range, the thermal expansion coefficient of the produced amber or super-amber sintered body is such that it does not expand practically. The Kovar sintered body does not have the same thermal expansion coefficient as hard glass or ceramic. Further, the content of oxygen contained as an unavoidable impurity in the raw material powder to which the metal powder containing C is added needs to be within the above range.
If the oxygen content is less than 0.1% by weight, the effect of densifying the sintered body by the metal powder containing C cannot be sufficiently exhibited. Further, the upper limit amount of oxygen contained as an unavoidable impurity in the raw material powder to which the metal powder containing C is added,
Usually 0.6% by weight, but may slightly exceed 0.6% by weight. However, if the oxygen content is too large, the amount of C-containing metal powder to be added becomes too large, and it becomes difficult to control the C content of the manufactured sintered body,
The C content of the product after sintering tends to exceed 0.1% by weight.

【0017】Cを含む金属粉末を添加する前記原料粉末
の粒径は、平均粒径で3〜50μmが好ましい。これ
は、3μm未満では、本発明にかかる方法において使用
するのに適当な酸素含有量が0.4重量%程度以下の金
属粉末が入手し難いか、入手し得るとしても高価とな
り、一方50μmを超えると、C粉末を添加する前記原
料粉末の焼結性が低下するものであるからである。
The average particle diameter of the raw material powder to which the metal powder containing C is added is preferably 3 to 50 μm. It is difficult to obtain a metal powder having an oxygen content of about 0.4% by weight or less, which is suitable for use in the method of the present invention, if the metal powder is less than 3 μm, or it will be expensive if available. If the amount exceeds the above range, the sinterability of the raw material powder to which the C powder is added is reduced.

【0018】本発明の焼結体の製造法において、原料粉
末に添加するCを含む金属粉末は、通常、添加して得ら
れる混合粉末のC含有量が0.05〜0.4重量%にな
るように添加するが、後工程の焼結でCを0.1重量%
以下、酸素を0.2もしくは0.3重量%以下含む焼結
体が得られるように該C含有量を適宜定めることができ
るものである。
In the method for producing a sintered body according to the present invention, the metal powder containing C added to the raw material powder usually has a C content of 0.05 to 0.4% by weight of the mixed powder obtained by addition. C is added at 0.1% by weight in the sintering process
Hereinafter, the C content can be appropriately determined so as to obtain a sintered body containing 0.2 or 0.3% by weight or less of oxygen.

【0019】また、本発明においては、Cを含む金属粉
末を添加して混合粉末を得た後は、公知の方法を行う
が、製造する焼結体は、C含有量が0.1重量%以下と
し、また酸素含有量が0.2重量%以下、もしくは0.
3重量%以下とするものであり、これらの範囲外では所
期の効果が得られないものである。さらに相対密度が9
2%以上である必要があるので、そのような焼結体を製
造するのに適当な条件を採用するものである。
In the present invention, after a mixed powder is obtained by adding a metal powder containing C, a known method is performed, but the sintered body to be produced has a C content of 0.1% by weight. Or less, and the oxygen content is 0.2% by weight or less, or
The content is 3% by weight or less, and the desired effect cannot be obtained outside these ranges. Furthermore, the relative density is 9
Since it needs to be 2% or more, conditions suitable for producing such a sintered body are adopted.

【0020】本発明における成形法は、プレスによる圧
縮成形、射出成形粉末冶金法などが適用し得るが、射出
成形粉末冶金法では、多量のバインダーを必要とするの
でバインダー除去時に、Cが残留し難いバインダー、例
えばワックスを主体としたバインダーを使用することが
好ましい。さらに焼結は、非酸化性雰囲気である真空雰
囲気または水素雰囲気などのCと酸素とのCO生成反応
が促進される雰囲気が必要である。
As the molding method in the present invention, compression molding by press, injection molding powder metallurgy, and the like can be applied. However, in injection molding powder metallurgy, a large amount of binder is required. It is preferable to use a binder which is difficult, for example, a binder mainly composed of wax. Further, sintering requires an atmosphere such as a vacuum atmosphere or a hydrogen atmosphere which is a non-oxidizing atmosphere, in which a CO generation reaction between C and oxygen is promoted.

【0021】[0021]

【実施例】次に、本発明の実施例を述べる。Next, an embodiment of the present invention will be described.

【0022】実施例1 純Fe粉末(平均粒径6μm、酸素含有量0.35重量
%)とNi粉末(平均粒径6μm、酸素含有量0.25
重量%)とFe−1.0重量%C粉末(平均粒径6μ
m、酸素含有量0.30重量%)を使用して、Niを3
6重量%およびCを0.1重量%含み、残部がFeから
なり、不可避不純物として酸素を0.31重量%含む混
合粉末を得た後、潤滑剤として1.5%のパラフィンワ
ックスを混合して、圧力を1500kgf/cmとし
て得られた混合粉末を圧縮成形し、得られた圧縮成形体
(直径20mm、厚さ10mm)を真空中1300℃で
1時間焼結してアンバー焼結体を製造した。製造したア
ンバー焼結体について、化学分析によってC含有量およ
び酸素含有量を、比重計によって相対密度を、さらに熱
膨脹計によって室温から100℃までの熱膨張係数を、
並びにTIG溶接によって溶接性をそれぞれ測定した。
これらの結果を表1に示す。なお、溶接性は良好であっ
た。
Example 1 Pure Fe powder (average particle size 6 μm, oxygen content 0.35% by weight) and Ni powder (average particle size 6 μm, oxygen content 0.25%)
Wt%) and Fe-1.0 wt% C powder (average particle size 6μ)
m, oxygen content 0.30% by weight)
After obtaining a mixed powder containing 6% by weight and 0.1% by weight of C and the balance being Fe and containing 0.31% by weight of oxygen as an unavoidable impurity, 1.5% of paraffin wax was mixed as a lubricant. Then, the mixed powder obtained at a pressure of 1500 kgf / cm 2 was compression-molded, and the obtained compression-molded body (diameter 20 mm, thickness 10 mm) was sintered at 1300 ° C. for 1 hour in a vacuum to obtain an invar sintered body. Manufactured. For the produced amber sintered body, the C content and the oxygen content were determined by chemical analysis, the relative density was determined by a hydrometer, and the coefficient of thermal expansion from room temperature to 100 ° C. was determined by a thermal dilatometer.
In addition, the weldability was measured by TIG welding.
Table 1 shows the results. The weldability was good.

【0023】実施例2 Niを34重量%およびCを0.1重量%含み、残部が
実質的にFeからなり、不可避不純物として酸素を0.
31重量%含む混合粉末を得た以外は、実施例1と同様
に処理してアンバー焼結体を製造し、実施例1と同様に
して諸試験を行った。得られた結果を表1に示す。な
お、溶接性は良好であった。
Example 2 The composition contains 34% by weight of Ni and 0.1% by weight of C, the balance being substantially composed of Fe, and oxygen as an inevitable impurity.
Except that a mixed powder containing 31% by weight was obtained, the same treatment as in Example 1 was performed to produce an invar sintered body, and various tests were performed as in Example 1. Table 1 shows the obtained results. The weldability was good.

【0024】実施例3 Niを39重量%およびCを0.1重量%含み、残部が
実質的にFeからなり、不可避不純物として酸素を0.
31重量%含む混合粉末を得た以外は、実施例1と同様
に処理してアンバー焼結体を製造し、実施例1と同様に
して諸試験を行った。得られた結果を表1に示す。な
お、溶接性は良好であった。
Example 3 The composition contains 39% by weight of Ni and 0.1% by weight of C, and the balance substantially consists of Fe.
Except that a mixed powder containing 31% by weight was obtained, the same treatment as in Example 1 was performed to produce an invar sintered body, and various tests were performed as in Example 1. Table 1 shows the obtained results. The weldability was good.

【0025】実施例4 Niを36重量%およびCを0.25重量%含み、残部
が実質的にFeからなり、不可避不純物として酸素を
0.30重量%含む混合粉末を得た以外は、実施例1と
同様に処理してアンバー焼結体を製造し、実施例1と同
様にして諸試験を行った。得られた結果を表1に示す。
なお、溶接性は良好であった。
Example 4 A mixed powder containing 36% by weight of Ni and 0.25% by weight of C with the balance being substantially Fe and containing 0.30% by weight of oxygen as an unavoidable impurity was obtained. An invar sintered body was manufactured in the same manner as in Example 1, and various tests were performed in the same manner as in Example 1. Table 1 shows the obtained results.
The weldability was good.

【0026】実施例5 実施例1と同様にして混合粉末を得た後、この混合粉末
とワックス系バインダーの容量比が60:40になるよ
うにワックス系バインダーを添加して150℃で混練
し、次いでペレット状に造粒した。得られたペレットを
射出成形機を使用して射出成形し、得られた射出成形体
を300℃に2時間保持してワックス系バインダーを除
去した。得られた射出成形体(直径20mm、厚さ10
mm)を真空中1320℃で1時間焼結してアンバー焼
結体を製造した。製造したアンバー焼結体について、実
施例1と同様にして諸試験を行った。得られた結果を表
1に示す。なお、溶接性は良好であった。
Example 5 A mixed powder was obtained in the same manner as in Example 1, a wax-based binder was added so that the volume ratio of the mixed powder to the wax-based binder was 60:40, and the mixture was kneaded at 150 ° C. And then granulated into pellets. The obtained pellet was injection-molded using an injection molding machine, and the obtained injection-molded product was kept at 300 ° C. for 2 hours to remove the wax binder. The obtained injection molded article (diameter 20 mm, thickness 10
mm) was sintered in vacuum at 1320 ° C. for 1 hour to produce an invar sintered body. Various tests were performed on the manufactured amber sintered body in the same manner as in Example 1. Table 1 shows the obtained results. The weldability was good.

【0027】比較例1 原料粉末への添加剤としてのFe−1.0重量%C粉末
を添加しなかった以外は、実施例5と同様に処理し、実
施例1と同様にして諸試験を行った。得られた結果を表
1に示す。なお、溶接性は良好であった。
Comparative Example 1 The procedure of Example 5 was repeated except that Fe-1.0 wt% C powder was not added as an additive to the raw material powder, and various tests were performed in the same manner as in Example 1. went. Table 1 shows the obtained results. The weldability was good.

【0028】比較例2 Niを32重量%およびCを0.1重量%含み、残部が
実質的にFeからなり、不可避不純物として酸素を0.
31重量%含む混合粉末を得た以外は、実施例5と同様
に処理してアンバー焼結体を製造し、実施例1と同様に
して諸試験を行った。得られた結果を表1に示す。な
お、溶接性は良好であった。
COMPARATIVE EXAMPLE 2 The composition contains 32% by weight of Ni and 0.1% by weight of C, with the balance being substantially composed of Fe.
Except that a mixed powder containing 31% by weight was obtained, an invar sintered body was manufactured in the same manner as in Example 5, and various tests were performed in the same manner as in Example 1. Table 1 shows the obtained results. The weldability was good.

【0029】比較例3 Niを41重量%およびCを0.1重量%含み、残部が
実質的にFeからなり、不可避不純物として酸素を0.
30重量%含む混合粉末を得た以外は、実施例5と同様
に処理してアンバー焼結体を製造し、実施例1と同様に
して諸試験を行った。得られた結果を表1に示す。な
お、溶接性は良好であった。
COMPARATIVE EXAMPLE 3 Ni was contained in an amount of 41% by weight and C in an amount of 0.1% by weight, and the balance was substantially composed of Fe.
Except that a mixed powder containing 30% by weight was obtained, the same treatment as in Example 5 was performed to produce an invar sintered body, and various tests were performed as in Example 1. Table 1 shows the obtained results. The weldability was good.

【0030】比較例4 原料粉末への添加剤としてのFe−1.0重量%C粉末
の添加量を多くし、C含有量を0.55重量%とした以
外は、実施例5と同様にして処理し、諸試験を行った。
得られた結果を表1に示す。なお、溶接性は不良であっ
た。
Comparative Example 4 The procedure of Example 5 was repeated except that the amount of the Fe-1.0% by weight C powder added to the raw material powder was increased and the C content was changed to 0.55% by weight. And performed various tests.
Table 1 shows the obtained results. The weldability was poor.

【0031】[0031]

【表1】 [Table 1]

【0032】これらの結果から、(1)実施例1〜5の
アンバー焼結体は、いずれもC含有量が0.1重量%以
下、酸素含有量が0.2重量%以下であり、相対密度が
92%以上を有し、熱膨張係数が3×10−6以下であ
り、アンバー焼結体が実用的に膨張しない程度に十分低
い。(2)比較例1のアンバー焼結体は、酸素含有量が
0.24重量%と多く、相対密度が85.5%と低いた
めに、機械的強度が溶製材より劣る。(3)比較例2、
3のアンバー焼結体は、Ni含有量が33〜40%の範
囲を外れるために、熱膨張係数が4×10−6/℃と高
く、アンバー焼結体が実用的に膨張しない程度を越えて
いる。(4)比較例4のアンバー焼結体は、C粉末の添
加量が多すぎて、焼結後のC含有量が0.17重量%と
多すぎるために、溶接性が劣るものとなった。などとい
った欠点が認められる。
From these results, (1) all of the amber sintered bodies of Examples 1 to 5 had a C content of 0.1% by weight or less and an oxygen content of 0.2% by weight or less, It has a density of 92% or more, a thermal expansion coefficient of 3 × 10 −6 or less, and is sufficiently low that the invar sintered body does not expand practically. (2) Since the oxygen content of the amber sintered body of Comparative Example 1 is as high as 0.24% by weight and the relative density is as low as 85.5%, the mechanical strength is inferior to that of the smelted material. (3) Comparative Example 2,
The invar sintered body of No. 3 has a high thermal expansion coefficient of 4 × 10 −6 / ° C. because the Ni content is out of the range of 33 to 40%, and exceeds the extent that the invar sintered body does not expand practically. ing. (4) The invar sintered body of Comparative Example 4 had poor weldability because the amount of C powder added was too large and the C content after sintering was too large at 0.17% by weight. . Some disadvantages are observed.

【0033】実施例6 純Fe粉末(平均粒径6μm、酸素含有量0.35重量
%)と、Ni粉末(平均粒径6μm、酸素含有量0.2
5重量%)と、Co粉末(平均粒径5μm、酸素含有量
0.35重量%)と、Fe−1.0重量%C粉末(平均
粒径6μm、酸素含有量0.30重量%)とを使用し
て、Niを32重量%、Coが6重量%およびCを0.
1重量%含み、残部が実質的にFeからなり、不可避不
純物として酸素を0.31重量%含む混合粉末を得た
後、潤滑剤として1.5%のパラフィンワックスを混合
した後、金型に充填し、加圧力を1500kgf/cm
として圧縮成形した。得られた圧縮成形体(直径20
mm、厚さ10mm)を真空中1320℃で1時間焼結
してスーパーアンバー焼結体を製造した。製造したスー
パーアンバー焼結体について、実施例1と同様にして諸
試験を行った。特に、熱膨張係数は、25〜100℃、
〜200℃、〜300℃、〜400℃、〜500℃のそ
れぞれについても測定した。これらの結果を表2に示
す。原料粉末にC粉末を添加しない比較例に較べて、相
対密度、熱膨張係数ともに大幅に改善されていることが
認められ、溶接性も良好であった。
Example 6 Pure Fe powder (average particle size 6 μm, oxygen content 0.35% by weight) and Ni powder (average particle size 6 μm, oxygen content 0.2)
5% by weight), Co powder (average particle size 5 μm, oxygen content 0.35% by weight), Fe-1.0% by weight C powder (average particle size 6 μm, oxygen content 0.30% by weight) Using 32% by weight of Ni, 6% by weight of Co and 0.1% of C.
After obtaining a mixed powder containing 1% by weight and the balance substantially consisting of Fe and containing 0.31% by weight of oxygen as an unavoidable impurity, 1.5% paraffin wax was mixed as a lubricant and then mixed with a mold. Fill, press force 1500kgf / cm
2 was compression molded. The obtained compression molded body (diameter 20
mm, thickness 10 mm) was sintered in vacuum at 1320 ° C. for 1 hour to produce a superamber sintered body. Various tests were performed on the manufactured Super Amber sintered body in the same manner as in Example 1. In particular, the coefficient of thermal expansion is 25 to 100 ° C,
The measurement was also performed for each of -200C, -300C, -400C, and -500C. Table 2 shows the results. Compared with the comparative example in which C powder was not added to the raw material powder, it was recognized that both the relative density and the coefficient of thermal expansion were significantly improved, and the weldability was also good.

【0034】実施例7 原料粉末のC含有量を0.25重量%とし、焼結雰囲気
を水素雰囲気とした以外は、実施例1と同様に処理し、
得られた製品について実施例6と同様にして諸試験を行
った。得られた結果を表2に示す。原料粉末にC粉末を
添加しない比較例に較べて、相対密度、熱膨張係数とも
に大幅に改善されていることが認められ、溶接性も良好
であった。
Example 7 The same treatment as in Example 1 was carried out except that the C content of the raw material powder was 0.25% by weight and the sintering atmosphere was a hydrogen atmosphere.
Various tests were performed on the obtained product in the same manner as in Example 6. Table 2 shows the obtained results. Compared with the comparative example in which C powder was not added to the raw material powder, it was recognized that both the relative density and the coefficient of thermal expansion were significantly improved, and the weldability was also good.

【0035】実施例8 実施例6の原料粉末に対して、ワックス系バインダーを
42容量%添加して、150℃で混練してペレット状に
造粒し、これを射出成形機を使用して射出成形し、さら
にこの成形体を300℃で2時間保持して脱バインダー
処理した。その後、1320℃で1時間焼成処理を施し
た。得られた製品について実施例6と同様にして諸試験
を行った。得られた結果を表2に示す。原料粉末にC粉
末を添加しない比較例に較べて、相対密度、熱膨張係数
ともに大幅に改善されていることが認められ、溶接性も
良好であった。
Example 8 A 42% by volume wax-based binder was added to the raw material powder of Example 6, kneaded at 150 ° C. and granulated into pellets, which were injected using an injection molding machine. The molded body was further held at 300 ° C. for 2 hours to perform a binder removal treatment. Thereafter, a baking treatment was performed at 1320 ° C. for 1 hour. Various tests were performed on the obtained product in the same manner as in Example 6. Table 2 shows the obtained results. Compared with the comparative example in which C powder was not added to the raw material powder, it was recognized that both the relative density and the coefficient of thermal expansion were significantly improved, and the weldability was also good.

【0036】比較例5 原料粉末としてFe−1.0重量%C粉末を使用しなか
った以外は、実施例6と同様に処理して、Niが32重
量%、Coが6重量%、残部が実質的にFeからなる混
合粉末を得た。この混合粉末を実施例6と同様に処理し
た。得られた製品について実施例6と同様にして諸試験
を行った。得られた結果を表2に示す。原料粉末にC粉
末を添加した実施例に較べて、相対密度、熱膨張係数と
もに大幅に劣っていることが認められ、溶接性も不良で
あった。
Comparative Example 5 The same treatment as in Example 6 was carried out except that Fe-1.0% by weight C powder was not used as a raw material powder. Ni was 32% by weight, Co was 6% by weight, and the balance was A mixed powder substantially consisting of Fe was obtained. This mixed powder was treated as in Example 6. Various tests were performed on the obtained product in the same manner as in Example 6. Table 2 shows the obtained results. It was recognized that both the relative density and the coefficient of thermal expansion were significantly inferior to the examples in which the C powder was added to the raw material powder, and the weldability was also poor.

【0037】比較例6 原料粉末としてFe−1.0重量%C粉末の混合量を増
加させて、C含有量を0.55重量%とした以外は、実
施例6と同様に処理して、Niが32重量%、Coが6
重量%、残部が実質的にFeからなる混合粉末を得た。
この混合粉末を実施例6と同様に処理した。得られた製
品について実施例6と同様にして諸試験を行った。得ら
れた結果を表2に示す。原料粉末にC粉末を添加した実
施例に較べて、相対密度、熱膨張係数ともに大幅に劣っ
ていることが認められ、溶接性も不良であった。
Comparative Example 6 The same treatment as in Example 6 was carried out except that the mixing amount of the Fe-1.0% by weight C powder as the raw material powder was increased to make the C content 0.55% by weight. 32% by weight Ni, 6% Co
A mixed powder consisting essentially of Fe by weight and the balance substantially consisting of Fe was obtained.
This mixed powder was treated as in Example 6. Various tests were performed on the obtained product in the same manner as in Example 6. Table 2 shows the obtained results. It was recognized that both the relative density and the coefficient of thermal expansion were significantly inferior to the examples in which the C powder was added to the raw material powder, and the weldability was also poor.

【0038】比較例7 比較例5と同様な組成の合金を従来方法に従って溶解し
た後、塑性加工により焼結体を製造し、得られた素材か
ら切り出した試験片について実施例6と同様にして諸試
験を行った。得られた結果を表2に示す。この結果か
ら、相対密度においては、良好な値を示しているもの
の、熱膨張係数においては、本発明の実施例に劣る値の
溶製材しか得られていないことが認められる。
Comparative Example 7 An alloy having a composition similar to that of Comparative Example 5 was melted according to a conventional method, and then a sintered body was manufactured by plastic working. A test piece cut out from the obtained material was used in the same manner as in Example 6. Various tests were performed. Table 2 shows the obtained results. From these results, it can be seen that although the relative density shows a good value, only the ingot having a value inferior to the example of the present invention in the thermal expansion coefficient is obtained.

【0039】[0039]

【表2】 [Table 2]

【0040】実施例9 純Fe粉末(平均粒径6μm、酸素含有量0.35重量
%)と、Ni粉末(平均粒径6μm、酸素含有量0.2
5重量%)と、Fe−50重量%Co粉末(平均粒径1
3μm、酸素含有量0.31重量%)と、Fe−1.0
重量%C粉末(平均粒径5μm、酸素含有量0.30重
量%)とを使用して、Niを29重量%、Coが16重
量%およびCを0.1重量%含み、残部が実質的にFe
からなり、不可避不純物として酸素を0.30重量%含
む混合粉末を得た後、潤滑剤として1.5%のパラフィ
ンワックスを混合した後、圧力を1500kgf/cm
として圧縮成形した。得られた圧縮成形体(直径20
mm、厚さ10mm)を真空中1320℃で2時間焼結
してコバール焼結体を製造した。製造したコバール焼結
体について、実施例1と同様にして諸試験を行った。特
に、熱膨張係数については、25〜300℃、〜400
℃、〜450℃、〜500℃について測定した。これら
の結果を表3に示す。なお、溶接性は良好であった。
Example 9 Pure Fe powder (average particle diameter 6 μm, oxygen content 0.35% by weight) and Ni powder (average particle diameter 6 μm, oxygen content 0.2)
5% by weight) and Fe-50% by weight Co powder (average particle size 1).
3 μm, oxygen content 0.31% by weight) and Fe-1.0
Wt% C powder (average particle size 5 μm, oxygen content 0.30 wt%) using 29 wt% Ni, 16 wt% Co and 0.1 wt% C, with the balance being substantially To Fe
After obtaining a mixed powder containing 0.30% by weight of oxygen as an unavoidable impurity, 1.5% paraffin wax was mixed as a lubricant, and the pressure was increased to 1500 kgf / cm.
2 was compression molded. The obtained compression molded body (diameter 20
mm, thickness 10 mm) was sintered in vacuum at 1320 ° C. for 2 hours to produce a Kovar sintered body. Various tests were performed on the manufactured Kovar sintered body in the same manner as in Example 1. In particular, regarding the coefficient of thermal expansion, 25 to 300 ° C.,
° C, ~ 450 ° C, and ~ 500 ° C. Table 3 shows the results. The weldability was good.

【0041】実施例10 Niを29重量%、Coを16重量%およびCを0.2
7重量%を含み、残部が実質的にFeからなり、不可避
不純物として酸素を0.30重量%含む混合粉末を得た
以外は、実施例9と同様に処理し、実施例9と同様にし
て諸試験を行った。得られた結果を表3に示す。なお、
溶接性は良好であった。
Example 10 29% by weight of Ni, 16% by weight of Co and 0.2% of C
Except that a mixed powder containing 7% by weight, the balance being substantially Fe, and containing 0.30% by weight of oxygen as an unavoidable impurity was obtained, the same treatment as in Example 9 was carried out. Various tests were performed. Table 3 shows the obtained results. In addition,
The weldability was good.

【0042】実施例11 実施例9と同様にして混合粉末を得た後、この混合粉末
とワックス系バインダーの容量比が55:45になるよ
うにワックス系バインダーを添加して150℃で混練
し、次いでペレット状に造粒した。得られたペレットを
射出成形機を使用して射出成形し、得られた射出成形体
を300℃に2時間保持してワックス系バインダーを除
去した。得られた射出成形体(直径20mm、厚さ10
mm)を真空中1320℃で2時間焼結してコバール焼
結体を製造した。製造したコバール焼結体について、実
施例9と同様にして諸試験を行った。得られた結果を表
3に示す。なお、溶接性は良好であった。
Example 11 After a mixed powder was obtained in the same manner as in Example 9, a wax-based binder was added so that the volume ratio of the mixed powder to the wax-based binder was 55:45, and the mixture was kneaded at 150 ° C. And then granulated into pellets. The obtained pellet was injection-molded using an injection molding machine, and the obtained injection-molded product was kept at 300 ° C. for 2 hours to remove the wax binder. The obtained injection molded article (diameter 20 mm, thickness 10
mm) in vacuum at 1320 ° C. for 2 hours to produce a Kovar sintered body. Various tests were performed on the manufactured Kovar sintered body in the same manner as in Example 9. Table 3 shows the obtained results. The weldability was good.

【0043】比較例8 原料粉末への添加剤としてのFe−1.0重量%C粉末
を添加しなかった以外は、実施例11と同様に処理し、
同様に諸試験を行った。得られた結果を表3に示す。な
お、溶接性は良好であった。
Comparative Example 8 The same treatment as in Example 11 was carried out except that Fe-1.0% by weight C powder as an additive to the raw material powder was not added.
Various tests were performed similarly. Table 3 shows the obtained results. The weldability was good.

【0044】比較例9 原料粉末への添加剤としてのFe−1.0重量%C粉末
の添加量を多くし、C含有量を0.38重量%とした以
外は、実施例11と同様に処理し、同様に諸試験を行っ
た。得られた結果を表3に示す。なお、溶接性は不良で
あった。
Comparative Example 9 The procedure of Example 11 was repeated, except that the amount of the Fe-1.0% by weight C powder added to the raw material powder was increased and the C content was changed to 0.38% by weight. The test was performed and various tests were similarly performed. Table 3 shows the obtained results. The weldability was poor.

【0045】比較例10 従来のように、コバール合金を溶解鋳造してNiを29
重量%およびCoを16重量%含み、残部がFe及び不
可避不純物からなる鋳塊を得、該鋳塊から直径20m
m、厚さ10mmの溶製材試料を採取し、実施例9と同
様にして諸試験を行った。得られた結果を表3に示す。
なお、溶接性は良好であった。
COMPARATIVE EXAMPLE 10 As in the prior art, a Kovar alloy was melt-cast and Ni was
Ingot containing 16% by weight of Co and 16% by weight of Co, with the balance being Fe and unavoidable impurities.
An ingot sample having a thickness of 10 mm and a thickness of 10 mm was collected and subjected to various tests in the same manner as in Example 9. Table 3 shows the obtained results.
The weldability was good.

【0046】[0046]

【表3】 [Table 3]

【0047】これらの結果から、(1)実施例9〜11
のコバール焼結体は、いずれも、C含有量が0.1重量
%以下、酸素含有量が0.3重量%以下であり、相対密
度が94%以上を有し、25℃から300℃、400
℃、450℃、500℃までの熱膨張係数が、いずれも
硬質ガラスやセラミックと同程度の熱膨張係数を有する
溶製材の熱膨張係数に非常に近似している。(2)比較
例8のコバール焼結体は、酸素含有量が0.31重量%
と多く、相対密度が85.4%と低いため、機械的特性
が溶製材より劣っている。(3)比較例9のコバール焼
結体は、C粉末の添加量が多すぎてC含有量が0.13
8重量%と多すぎたため、溶接性が劣るものとなった。
などといった欠点が認められた。
From these results, (1) Examples 9 to 11
All of the Kovar sintered bodies have a C content of 0.1% by weight or less, an oxygen content of 0.3% by weight or less, a relative density of 94% or more, 25 ° C to 300 ° C, 400
The coefficients of thermal expansion up to 500 ° C., 450 ° C., and 500 ° C. are very close to the coefficients of thermal expansion of ingots having the same coefficient of thermal expansion as hard glass and ceramic. (2) The Kovar sintered body of Comparative Example 8 has an oxygen content of 0.31% by weight.
Since the relative density is as low as 85.4%, the mechanical properties are inferior to those of the ingot. (3) In the Kovar sintered body of Comparative Example 9, the amount of C powder added was too large and the C content was 0.13.
Since the content was too large at 8% by weight, the weldability was poor.
Disadvantages such as were recognized.

【0048】[0048]

【発明の効果】本発明は、Cを含む金属粉末を添加する
ようにしたので、92%以上の相対密度を有し、熱膨張
係数の極めて低い、良好なアンバー、スーパーアンバー
焼結体製品、及び硬質ガラスやセラミックと同程度の熱
膨脹係数を有するコバール焼結体製品を極めて容易に製
造し得るものであって、顕著な効果が認められる。
According to the present invention, since a metal powder containing C is added, a good invar and superamber sintered product having a relative density of 92% or more and an extremely low coefficient of thermal expansion, Further, a Kovar sintered product having a thermal expansion coefficient comparable to that of hard glass or ceramic can be produced very easily, and a remarkable effect is recognized.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Niを33〜40重量%含み、残部が実
質的にFeからなり、不可避不純物として酸素を0.1
重量%以上含む原料粉末に、Cを含む金属粉末を添加
し、得られた混合粉末を成形した後、非酸化性雰囲気中
で焼結し、Cを0.1重量%以下、酸素を0.2重量%
以下含み、かつ相対密度が92%以上の焼結体を得るこ
とを特徴とする焼結体の製造方法。
1. The composition contains 33 to 40% by weight of Ni, and the balance substantially consists of Fe.
A metal powder containing C is added to a raw material powder containing not less than 0.1% by weight, and the obtained mixed powder is molded. Then, the mixture is sintered in a non-oxidizing atmosphere. 2% by weight
A method for producing a sintered body, comprising: obtaining a sintered body having a relative density of 92% or more.
【請求項2】 Niを33〜40重量%含み、残部が実
質的にFeからなり、不可避不純物として酸素を0.1
重量%以上含む原料粉末に、Cを含む金属粉末を添加
し、得られた混合粉末にバインダーを添加して混練物を
調製し、さらに該混練物を射出成形した後、非酸化性雰
囲気中で焼結し、Cを0.1重量%以下、酸素を〜0.
2重量%以下含み、かつ相対密度が92%以上の焼結体
を得ることを特徴とする焼結体の製造方法。
2. The composition contains 33 to 40% by weight of Ni, and the balance substantially consists of Fe.
A metal powder containing C is added to a raw material powder containing not less than% by weight, a binder is added to the obtained mixed powder to prepare a kneaded product, and the kneaded product is injection-molded. After sintering, the content of C is 0.1% by weight or less, and the content of oxygen is
A method for producing a sintered body, comprising obtaining a sintered body containing 2% by weight or less and having a relative density of 92% or more.
【請求項3】 Niを33〜40重量%、Coを5〜7
重量%含み、残部が実質的にFeからなり、不可避不純
物として酸素を0.1重量%以上含む原料粉末に、Cを
含む金属粉末を添加し、得られた混合粉末を成形した
後、非酸化性雰囲気中で焼結し、Cを0.1重量%以
下、酸素を0.2重量%以下含み、かつ相対密度が92
%以上の焼結体を得ることを特徴とする焼結体の製造方
法。
3. Ni is 33 to 40% by weight and Co is 5 to 7%.
% By weight, the balance being substantially Fe, the metal powder containing C added to the raw material powder containing 0.1% by weight or more of oxygen as an unavoidable impurity, and the resulting mixed powder is molded and then non-oxidized. Sintering in a neutral atmosphere, containing 0.1% by weight or less of C and 0.2% by weight or less of oxygen, and having a relative density of 92% or less.
% Of a sintered body, characterized by obtaining a sintered body of not less than 10%.
【請求項4】 Niを33〜40重量%、Coを5〜7
重量%含み、残部が実質的にFeからなり、不可避不純
物として酸素を0.1重量%以上含む原料粉末に、Cを
含む金属粉末を添加し、得られた混合粉末にバインダー
を添加して混練物を調製し、さらに該混練物を射出成形
した後、非酸化性雰囲気中で焼結し、Cを0.1重量%
以下、酸素を0.2重量%以下含み、かつ相対密度が9
2%以上の焼結体を得ることを特徴とする焼結体の製造
方法。
4. Ni is 33 to 40% by weight and Co is 5 to 7%.
Wt.%, With the balance substantially consisting of Fe, a metal powder containing C added to a raw powder containing 0.1 wt.% Or more of oxygen as an unavoidable impurity, and a binder added to the resulting mixed powder and kneaded. After the mixture is injection-molded, the mixture is sintered in a non-oxidizing atmosphere to make C 0.1% by weight.
Hereafter, the oxygen content is 0.2% by weight or less, and the relative density is 9% or less.
A method for producing a sintered body, comprising obtaining a sintered body of 2% or more.
【請求項5】 Niを28〜32重量%、Coを15〜
18重量%含み、残部が実質的にFeからなり、不可避
不純物として酸素を0.1重量%以上含む原料粉末に、
Cを含む金属粉末を添加し、得られた混合粉末を成形し
た後、非酸化性雰囲気中で焼結し、Cを0.1重量%以
下、酸素を0.3重量%以下含み、かつ相対密度が92
%以上の焼結体を得ることを特徴とする焼結体の製造方
法。
5. 28 to 32% by weight of Ni and 15 to 25% of Co
Raw material powder containing 18% by weight, the balance being substantially Fe, and containing 0.1% by weight or more of oxygen as an inevitable impurity,
After adding a metal powder containing C and shaping the resulting mixed powder, sintering is performed in a non-oxidizing atmosphere to contain 0.1% by weight or less of C, 0.3% by weight or less of oxygen, and Density is 92
% Of a sintered body, characterized by obtaining a sintered body of not less than 10%.
【請求項6】 Niを28〜32重量%、Coを15〜
18重量%含み、残部が実質的にFeからなり、不可避
不純物として酸素を0.1重量%以上含む原料粉末に、
Cを含む金属粉末を添加し、得られた混合粉末にバイン
ダーを添加して混練物を調製し、さらに該混練物を射出
成形した後、非酸化性雰囲気中で焼結し、Cを0.1重
量%以下、酸素を0.3重量%以下含み、かつ相対密度
が92%以上の焼結体を得ることを特徴とする焼結体の
製造方法。
6. 28 to 32% by weight of Ni and 15 to 25% of Co
Raw material powder containing 18% by weight, the balance being substantially Fe, and containing 0.1% by weight or more of oxygen as an inevitable impurity,
A metal powder containing C is added, and a binder is added to the obtained mixed powder to prepare a kneaded material. After the kneaded material is injection-molded, the mixture is sintered in a non-oxidizing atmosphere to reduce C to 0.1. A method for producing a sintered body, comprising obtaining a sintered body containing 1% by weight or less, 0.3% by weight or less of oxygen, and having a relative density of 92% or more.
【請求項7】 非酸化性雰囲気が真空雰囲気または水素
雰囲気であることを特徴とする請求項1〜6のいずれか
1項に記載の焼結体の製造方法。
7. The method for producing a sintered body according to claim 1, wherein the non-oxidizing atmosphere is a vacuum atmosphere or a hydrogen atmosphere.
【請求項8】 原料粉末は、酸素を0.6重量%以下含
むことを特徴とする請求項1〜7のいずれか1項に記載
の焼結体の製造方法。
8. The method for producing a sintered body according to claim 1, wherein the raw material powder contains 0.6% by weight or less of oxygen.
【請求項9】 原料粉末に添加する金属粉末は、Fe−
Cであり、その添加量が5〜50重量%であることを特
徴とする請求項1〜8のいずれか1項に記載の焼結体の
製造方法。
9. The metal powder to be added to the raw material powder is Fe-
The method for producing a sintered body according to any one of claims 1 to 8, wherein C is C and the amount of addition is 5 to 50% by weight.
JP32220096A 1996-11-18 1996-11-18 Manufacture of sintered compact Pending JPH10147833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32220096A JPH10147833A (en) 1996-11-18 1996-11-18 Manufacture of sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32220096A JPH10147833A (en) 1996-11-18 1996-11-18 Manufacture of sintered compact

Publications (1)

Publication Number Publication Date
JPH10147833A true JPH10147833A (en) 1998-06-02

Family

ID=18141077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32220096A Pending JPH10147833A (en) 1996-11-18 1996-11-18 Manufacture of sintered compact

Country Status (1)

Country Link
JP (1) JPH10147833A (en)

Similar Documents

Publication Publication Date Title
KR900006613B1 (en) Process for manufacturing copper base spinodal alloy articles
JPH04231404A (en) Method for powder metallurgy by means of optimized two-times press-two-times sintering
EP2564956A1 (en) Fabrication method of alloy parts by metal injection molding
JPH0254733A (en) Manufacture of ti sintered material
JP2006503981A (en) Method for controlling dimensional changes during sintering of iron-based powder mixtures
JPH07289566A (en) Orthodontic parts made of titanium
JPH0633166A (en) Manufacture of oxide dispersion-strengthened heat resistant alloy sintered compact
JPS5857502B2 (en) Sintered material with toughness and wear resistance
JPH10147833A (en) Manufacture of sintered compact
US20050163646A1 (en) Method of forming articles from alloys of tin and/or titanium
JPH02107703A (en) Composition for injection molding
JPH0931588A (en) Production of invar (r) sintered compact
JPH10317009A (en) Production of stainless sintered body
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JP2793938B2 (en) Manufacturing method of sintered metal parts by metal powder injection molding method
JPH11181541A (en) Production of stainless steel sintered body
JPH0325499B2 (en)
JPH07300648A (en) High strength sintered w-base alloy and its production
JPH10147832A (en) Manufacture of &#39;permalloy(r)&#39; sintered compact
JPH03229832A (en) Manufacture of nb-al intermetallic compound
JPH06172810A (en) Production of tungsten alloy sintered compact
JPH0931589A (en) Production of kovar sintered compact
JPH10287901A (en) Production of stainless sintered body
JPH0633165A (en) Manufacture of sintered titanium alloy
JP2001152207A (en) Method for producing chromium-nickel-molybdenum steel sintered body

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050307

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050317

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050707