JP3265463B2 - Method for producing Ti sintered body - Google Patents
Method for producing Ti sintered bodyInfo
- Publication number
- JP3265463B2 JP3265463B2 JP07078497A JP7078497A JP3265463B2 JP 3265463 B2 JP3265463 B2 JP 3265463B2 JP 07078497 A JP07078497 A JP 07078497A JP 7078497 A JP7078497 A JP 7078497A JP 3265463 B2 JP3265463 B2 JP 3265463B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- container
- sintered body
- sintering
- sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Powder Metallurgy (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、軽量、高強度かつ
高耐食性を有するTiの部品製造技術に係わり、Ti粉
末を原料としたTi焼結体の製造方法に関するものであ
り、さらに詳しくは、Ti粉末による成形体を炭素炉で
焼結する際、焼結体の表面に炭化物が生成せず、しかも
室温引張強度及び破断伸びに優れたTi焼結体を得るこ
とを可能とするTi焼結体の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for manufacturing a Ti component having light weight, high strength and high corrosion resistance, and more particularly to a method for manufacturing a Ti sintered body using Ti powder as a raw material. When sintering a compact made of Ti powder in a carbon furnace, carbides are not generated on the surface of the sintered body, and Ti sintering that enables to obtain a Ti sintered body having excellent room temperature tensile strength and elongation at break It relates to a method for producing a body.
【0002】[0002]
【従来の技術】Tiは軽量、高強度かつ高耐食性の優れ
た特性を有するため、宇宙・航空機器分野、輸送機器分
野、化学プラント分野等において鉄系材料に代わる適用
が期待されている。また、生体適合性に優れるため、医
療分野及び時計をはじめとする装飾品分野への利用も進
んでいる。このTiの部品製造方法は従来は溶解鋳造法
が主であったが、高温では活性が高く技術的に困難が点
が多い。また、Tiは難加工性材料であるため、機械加
工による部品製造も困難が伴う。2. Description of the Related Art Since Ti has excellent characteristics of light weight, high strength and high corrosion resistance, it is expected to be used in place of iron-based materials in the fields of space and aviation equipment, transportation equipment, and chemical plants. In addition, because of its excellent biocompatibility, it is also being used in the medical field and in the field of ornaments such as watches. Conventionally, the method for producing Ti components has mainly been a melting casting method, but has high activity at high temperatures and has many technical difficulties. Further, since Ti is a difficult-to-process material, it is difficult to manufacture parts by machining.
【0003】このTiの活性の高さ及び難加工性を克服
するため、粉末冶金法によるTiの成形技術の研究開発
が進められている。粉末冶金法の利点としては、Tiの
融点以下の温度で焼結させるためハンドリングが容易で
あること、成形後の後加工の少ないいわゆるニアネット
シェイプ成形が可能であること、及び結晶粒が微細であ
るため機械的性質が優れること、が挙げられる。粉末冶
金法の中で、特に複雑形状部品の量産技術として近年注
目されているのは金属粉末射出成形法である。この成形
法は原料となる金属粉末にワックスや熱可塑性樹脂等の
有機バインダ−を30〜50%(体積比)程度添加し
て、コンパウンドを作製し、射出成形機において、目的
の形状を有する金型へ高速・高圧で射出して、成形体
(グリ−ン体)を得る。この成形体に含まれる有機バイ
ンダ−を何らかの方法で大部分除去した後、高温で焼結
することにより、目的とする焼結体を得るものである。[0003] In order to overcome the high activity and difficult workability of Ti, research and development of Ti forming technology by powder metallurgy have been advanced. The advantages of the powder metallurgy method are that it is easy to handle because it is sintered at a temperature equal to or lower than the melting point of Ti, so-called near-net shape molding with less post-processing after molding, and that the crystal grains are fine. Therefore, the mechanical properties are excellent. Among powder metallurgy methods, a metal powder injection molding method has recently attracted attention as a technique for mass-producing complicated-shaped parts. In this molding method, an organic binder such as a wax or a thermoplastic resin is added to a metal powder as a raw material in an amount of about 30 to 50% (volume ratio) to produce a compound. It is injected into a mold at high speed and high pressure to obtain a molded body (green body). After removing most of the organic binder contained in the compact by some method, the compact is sintered at a high temperature to obtain a target sintered body.
【0004】粉末冶金法により良好な機械的特性をもつ
Ti焼結体を得るためには、Ti中に含まれる酸素量を
抑制することが必要である。酸素含有量が多くなると
(0.4wt%以上)室温での延性が低下するいわゆる
脆化現象を示すようになる。特に、Tiは高温になるほ
ど活性が高くなり、たとえ真空中でも、微量に存在する
酸素をピックアップする傾向が高くなるため、高温焼結
になるほど、焼結時の雰囲気を厳密に制御することが望
まれる。そこで、この問題を解決する方法として、焼結
用の容器内に酸素を優先的にピックアップするゲッタ−
金属を入れて焼結する方法が開示されている(特開平6
−330105号公報)。[0004] In order to obtain a Ti sintered body having good mechanical properties by powder metallurgy, it is necessary to suppress the amount of oxygen contained in Ti. When the oxygen content increases (0.4 wt% or more), a so-called embrittlement phenomenon in which ductility at room temperature decreases is exhibited. In particular, the higher the temperature of Ti, the higher the activity becomes. Even in a vacuum, the tendency of picking up a trace amount of oxygen increases. Therefore, the higher the sintering temperature, the more strictly the sintering atmosphere is desired. . Therefore, as a method for solving this problem, a getter that preferentially picks up oxygen in a sintering container is used.
A method of adding metal and sintering is disclosed (Japanese Unexamined Patent Publication No.
-330105).
【0005】また、Ti粉末を焼結する際使用する炉の
材質にも注意が必要である。真空炉や雰囲気炉としてよ
く用いられている炭素炉を使うと、焼結体表面が炭素と
反応して炭化物を生成する可能性があるため、Tiの焼
結には発熱体及び炉体としてはモリブデンやタングステ
ン等の金属材料がよく使われている。Attention must also be paid to the material of the furnace used when sintering Ti powder. If a carbon furnace, which is often used as a vacuum furnace or an atmosphere furnace, is used, the surface of the sintered body may react with carbon to form carbides. Metal materials such as molybdenum and tungsten are often used.
【0006】[0006]
【発明が解決しようとする課題】本発明は炭素を炉体及
び発熱体とする真空焼結炉において、Tiを焼結する
際、炉体と発熱体からの炭素の侵入を極力防止して、焼
結体表面の炭化物の生成がなく、しかも機械的特性に優
れたTi焼結体の製造方法を提供することを目的とす
る。SUMMARY OF THE INVENTION In a vacuum sintering furnace using carbon as a furnace body and a heating element, the present invention minimizes the penetration of carbon from the furnace body and the heating element when sintering Ti. It is an object of the present invention to provide a method for producing a Ti sintered body that does not generate carbide on the surface of the sintered body and has excellent mechanical properties.
【0007】[0007]
【課題を解決するための手段】本発明における焼結方法
は、平均粒径15μm以下の微細なTi粉末による成形
体をセラミックス粉末に埋めて、これを緻密な容器に挿
入し、この容器をさらに大きい緻密な容器に挿入する。
また2つの容器の空隙にセラミックス粉末を充填する。
この二重容器を炭素炉に挿入し、1×10-4Torr以
下の真空中で加熱して、1050℃以下の温度で焼結す
るものである。また、本発明は、セラミックス粉末がア
ルミナ(Al2 O3 )であり、緻密な容器がアルミナ容
器である上記のTi焼結体の製造方法を望ましい実施の
態様とするものである。According to the sintering method of the present invention, a compact made of fine Ti powder having an average particle size of 15 μm or less is buried in a ceramic powder, which is inserted into a dense container. Insert into a large, tight container.
In addition, the space between the two containers is filled with ceramic powder.
This double vessel is inserted into a carbon furnace, heated in a vacuum of 1 × 10 −4 Torr or less, and sintered at a temperature of 1050 ° C. or less. In a preferred embodiment of the present invention, the above-described method for producing a Ti sintered body in which the ceramic powder is alumina (Al 2 O 3 ) and the dense container is an alumina container.
【0008】[0008]
【作用】上記の発明において、緻密な焼結用容器、その
間のセラミックス粉末及び成形体を覆っているセラミッ
クス粉末によって発熱体及び炉体からの炭素の混入を防
止する効果が期待できる。また、成形体を覆うセラミッ
クス粉末は、こればかりではなく、成形体周囲の熱分布
を均等にして、変形の少ない焼結体を得る効果も期待さ
れる。In the above invention, the effect of preventing carbon from being mixed in from the heating element and the furnace body can be expected by the dense sintering container, the ceramic powder between them, and the ceramic powder covering the compact. In addition, the ceramic powder covering the molded body is expected to have not only this effect but also an effect of obtaining a sintered body with less deformation by equalizing the heat distribution around the molded body.
【0009】成形体を埋めるのに用いるセラミックス粉
末及び容器間の隙間を覆うセラミックス粉末とも細かい
ほど炭素の遮断効果は大きいが、あまり微細になると成
形体に侵入する可能性があるため、10〜50μmの範
囲とすることが望ましい。粉末の材質は高温でも安定で
あり、しかも安価で入手しやすい酸化物系のアルミナ
(Al2 O3 )がよい。その他、ジルコニア(Zr
O2 )、イットリア(Y2 O3 )などが例示される。焼
結用の容器は緻密で耐熱性のあるものがよい。当該容器
の材料としては、例えば、アルミナ等のセラミックス材
料、あるいはモリブデン、タングステン等の高融点金属
材料などが好適なものとして例示される。焼結温度を1
050℃以下としたのは、高温焼結による焼結体の結晶
粒の粗大化を防止するとともにTiと雰囲気ガスとの反
応をできるだけ避けるためである。1050℃を上回る
と炉体付着物等からの分解ガス、あるいは微量に存在す
る酸素などによる汚染を受けやすくなる。原料となるT
i粉末は焼結温度が1050℃以下と低いため、焼結後
の密度向上を考慮にいれ、平均粒径15μm以下とし
た。好ましくは平均粒径10μm以下が望ましい。しか
し、あまり微細になると、粉末の比表面積の増大による
酸素量の増加及び必要とする有機バインダー量の増加が
懸念される。15μmを上回ると1050℃以下の焼結
温度では十分に緻密化しなくなる。Ti粉末の酸素量は
0.25wt%以下が望ましい。Ti粉末原料として
は、ガスアトマイズ粉末、水素化脱水素(HDH)粉末
等、特に製造法を選ばない。上記微細なTi粉末による
成形体は、例えば、射出成形によりグリーン体を作製す
る方法、あるいはCIP法(冷間等方圧成形法)、乾式
プレス法などにより作製する。有機バインダーとして、
ワックス系、熱可塑性樹脂系、あるいはこれらの混合
系、水系など成形法に適したものを適宜使用することが
できる。また、Ti粉末を成形するのに使用する有機系
バインダ−が焼結時に多量に存在すると、焼結後、内部
に炭化物を形成するため、焼結前に十分脱脂しておくこ
とが必要である。上記有機バインダーは、例えば、上記
成形体を100 Torr台の真空中でArガスを流しな
がら、380℃まで加熱して、脱脂、除去する。成形体
をセラミックス粉末の中に埋め、これを緻密な容器に挿
入し、この容器をさらに大きい緻密な容器に挿入し、ま
た、2つの当該容器の空隙にセラミックス粉末を充填
し、この二重容器(図1)を炭素炉に挿入するが、その
工程及び当該二重容器の形態、セラミックス粉末の量等
は、特に限定されるものではない。焼結方法としては、
1×10-4Torr以下、望ましくは5×10-5Tor
r以下の真空中、1050℃以下、望ましくは1025
〜950℃の温度で1〜2時間加熱する方法が採用され
る。The finer the ceramic powder used for filling the compact and the ceramic powder covering the gap between the containers, the greater the effect of blocking carbon, but if it is too fine, it may penetrate into the compact. It is desirable to be within the range. The material of the powder is preferably oxide alumina (Al 2 O 3 ), which is stable even at a high temperature and is inexpensive and easily available. In addition, zirconia (Zr
O 2 ) and yttria (Y 2 O 3 ). The sintering container is preferably dense and heat-resistant. Suitable materials for the container include, for example, ceramic materials such as alumina, and high melting point metal materials such as molybdenum and tungsten. Sintering temperature 1
The reason for setting the temperature at 050 ° C. or lower is to prevent the crystal grains of the sintered body from being coarsened by the high-temperature sintering and to avoid the reaction between Ti and the atmosphere gas as much as possible. If it exceeds 1050 ° C., it becomes liable to be contaminated by a decomposition gas from a furnace body deposit or the like or a trace amount of oxygen. T as raw material
Since the i-powder has a low sintering temperature of 1050 ° C. or less, the average particle diameter is set to 15 μm or less in consideration of the improvement in density after sintering. Preferably, the average particle size is 10 μm or less. However, when it is too fine, there is a concern that the amount of oxygen and the amount of the organic binder required due to an increase in the specific surface area of the powder may increase. If it exceeds 15 μm, it will not be sufficiently densified at a sintering temperature of 1050 ° C. or less. The oxygen content of the Ti powder is desirably 0.25 wt% or less. The production method of the Ti powder raw material is not particularly limited, such as gas atomized powder, hydrodehydrogenation (HDH) powder and the like. The molded body made of the fine Ti powder is produced by, for example, a method of producing a green body by injection molding, a CIP method (cold isostatic pressing method), a dry pressing method, or the like. As an organic binder,
A wax-based, thermoplastic resin-based, or a mixture thereof, or a water-based material suitable for a molding method can be used as appropriate. In addition, if a large amount of an organic binder used for molding the Ti powder is present during sintering, carbides are formed inside after sintering, so it is necessary to sufficiently degrease before sintering. . The organic binder is, for example, while flowing Ar gas the molded body at 10 0 Torr stand vacuum and heated to 380 ° C., degreasing, removal. The molded body is buried in ceramic powder, inserted into a dense container, the container is inserted into a larger and dense container, and the space between the two containers is filled with ceramic powder, and the double container (FIG. 1) is inserted into a carbon furnace, but the steps, the form of the double vessel, the amount of ceramic powder, and the like are not particularly limited. As the sintering method,
1 × 10 −4 Torr or less, preferably 5 × 10 −5 Torr
1050 ° C. or less, preferably 1025 ° C. or less in a vacuum of r or less
A method of heating at a temperature of 9950 ° C. for 1 to 2 hours is employed.
【0010】[0010]
【実施例】次に、この発明を実施例にもとずいて具体的
に説明する。 (実施例)平均粒径13μmのTi粉末(32μm以
下、酸素量0.15wt%)にワックスと熱可塑性樹脂
より構成される有機バインダ−を9.67wt%添加し
て、引張試験片形状(110mm×7.5mm×4m
m)に射出成形して、グリ−ン体を作製した。このグリ
−ン体を100 Torr台の真空中で380℃まで加熱
して脱脂して、有機バインダ−の90%を除去した後、
本発明の図1に示す焼結方法においてセラミックス粉
末、容器ともにアルミナ(Al2 O3 )を使用し、上記
試料3を平均粒径30μmのアルミナ粉末2の中に埋
め、これをアルミナ容器1に挿入し、この容器をさらに
大きいアルミナ容器1に挿入し、また2つの当該アルミ
ナ容器の空隙にアルミナ粉末2を充填し、この二重容器
を炭素炉に挿入し、10-5Torr台の真空中1025
℃で2時間焼結した。得られた焼結体の評価として、酸
素の定量分析及び表面の炭化物の分析、水アルキメデス
法による密度の測定、室温での引張強度試験、を行っ
た。Next, the present invention will be specifically described based on embodiments. (Example) To a Ti powder having an average particle diameter of 13 μm (32 μm or less, oxygen content: 0.15 wt%), 9.67 wt% of an organic binder composed of a wax and a thermoplastic resin was added, and a tensile test piece shape (110 mm × 7.5mm × 4m
m) to produce a green body. After removal of 90%, - the grease - the emission body is degreased by heating to 380 ° C. in 10 0 Torr stand vacuum, an organic binder
In the sintering method shown in FIG. 1 of the present invention, alumina (Al 2 O 3 ) is used for both the ceramic powder and the container, and the above sample 3 is buried in alumina powder 2 having an average particle size of 30 μm. This alumina container is inserted into a larger alumina container 1, and the gap between the two alumina containers is filled with alumina powder 2, and the double container is inserted into a carbon furnace, and is placed in a vacuum of 10 -5 Torr. 1025
Sintered at 2 ° C. for 2 hours. As the evaluation of the obtained sintered body, quantitative analysis of oxygen, analysis of carbide on the surface, measurement of density by a water Archimedes method, and tensile strength test at room temperature were performed.
【0011】(比較例1)実施例と同じ粉末及び成形方
法において試料を作製し、10-5Torr台の真空中1
100℃で2時間焼結した。(Comparative Example 1) A sample was prepared using the same powder and molding method as in the example, and the sample was prepared in a vacuum of 10 -5 Torr.
Sintered at 100 ° C. for 2 hours.
【0012】(比較例2)平均粒径23μmのTi粉末
(45μm以下、酸素量0.12wt%)に実施例1と
同じ有機バインダ−を9.42wt%添加して、実施例
と同じ方法で成形体を作製し、図1に示す焼結方法にお
いて、10-5Torr台の真空中1025℃で2時間焼
結した。Comparative Example 2 The same organic binder as in Example 1 was added to Ti powder (45 μm or less, oxygen content: 0.12 wt%) having an average particle diameter of 23 μm in an amount of 9.42 wt%, and the same method as in Example was used. A molded body was prepared and sintered at 1025 ° C. for 2 hours in a vacuum of the order of 10 −5 Torr in the sintering method shown in FIG.
【0013】(比較例3)比較例2と同じ粉末及び成形
方法で成形体を作製し、緻密なアルミナ容器にアルミナ
粉末を薄く敷き(図2)、成形体をその上において、1
0-5Torr台の真空中1025℃で2時間焼結した。(Comparative Example 3) A molded body was prepared by the same powder and molding method as in Comparative Example 2, and a thin alumina powder was spread in a dense alumina container (FIG. 2).
It was sintered at 1025 ° C. for 2 hours in a vacuum of the order of 0 −5 Torr.
【0014】(比較例4)比較例2と同じ粉末及び成形
方法で成形体を作製し、緻密なアルミナ粉末中に成形体
を埋めて、緻密なアルミナ容器に入れて(図3)、10
-5Torr台の真空中1025℃で2時間焼結した。(Comparative Example 4) A compact was prepared by the same powder and molding method as in Comparative Example 2, and the compact was buried in dense alumina powder and placed in a dense alumina container (FIG. 3).
Sintered at 1025 ° C. for 2 hours in a vacuum of −5 Torr.
【0015】これらの実施例、比較例によるTi焼結体
の諸特性を表1に示した。Table 1 shows various characteristics of the Ti sintered bodies according to these examples and comparative examples.
【0016】[0016]
【表1】 [Table 1]
【0017】表1の結果から、本発明の焼結方法により
焼結したTi焼結体(実施例)、及び比較例1、比較例
2は、X線回折法(XRD)による観察の結果、表面の
炭化物は観察されなかったが、アルミナ粉末に埋めずに
焼結した比較例3の焼結体は表面に炭化物(TiC)が
顕著に観察された。また、比較例4による焼結体におい
ても炭化物が若干生成している。実施例の焼結体は酸素
量が少ないが、実施例より高い温度で焼結した比較例1
の焼結体は酸素量が増加し、破断伸びが低下している。
実施例より粒径の大きいTi原料粉末を使用した比較例
2の焼結体は相対密度が低く、引張最大強度が低い。実
施例によるTi焼結体は、酸素量の増加が少なく、相対
密度は焼結体の表面から内部に入る貫通気孔が消失する
のに十分な値(94%以上)を示し、破断伸び、強度と
も良好な値が得られている。また、アルミナ粉末に埋め
ずに焼結した比較例3はアーチ状のそりが観察された
が、実施例による焼結体はそりなどの変形はほとんど観
察されなかった。From the results shown in Table 1, the Ti sintered bodies (Examples) sintered by the sintering method of the present invention and Comparative Examples 1 and 2 were observed by X-ray diffraction (XRD). No carbides were observed on the surface, but carbides (TiC) were remarkably observed on the surface of the sintered body of Comparative Example 3 sintered without being embedded in the alumina powder. Also, in the sintered body according to Comparative Example 4, some carbide was generated. Comparative Example 1 in which the sintered body of the example had a small amount of oxygen but was sintered at a higher temperature than the example.
The sintered body of No. 1 has an increased oxygen content and a reduced elongation at break.
The sintered body of Comparative Example 2 using the Ti raw material powder having a larger particle diameter than the example has a low relative density and a low maximum tensile strength. In the Ti sintered body according to the example, the increase in the amount of oxygen was small, and the relative density showed a value (94% or more) sufficient to eliminate through-pores entering from the surface of the sintered body to the inside. In both cases, good values were obtained. In Comparative Example 3 in which sintering was not performed with the alumina powder, arched warpage was observed, but in the sintered body according to the example, deformation such as warpage was hardly observed.
【0018】[0018]
【発明の効果】本発明を用いることにより、金属粉末射
出成形法などにより作製されたTi成形体を炭素炉で焼
結する際、焼結体の表面に炭化物が生成せず、しかも室
温引張強度及び破断伸びに優れたTi焼結体を得ること
が可能になった。According to the present invention, when a Ti compact produced by a metal powder injection molding method or the like is sintered in a carbon furnace, no carbide is generated on the surface of the sintered compact and the tensile strength at room temperature is obtained. And it became possible to obtain the Ti sintered compact excellent in breaking elongation.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の一実施例を示す焼結方法の概略図であ
る。FIG. 1 is a schematic view of a sintering method showing one embodiment of the present invention.
【図2】比較例3の焼結方法の概略図である。FIG. 2 is a schematic view of a sintering method of Comparative Example 3.
【図3】比較例4の焼結方法の概略図である。FIG. 3 is a schematic view of a sintering method of Comparative Example 4.
【図4】実施例、比較例3及び比較例4の焼結体表面の
X線回折曲線である。FIG. 4 is an X-ray diffraction curve of the surface of a sintered body of an example, comparative examples 3 and 4.
1.焼結用アルミナ容器 2.焼結用アルミナ粉末 3.焼結すべき試料 1. Alumina container for sintering 2. 2. Alumina powder for sintering Sample to be sintered
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−21704(JP,A) 特開 平2−54735(JP,A) 特開 平6−330105(JP,A) 特開 平3−267306(JP,A) 実開 昭57−138942(JP,U) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-21704 (JP, A) JP-A-2-54735 (JP, A) JP-A-6-330105 (JP, A) JP-A-3- 267306 (JP, A) Japanese Utility Model Showa 57-138942 (JP, U)
Claims (2)
る際に、焼結体の表面に炭化物が生成せず、しかも室温
引張強度及び破断伸びに優れた緻密なTi焼結体を製造
する方法であって、平均粒径15μm以下の微細なTi
粉末による成形体をアルミナ、ジルコニア又はイットリ
アから選ばれる平均粒径10〜50μmのセラミックス
粉末の中に埋め、これを緻密な容器に挿入し、この容器
をさらに大きい緻密な容器に挿入し、また2つの当該容
器の空隙にセラミックス粉末を充填し、この二重容器を
炭素炉に挿入し、1×10-4Torr以下の真空中、1
050℃以下の温度で焼結することを特徴とするTi焼
結体の製造方法。1. When a compact made of Ti powder is sintered in a carbon furnace, no carbide is generated on the surface of the sintered body, and a dense Ti sintered body having excellent room-temperature tensile strength and breaking elongation is produced.
A fine Ti having an average particle size of 15 μm or less.
A powder compact is converted to alumina, zirconia or yttria
Embedded in a ceramic powder having an average particle size of 10 to 50 μm selected from a) , inserted into a dense container, inserted this container into a larger and denser container, and placed the ceramic powder in the space between the two containers. After filling, insert the double container into a carbon furnace and place it in a vacuum of 1 × 10 −4 Torr or less.
A method for producing a Ti sintered body, comprising sintering at a temperature of 050 ° C. or lower.
3 )であり、緻密な容器がアルミナ容器である請求項1
記載のTi焼結体の製造方法。2. The ceramic powder is alumina (Al 2 O).
3 ), wherein the dense container is an alumina container.
A method for producing a Ti sintered body as described in the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07078497A JP3265463B2 (en) | 1997-03-07 | 1997-03-07 | Method for producing Ti sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07078497A JP3265463B2 (en) | 1997-03-07 | 1997-03-07 | Method for producing Ti sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10251707A JPH10251707A (en) | 1998-09-22 |
JP3265463B2 true JP3265463B2 (en) | 2002-03-11 |
Family
ID=13441508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07078497A Expired - Lifetime JP3265463B2 (en) | 1997-03-07 | 1997-03-07 | Method for producing Ti sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3265463B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003022744A (en) * | 2001-07-06 | 2003-01-24 | Sony Corp | Non-vaporizing type getter, display device and their manufacturing method |
JP4490223B2 (en) * | 2004-09-30 | 2010-06-23 | 株式会社Eneosセルテック | Method for producing solid oxide fuel cell |
JP2022177440A (en) * | 2021-05-18 | 2022-12-01 | セイコーエプソン株式会社 | Injection molding composition, method for producing injection molded body, and method for producing titanium sintered body |
-
1997
- 1997-03-07 JP JP07078497A patent/JP3265463B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10251707A (en) | 1998-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6788669B2 (en) | Aluminum and aluminum alloy powder molding method | |
US7723247B2 (en) | Method for pressurelessly sintering zirconium diboride/silicon carbide composite bodies to high densities | |
US5902429A (en) | Method of manufacturing intermetallic/ceramic/metal composites | |
US8097548B2 (en) | High-density pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same | |
JPH05209247A (en) | Cermet alloy and its production | |
CN116041051B (en) | Granulating powder applied to 3DP printing and printing forming method thereof | |
US5905937A (en) | Method of making sintered ductile intermetallic-bonded ceramic composites | |
JP2829229B2 (en) | Silicon nitride ceramic sintered body | |
JP3265463B2 (en) | Method for producing Ti sintered body | |
Kato | Effect of sintering temperature on density and tensile properties of titanium compacts by matal injection molding | |
Zhang et al. | Effect of WС content on the mechanical properties and high temperature oxidation behavior of Ti (С, N)-based cermets | |
WO2008045698A1 (en) | Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same | |
JP2743090B2 (en) | How to control the carbon content of metal injection products | |
JP2005139554A (en) | Heat-resistant coated member | |
JP2001048653A (en) | Titanium boride sintered body obtained by adding silicon nitride as sintering aid and its production | |
JPH0770610A (en) | Method for sintering injection-molded product | |
JPH0224789B2 (en) | ||
JPH034514B2 (en) | ||
KR20040056651A (en) | Method for fabricating TiAl intermetallic articles by metal injection molding | |
JP3213903B2 (en) | Tantalum carbide based sintered body and method for producing the same | |
JPH082961A (en) | Sintered compact of metal particle-dispersed aluminum oxide base and its production | |
Xing et al. | SiC composite ceramic materials oxidation behaviour based on three kinds of C p content. | |
JPH0559405A (en) | Production of high-hardness sintered hard alloy | |
JPH10140209A (en) | Production of cemented carbide by injection molding | |
JPH10251706A (en) | Method for sintering titanium compact |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |