JPH0521800A - Soimosfet - Google Patents

Soimosfet

Info

Publication number
JPH0521800A
JPH0521800A JP19718091A JP19718091A JPH0521800A JP H0521800 A JPH0521800 A JP H0521800A JP 19718091 A JP19718091 A JP 19718091A JP 19718091 A JP19718091 A JP 19718091A JP H0521800 A JPH0521800 A JP H0521800A
Authority
JP
Japan
Prior art keywords
layer
soi
layers
film
soimosfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19718091A
Other languages
Japanese (ja)
Inventor
Masanori Funaki
正紀 舟木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP19718091A priority Critical patent/JPH0521800A/en
Publication of JPH0521800A publication Critical patent/JPH0521800A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an SOIMOSFET which enables the control of a threshold voltage maintaining it high speed operation. CONSTITUTION:This SOIMOSFET includes layers 9-13 that is, N<+>-P- -i-P--N<+>, shown in the drawing, constituted by implanting oxygen ions into an Si single crystal to form a dielectric layer 1 of SiO2, thus separating the Si single crystal into two parts, an Si substrate (not shown) and an SOI film 8 isolated form each other by the dielectric film 1, and implanting impurities into the SOI film 8 on the dielectric layer 1. A gate electrode 6 is formed on the P--i-P- layers 10-12, a source electrode being formed on one N<+> layer 9, and a drain electrode being formed on the other N<+> layer 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絶縁層を介して単結晶
が分離された構造を有するSOIMOSFET(Silico
n-On-Insulator-MOSFET )に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an SOI MOSFET (Silico) having a structure in which a single crystal is separated by an insulating layer.
n-On-Insulator-MOSFET).

【0002】[0002]

【従来の技術】従来のN型のSOIMOSFETの構造
を図3(A)に示す。このSOIMOSFETは、例え
ば、SIMOXというSOI基板作成方法を用いて、Si
単結晶中に酸素イオンや窒素イオンを打込んでSiO2
Si3 4 などの絶縁層1を形成し、この絶縁層1によっ
てSi単結晶をSi基板(図示せず)とSOI膜2とに分離
し、さらにこの絶縁層1上のSOI膜2に不純物を打込
んで、図のようなN+ −P- −N+ の各層3〜5を設け
たものである。そして、このP- 層4上にゲート電極6
を設けると共に、一方のN+ 層3にソース電極を設け、
他方のN+ 層5にドレイン電極を設けている。また、チ
ャネル層であるP- 層4の不純物濃度が低いほど電子の
移動度が高いことから、このSOIMOSFETをより
高速動作させるために、このP- 層4の不純物をできる
だけ取除き、真性半導体に近い状態にしたi層7をチャ
ネル層とした図3(B)に示すSOIMOSFETが知
られている。なお、このi層7は、非常に低濃度の不純
物を含んでいるため、実際にはN型またはP型の極性を
有しているが、理想的には真性半導体が良く、またほと
んどと同じ特性であるので、以下、真性半導体として説
明する。
2. Description of the Related Art The structure of a conventional N-type SOI MOSFET is shown in FIG. This SOI MOSFET is manufactured by using, for example, an SOI substrate manufacturing method called SIMOX.
SiO 2 Ya by implanting oxygen ions and nitrogen ions in the single crystal
An insulating layer 1 such as Si 3 N 4 is formed, the insulating layer 1 separates a Si single crystal into a Si substrate (not shown) and an SOI film 2, and the SOI film 2 on the insulating layer 1 is further doped with impurities. Is added to provide N + -P -- N + layers 3 to 5 as shown in the figure. Then, the gate electrode 6 is formed on the P layer 4.
And a source electrode on one N + layer 3,
A drain electrode is provided on the other N + layer 5. Also, P is the channel layer - due to its high electron mobility lower the impurity concentration of the layer 4, the SOIMOSFET more for high-speed operation, the P - impurity layer 4 as possible remove, the intrinsic semiconductor There is known an SOI MOSFET shown in FIG. 3B in which the i layer 7 in a close state is used as a channel layer. Since the i layer 7 contains impurities at a very low concentration, it actually has N-type or P-type polarity, but ideally, it is an intrinsic semiconductor and is almost the same. Since it is a characteristic, it will be described below as an intrinsic semiconductor.

【0003】この図3(B)に示すSOIMOSFET
は、チャネル層が真性半導体のi層7であるので、ゲー
ト電極6は、ポリシリコンに不純物を混入して製造した
ソース層、ドレイン層とは逆の極性を持つ電極を使用し
なければならず、ソース層、ドレイン層がN+ 層3,5
である場合、ゲート電極6はP+ 型の極性を持ち、ソー
ス層、ドレイン層がP+ 層である場合、ゲート電極6は
+ 型の極性を持たなければ、SOIMOSFETとし
て動作しないことになる。
The SOI MOSFET shown in FIG. 3 (B)
Since the channel layer is the intrinsic semiconductor i layer 7, the gate electrode 6 must use an electrode having a polarity opposite to that of the source and drain layers manufactured by mixing impurities into polysilicon. , The source and drain layers are N + layers 3, 5
, The gate electrode 6 has a P + type polarity, and when the source layer and the drain layer are P + layers, the gate electrode 6 does not operate as an SOIMOSFET unless it has an N + type polarity. ..

【0004】[0004]

【発明が解決しようとする課題】MOSFETのしきい
値電圧は、チャネル層の不純物濃度によって決まる。と
ころが、SOIMOSFETを高速動作させるためにチ
ャネル層を真性半導体に近い低濃度の半導体とすると、
不純物がほとんど混入されていないため、しきい値電圧
を変えることができずに一定の値に固定されてしまい、
設計製造時にしきい値電圧を希望する値に制御すること
ができないという課題があった。そこで、本発明は、高
速動作を保ちつつ、しきい値電圧の制御が可能なSOI
MOSFETを提供することを目的とする。
The threshold voltage of MOSFET is determined by the impurity concentration of the channel layer. However, if the channel layer is a low-concentration semiconductor close to an intrinsic semiconductor in order to operate the SOIMOSFET at high speed,
Since almost no impurities were mixed in, the threshold voltage could not be changed and was fixed at a fixed value.
There is a problem that the threshold voltage cannot be controlled to a desired value during designing and manufacturing. Therefore, the present invention provides an SOI in which the threshold voltage can be controlled while maintaining high-speed operation.
An object is to provide a MOSFET.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の手段として、高濃度の第1の導電型を有するソース層
とドレイン層との間に非常に低濃度の不純物を含むチャ
ネル層を有するSOI膜を絶縁膜上に設けたSOIMO
SFETにおいて、前記ソース層と前記チャネル層との
間および前記ドレイン層と前記チャネル層との間にそれ
ぞれ低濃度の第2の導電型を有する層を設けたことを特
徴とするSOIMOSFETを提供しようとするもので
ある。
As a means for achieving the above object, a channel layer containing a very low concentration of impurities is provided between a source layer having a high concentration first conductivity type and a drain layer. SOIMO with SOI film on insulating film
An SFET is provided which is characterized in that a layer having a low concentration second conductivity type is provided between the source layer and the channel layer and between the drain layer and the channel layer, respectively. To do.

【0006】[0006]

【実施例】本発明のSOIMOSFETの一実施例を図
面と共に説明する。図1にN型のSOIMOSFETの
一実施例を示す。このSOIMOSFETは、Si単結晶
中に酸素イオンや窒素イオンを打込んでSiO2 やSi3
4 などの絶縁層1を形成し、この絶縁層1によってSi単
結晶をSi基板(図示せず)とSOI膜8とに分離し、さ
らにこの絶縁層1上のSOI膜8に不純物を打込んで、
図のようなN+ −P- −i−P- −N+ の各層9〜13
を設けたものである。そして、このP- −i−P- 層1
0〜12上にはゲート電極6が設けられ、一方のN+
9にソース電極が設けられ、他方のN+ 層13にドレイ
ン電極が設けられている。なお、このi層11も非常に
低濃度の不純物を含み、実際にはN型またはP型の極性
を有しているが、真性半導体として説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the SOI MOSFET of the present invention will be described with reference to the drawings. FIG. 1 shows an example of an N-type SOI MOSFET. This SOI MOSFET is formed by implanting oxygen ions or nitrogen ions into a Si single crystal to produce SiO 2 or Si 3 N.
An insulating layer 1 such as 4 is formed, the Si single crystal is separated by this insulating layer 1 into a Si substrate (not shown) and an SOI film 8, and an impurity is implanted into the SOI film 8 on the insulating layer 1. so,
N + -P -- i-P -- N + layers 9 to 13 as shown in the figure
Is provided. And this P -- i--P -- layer 1
A gate electrode 6 is provided on 0 to 12, a source electrode is provided on one N + layer 9, and a drain electrode is provided on the other N + layer 13. The i layer 11 also contains an extremely low concentration of impurities and actually has N-type or P-type polarity, but it will be described as an intrinsic semiconductor.

【0007】この図1に示したN型のSOIMOSFE
Tの製造方法を図2(A)〜(C)と共に説明する。同
図(A)において、Si単結晶中に酸素イオンを打込んで
SiO2 の絶縁層1を形成し、この絶縁層1によってSi単
結晶をSi基板(図示せず)とSOI膜8とに分離する。
そして、このSiO2 絶縁膜1上のSOI膜8上に減圧C
VD法によりポリシリコンのゲート電極6を設け、この
ゲート電極6をマスクとしてSOI膜8にB(ホウ素)
イオンを打ち込み、P- 層14,15を形成する。次
に、同図(B)に示すように、同様にゲート電極6をマ
スクとしてSOI膜8に形成したP- 層14,15にAs
(ヒ素)イオンをさらに打ち込み、P- +N+ 層16,
17を形成する。そして、AsイオンよりもBイオンの方
が熱拡散量が大きいので、この状態で熱拡散を行うと、
Bイオンが中心のi層11側へ拡散し、P- +N+ 層1
6,17は、同図(C)に示すように、N+ 層9,13
とP- 層10,12に分離して、SOI膜8は、N+
- −i−P- −N+ の各層9〜13となる。その後、
+ 層9,13上にそれぞれソース電極とドレイン電極
とを設けることにより、図1に示したようなSOIMO
SFETを製造することができる。このようなSOIM
OSFETは、チャネル層に真性半導体を使用している
ので、高速動作を維持でき、P- 層10,12の不純物
濃度を変えることにより、しきい値電圧を変えることが
できる。
The N-type SOIMOSFE shown in FIG.
A method of manufacturing T will be described with reference to FIGS. In the same figure (A), by implanting oxygen ions into the Si single crystal
An insulating layer 1 of SiO 2 is formed, and this insulating layer 1 separates a Si single crystal into a Si substrate (not shown) and an SOI film 8.
Then, a reduced pressure C is applied on the SOI film 8 on the SiO 2 insulating film 1.
A polysilicon gate electrode 6 is provided by the VD method, and B (boron) is formed on the SOI film 8 using the gate electrode 6 as a mask.
Ions are implanted to form P layers 14 and 15. Next, as shown in FIG. 7B, the P - layers 14 and 15 formed on the SOI film 8 are similarly patterned with As using the gate electrode 6 as a mask.
Further implanting (arsenic) ions, the P + N + layer 16,
Form 17. Since the amount of thermal diffusion of B ions is larger than that of As ions, if thermal diffusion is performed in this state,
B ion diffuses toward the central i-layer 11 side, and P + N + layer 1
6, 17 are N + layers 9 and 13 as shown in FIG.
And the P layers 10 and 12 are separated from each other, and the SOI film 8 is N +
The layers 9 to 13 are P −i−P −N + layers. afterwards,
By providing a source electrode and a drain electrode on the N + layers 9 and 13, respectively, the SOIMO shown in FIG.
SFETs can be manufactured. Such an SOIM
Since the OSFET uses an intrinsic semiconductor for the channel layer, it can maintain a high-speed operation, and the threshold voltage can be changed by changing the impurity concentration of the P layers 10 and 12.

【0008】以上説明したSOIMOSFETは、SO
I膜8がN+ −P- −i−P- −N+ の各層9〜13か
らなるN型のSOIMOSFETであるが、SOI膜が
+ −N- −i−N- −P+ の各層からなるP型のSO
IMOSFETであっても良いのは勿論である。また、
- −i−P- 層またはN- −i−N- 層とすることに
より、ゲート電極の極性にかかわらず、SOIMOSF
ETは動作し、しかも、しきい値電圧は、P- 層または
- 層の不純物濃度を変えることにより制御することが
できるので、P型、N型いずれのSOIMOSFETで
もゲート電極としてN+ 型のポリシリコンを使用するこ
とができる。
The SOI MOSFET described above is an SO
The I film 8 is an N-type SOIMOSFET composed of N + -P -- i-P -- N + layers 9 to 13, and the SOI film is P + -N -- i-N -- P + layers. P type SO consisting of
Of course, it may be an IMOSFET. Also,
By using the P −i−P layer or the N −i−N layer, the SOIMOSF can be formed regardless of the polarity of the gate electrode.
The ET operates, and the threshold voltage can be controlled by changing the impurity concentration of the P layer or the N layer. Therefore, in both P-type and N-type SOI MOSFETs, an N + -type gate electrode is used. Polysilicon can be used.

【0009】[0009]

【発明の効果】本発明のSOIMOSFETは、高濃度
の第1の導電型を有するソース層とドレイン層との間に
非常に低濃度の不純物を含むチャネル層を有するSOI
膜を絶縁膜上に設けたSOIMOSFETにおいて、前
記ソース層と前記チャネル層との間および前記ドレイン
層と前記チャネル層との間にそれぞれ低濃度の第2の導
電型を有する層を設けたので、この低濃度の第2の導電
型を有する層の不純物濃度を変えることにより、高速動
作を維持しつつ、しきい値電圧を制御することができ
る。また、低濃度の第2の導電型を有する層を設けたの
で、SOIMOSFETの極性にかかわらず、同一のゲ
ート電極(例えばN+ 型のゲート電極)を使用すること
ができるという効果がある。
The SOI MOSFET of the present invention has an SOI having a channel layer containing a very low concentration of impurities between a source layer having a high concentration first conductivity type and a drain layer.
In the SOIMOSFET in which the film is provided on the insulating film, the low-concentration second conductivity type layer is provided between the source layer and the channel layer and between the drain layer and the channel layer. By changing the impurity concentration of the low-concentration layer having the second conductivity type, the threshold voltage can be controlled while maintaining high-speed operation. Further, since the layer having the low concentration second conductivity type is provided, there is an effect that the same gate electrode (for example, N + type gate electrode) can be used regardless of the polarity of the SOIMOSFET.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のSOIMOSFETの一実施例を示す
構造図である。
FIG. 1 is a structural diagram showing one embodiment of an SOIMOSFET of the present invention.

【図2】(A)〜(C)は図1に示す実施例の製造方法
を示す工程図である。
2A to 2C are process diagrams showing a manufacturing method of the embodiment shown in FIG.

【図3】(A),(B)は共に従来例を示す構造図であ
る。
3A and 3B are structural views showing a conventional example.

【符号の説明】[Explanation of symbols]

1 絶縁層 2,8 SOI層 3,9 N+ 層(高濃度の第1の導電型を有するソース
層) 4 P- 層(チャネル層) 5,13 N+ 層(高濃度の第1の導電型を有するドレ
イン層) 6 ゲート電極 7,11 i層(チャネル層) 10,12 P- 層(低濃度の第2の導電型を有する
層)
1 Insulating layer 2,8 SOI layer 3,9 N + layer (source layer having high concentration first conductivity type) 4 P - layer (channel layer) 5,13 N + layer (high concentration first conductivity type) Type drain layer) 6 gate electrode 7,11 i layer (channel layer) 10, 12 P - layer (layer having low concentration second conductivity type)

Claims (1)

【特許請求の範囲】 【請求項1】高濃度の第1の導電型を有するソース層と
ドレイン層との間に非常に低濃度の不純物を含むチャネ
ル層を有するSOI膜を絶縁膜上に設けたSOIMOS
FETにおいて、 前記ソース層と前記チャネル層との間および前記ドレイ
ン層と前記チャネル層との間にそれぞれ低濃度の第2の
導電型を有する層を設けたことを特徴とするSOIMO
SFET。
1. An SOI film having a channel layer containing a very low concentration of impurities between a source layer having a high concentration of a first conductivity type and a drain layer is provided on an insulating film. SOIMOS
In the FET, a SOI layer having a low concentration second conductivity type is provided between the source layer and the channel layer and between the drain layer and the channel layer, respectively.
SFET.
JP19718091A 1991-07-11 1991-07-11 Soimosfet Pending JPH0521800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19718091A JPH0521800A (en) 1991-07-11 1991-07-11 Soimosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19718091A JPH0521800A (en) 1991-07-11 1991-07-11 Soimosfet

Publications (1)

Publication Number Publication Date
JPH0521800A true JPH0521800A (en) 1993-01-29

Family

ID=16370138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19718091A Pending JPH0521800A (en) 1991-07-11 1991-07-11 Soimosfet

Country Status (1)

Country Link
JP (1) JPH0521800A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803911A2 (en) 1996-04-25 1997-10-29 Sharp Kabushiki Kaisha Channel structure of field effect transistor and CMOS element
EP1229576A2 (en) * 2001-02-02 2002-08-07 Sharp Kabushiki Kaisha Method of producing SOI MOSFET
WO2002063697A1 (en) * 2001-02-07 2002-08-15 Sony Corporation Semiconductor device and its manufacturing method
WO2003032401A1 (en) * 2001-10-02 2003-04-17 Nec Corporation Semiconductor device and its manufacturing method
JP2016029719A (en) * 2014-07-17 2016-03-03 出光興産株式会社 Thin-film transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647567A (en) * 1987-06-29 1989-01-11 Ricoh Kk Mos transistor
JPH01276755A (en) * 1988-04-28 1989-11-07 Sony Corp Thin film transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647567A (en) * 1987-06-29 1989-01-11 Ricoh Kk Mos transistor
JPH01276755A (en) * 1988-04-28 1989-11-07 Sony Corp Thin film transistor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803911A2 (en) 1996-04-25 1997-10-29 Sharp Kabushiki Kaisha Channel structure of field effect transistor and CMOS element
EP0803911A3 (en) * 1996-04-25 1998-04-15 Sharp Kabushiki Kaisha Channel structure of field effect transistor and CMOS element
US5841170A (en) * 1996-04-25 1998-11-24 Sharp Kabushiki Kaisha Field effect transistor and CMOS element having dopant exponentially graded in channel
EP1229576A2 (en) * 2001-02-02 2002-08-07 Sharp Kabushiki Kaisha Method of producing SOI MOSFET
EP1229576A3 (en) * 2001-02-02 2004-10-27 Sharp Kabushiki Kaisha Method of producing SOI MOSFET
WO2002063697A1 (en) * 2001-02-07 2002-08-15 Sony Corporation Semiconductor device and its manufacturing method
US7253033B2 (en) 2001-02-07 2007-08-07 Sony Corporation Method of manufacturing a semiconductor device that includes implanting in multiple directions a high concentration region
US7378714B2 (en) 2001-02-07 2008-05-27 Sony Corporation Semiconductor device and its manufacturing method
KR100863921B1 (en) * 2001-02-07 2008-10-17 소니 가부시끼 가이샤 Semiconductor device and its manufacturing method
WO2003032401A1 (en) * 2001-10-02 2003-04-17 Nec Corporation Semiconductor device and its manufacturing method
US7485923B2 (en) 2001-10-02 2009-02-03 Nec Corporation SOI semiconductor device with improved halo region and manufacturing method of the same
JP2016029719A (en) * 2014-07-17 2016-03-03 出光興産株式会社 Thin-film transistor

Similar Documents

Publication Publication Date Title
KR100495023B1 (en) A semiconductor device and manufacturing method thereof
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JPH02210871A (en) Semiconductor device
JPS60210861A (en) Semiconductor device
JPH06268215A (en) Mis type semiconductor device
JPH0521800A (en) Soimosfet
JPH09213948A (en) Mos type field-effect transistor and manufacture thereof
JPH05235350A (en) Semiconductor device
JPS63261880A (en) Manufacture of thin film transistor
JPH03119764A (en) Semiconductor device
JPH0613606A (en) Semiconductor device
JPH05114732A (en) Thin film transistor
JPH0196961A (en) High breakdown voltage mis transistor and manufacture thereof
JPS6032354A (en) Semiconductor integrated circuit
JP2001077361A (en) Semiconductor integrated circuit device and its manufacturing method
JPS63237570A (en) Manufacture of thin film transistor
JPH02137270A (en) Dual gate mos field effect transistor
JPH06283713A (en) Semiconductor device and its manufacture
JPH01191473A (en) Manufacture of semiconductor device
JPH08316469A (en) High withstand voltage semiconductor device
JPH06151858A (en) Semiconductor integrated circuit device
JPS62216269A (en) Manufacture of mis transistor
JPH07183498A (en) Semiconductor device
JPS58161376A (en) Semiconductor device and manufacture thereof
JPH0590574A (en) Semiconductor device