JPH05235350A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH05235350A
JPH05235350A JP4039820A JP3982092A JPH05235350A JP H05235350 A JPH05235350 A JP H05235350A JP 4039820 A JP4039820 A JP 4039820A JP 3982092 A JP3982092 A JP 3982092A JP H05235350 A JPH05235350 A JP H05235350A
Authority
JP
Japan
Prior art keywords
type
layer
semiconductor layer
effect transistor
forming semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4039820A
Other languages
Japanese (ja)
Inventor
Takami Makino
孝実 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4039820A priority Critical patent/JPH05235350A/en
Publication of JPH05235350A publication Critical patent/JPH05235350A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To provide a semiconductor device in which both n-type and p-type MOSFETs, easily adjustable in threshold, are formed in a semiconductor wafer of good quality that is easily manufactured. CONSTITUTION:A semiconductor device comprises p-type and n-type MOSFETs formed in a semiconductor layer 4 on an insulating layer 3. Both p-type and n-type MOSFETs have channel regions of the same conductivity type at impurity concentration of more than 1X10<13>/cm<3>. The semiconductor layer 4 has a thickness equal to or less than the depth of the depletion layer that extends from the surface of the semiconductor layer 4 when no gate voltage is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置に関し、よ
り詳しくは、絶縁層上の半導体層にMOS型電界効果ト
ランジスタを形成して構成される半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device formed by forming a MOS field effect transistor in a semiconductor layer on an insulating layer.

【0002】近年の半導体デバイスの高性能化は、トラ
ンジスタの微細化によるトランジスタ単体性能の向上に
よるところが大きい。高性能のトランジスタのひとつと
して最近注目を集めているのがSOI(semiconductor o
n insulator)基板に形成される薄膜MOSFETであ
る。
Recent improvements in the performance of semiconductor devices are largely due to improvements in the performance of individual transistors due to the miniaturization of transistors. One of the high-performance transistors that has recently attracted attention is SOI (semiconductor o).
n insulator) is a thin film MOSFET formed on a substrate.

【0003】[0003]

【従来の技術】半導体装置形成用基板として、貼合わせ
法、SIMOX等により形成されるSOI基板が提案さ
れている。このSOI基板の素子形成半導体層に相補型
MOS電界効果トランジスタ(CMOSFET)を形成
した一般的な断面構造を示すと図4(a) のようになる。
なお、同図においては、層間絶縁膜や配線層等を省略し
てある。
2. Description of the Related Art As a substrate for forming a semiconductor device, an SOI substrate formed by a bonding method, SIMOX or the like has been proposed. FIG. 4A shows a general sectional structure in which a complementary MOS field effect transistor (CMOSFET) is formed on the element forming semiconductor layer of the SOI substrate.
In the figure, the interlayer insulating film, the wiring layer and the like are omitted.

【0004】そのnMOSFETは、図4(a) の左側に
示すように、SOI基板40の絶縁膜41上に形成され
た素子形成半導体層42の上に、絶縁膜43を介してゲ
ート電極44を形成し、また、その両側にLDD構造の
n型ソース/ドレイン層45s,45dを形成してなる
もので、ゲート電極44の下のチャネル領域C1 はp --
型となっている。
The nMOSFET is on the left side of FIG. 4 (a).
As shown, it is formed on the insulating film 41 of the SOI substrate 40.
On the device forming semiconductor layer 42 with the insulating film 43 interposed.
Of the LDD structure on both sides thereof.
Forming n-type source / drain layers 45s and 45d
And the channel region C below the gate electrode 441Is p -
It is a type.

【0005】また、pMOSFETは、図4(a) の右側
に示すように、絶縁膜層41上の素子形成半導体層46
の上に絶縁膜47を介して形成されたゲート電極48
と、その両側の素子形成半導体層46に形成したp+
のソース/ドレイン層49s,49dとを有し、そのチ
ャネル領域C2 はn--型となっている。
Further, as shown in the right side of FIG. 4A, the pMOSFET has a device forming semiconductor layer 46 on the insulating film layer 41.
A gate electrode 48 formed on top of the insulating film 47
And p + type source / drain layers 49s and 49d formed on the element forming semiconductor layer 46 on both sides thereof, and the channel region C 2 thereof is n type.

【0006】このような構造によれば、nMOSFET
とpMOSFETのそれぞれの閾値電圧Vthの合わせ込
みは、通常のバルク半導体基板に形成されるCMOSF
ETと同様に、不純物をイオン注入することにより行っ
ている。
According to such a structure, the nMOSFET
The threshold voltages Vth of the pMOSFET and the pMOSFET are matched with each other by using a CMOSF formed on a normal bulk semiconductor substrate.
Similar to ET, it is performed by ion-implanting impurities.

【0007】しかし、nMOSFETとpMOSFET
の素子形成半導体層42,47のチャネル領域C1 ,C
2 にイオン注入をするにはマスク形成等の手間がかか
り、また、素子形成半導体層42,47の膜厚は薄いの
で、拡散による不純物濃度分布がその厚さによって変動
する等の不都合がある。
However, nMOSFET and pMOSFET
Of the element forming semiconductor layers 42 and 47 of the channel regions C 1 and C
It takes time and labor to form a mask for implanting ions into the second layer, and since the element forming semiconductor layers 42 and 47 are thin, the impurity concentration distribution due to diffusion fluctuates depending on the thickness.

【0008】そこで、このような問題を回避するため
に、本出願人は、特願平2−306844号において図
4(b) に示す構造のMOSFETを提案した。この装置
は、SOI基板50上に形成するnMOSFETとpM
OSFETの双方の素子形成半導体層52、56のチャ
ネル領域C1 ,C2 を、真性半導体又はそれに近い非常
に極めて低い不純物濃度(例えば1×1013/cm3
下)にしたものである。
In order to avoid such a problem, the applicant of the present invention has proposed a MOSFET having a structure shown in FIG. 4 (b) in Japanese Patent Application No. 2-306844. This device includes an nMOSFET and a pM formed on an SOI substrate 50.
The channel regions C 1 and C 2 of both the element forming semiconductor layers 52 and 56 of the OSFET are intrinsic semiconductors or an extremely low impurity concentration close to it (for example, 1 × 10 13 / cm 3 or less).

【0009】なお、図中符号51は、素子形成半導体層
52,56の下の絶縁膜層、53,57はゲート絶縁
膜、54,58はゲート電極、55s,59sはソース
層、55d,59dはドレイン層を示している。
In the figure, reference numeral 51 is an insulating film layer below the element forming semiconductor layers 52 and 56, 53 and 57 are gate insulating films, 54 and 58 are gate electrodes, 55s and 59s are source layers, and 55d and 59d. Indicates the drain layer.

【0010】この場合、nMOSFETのゲート電極5
4をn型にすると、仕事関数差の関係から、ドレイン電
流・ゲート電圧特性がデプレッション型となるので、そ
の導電型をp型にしてエンハンスメント型トランジスタ
とする。また、pMOSFET58は、ゲート電圧の極
性が逆なのでゲート電極にはn型を用いる。
In this case, the gate electrode 5 of the nMOSFET
When 4 is an n-type, the drain current / gate voltage characteristic becomes a depletion type due to the work function difference, so the conductivity type is made a p-type to form an enhancement type transistor. The pMOSFET 58 uses an n-type gate electrode because the polarity of the gate voltage is opposite.

【0011】これにより、素子形成半導体層52,57
のチャネル領域への不純物の導入は不要となる。なお、
nMOSFETのゲート電極54の不純物導入は、pM
OSFETのソース/ドレイン層55s,55dを形成
する際に同時に行えば足り、また、pMOSFETのゲ
ート電極58はnMOSFETのソース/ドレイン層5
9s,59dを形成する際に行えばよいので、特に問題
はない。
As a result, the element forming semiconductor layers 52 and 57 are formed.
It is not necessary to introduce impurities into the channel region of. In addition,
Impurity introduction into the gate electrode 54 of the nMOSFET is pM
It suffices to carry out at the same time when the source / drain layers 55s and 55d of the OSFET are formed, and the gate electrode 58 of the pMOSFET is the source / drain layer 5 of the nMOSFET.
Since it may be performed when forming 9s and 59d, there is no particular problem.

【0012】[0012]

【発明が解決しようとする課題】しかし、この構造の装
置によれば、素子形成半導体層42,47の不純物濃度
を真性に近いほど低くしているので、結晶欠陥の少ない
良質のウェハの製造が難しく、このウェハから素子形成
半導体層42,47を形成したSOI基板を使用する場
合には歩留りが悪く、量産性が望めないといったきらい
がある。
However, according to the device of this structure, the impurity concentration of the element forming semiconductor layers 42 and 47 is lowered as it becomes closer to the true value, so that a high-quality wafer with few crystal defects can be manufactured. This is difficult, and when an SOI substrate having the element forming semiconductor layers 42 and 47 formed from this wafer is used, the yield is poor and mass productivity cannot be expected.

【0013】本発明はこのような問題に鑑みてなされた
ものであって、良質で製造の容易なウェハから素子形成
半導体層を形成し、しかも閾値の調整が容易なnMOS
FETとpMOSFETを併存させることができる半導
体装置を提供することを目的とする。
The present invention has been made in view of the above problems, and an nMOS in which a device forming semiconductor layer is formed from a wafer of good quality and easy to manufacture, and the threshold value can be easily adjusted.
An object of the present invention is to provide a semiconductor device capable of coexisting an FET and a pMOSFET.

【0014】[0014]

【課題を解決するための手段】上記した課題は、図3
(i) に例示するように、絶縁層3上の素子形成半導体層
4に、p型MOS電界効果トランジスタとn型MOS電
界効果トランジスタを併存させて構成される半導体装置
において、前記素子形成半導体層4のうち、前記p型M
OS電界効果トランジスタと前記n型MOS電界効果ト
ランジスタの双方のチャネル領域は、不純物濃度1×1
13/cm3 以上の不純物が含まれて同一導電型になされ
ているとともに、前記素子形成半導体層4の厚さは、ゲ
ート電圧を印加しない状態で前記素子形成半導体層4の
表面から広がる空乏層の深さと同一又はそれ以下に形成
されていることを特徴とする半導体装置により達成す
る。
[Means for Solving the Problems]
As illustrated in (i), in the semiconductor device configured by coexisting a p-type MOS field effect transistor and an n-type MOS field effect transistor in the element forming semiconductor layer 4 on the insulating layer 3, the element forming semiconductor layer 4, of the p-type M
The impurity concentration of the channel regions of both the OS field effect transistor and the n-type MOS field effect transistor is 1 × 1.
The element forming semiconductor layer 4 has a thickness of 0 13 / cm 3 or more and has the same conductivity type, and the thickness of the element forming semiconductor layer 4 is a depletion spreading from the surface of the element forming semiconductor layer 4 without applying a gate voltage. This is achieved by a semiconductor device characterized in that it is formed to be equal to or less than the depth of the layer.

【0015】または、前記n型MOS電界効果トランジ
スタのゲート電極G1 はp型不純物含有半導体により形
成される一方、前記p型MOS電界効果トランジスタの
ゲート電極G2 はn型不純物含有半導体によって形成さ
れていることを特徴とする半導体装置により達成する。
Alternatively, the gate electrode G 1 of the n-type MOS field effect transistor is formed of a p-type impurity-containing semiconductor, while the gate electrode G 2 of the p-type MOS field-effect transistor is formed of an n-type impurity-containing semiconductor. It is achieved by a semiconductor device characterized in that

【0016】[0016]

【作 用】本発明によれば、絶縁層3上の素子形成用半
導体層4の上に形成されるpMOSFETとnMOSF
ETの双方のチャネル領域を同一導電型にするととも
に、その不純物濃度を1×1013/cm3 以上となし、し
かも、素子形成半導体層4の厚さをその表面から広がる
空乏層の深さと同一又はそれよりも小さくしている。
[Operation] According to the present invention, a pMOSFET and an nMOSF formed on the element forming semiconductor layer 4 on the insulating layer 3 are formed.
Both the channel regions of ET have the same conductivity type, the impurity concentration thereof is 1 × 10 13 / cm 3 or more, and the thickness of the element forming semiconductor layer 4 is the same as the depth of the depletion layer extending from the surface thereof. Or it is smaller than that.

【0017】このために、pMOSFETとnMOSF
ETのチャネル領域の素子形成用半導体層4は、ゲート
電圧を印加しないときにその下の絶縁膜3に到る深さま
で完全に空乏化し、不純物の導電型による影響はなくな
り、通常のトランジスタ動作が行える。
For this purpose, pMOSFET and nMOSF
The element-forming semiconductor layer 4 in the channel region of ET is completely depleted to a depth reaching the insulating film 3 thereunder when a gate voltage is not applied, and the influence of the conductivity type of impurities disappears, and normal transistor operation does not occur. You can do it.

【0018】したがって、一般的な不純物濃度のウェハ
から素子形成用半導体層4を形成でき、結晶の品質を良
くし、しかも量産性の良い高性能のデバイスの製造が可
能になる。
Therefore, the semiconductor layer 4 for element formation can be formed from a wafer having a general impurity concentration, and it becomes possible to manufacture a high-performance device with good crystal quality and good mass productivity.

【0019】また、pMOSFETのゲート電極G1
n型不純物含有半導体より形成する一方、nMOSFE
Tのゲート電極G2 をp型不純物含有半導体により形成
しているために、仕事関数差の関係より、それらのMO
SFETは、チャネル領域の不純物を打ち分けずにエン
ハンスメント型になる。このため、工程も簡略化され
る。
The gate electrode G 1 of the pMOSFET is formed of an n-type impurity-containing semiconductor, while the nMOSFE is formed.
Since the gate electrode G 2 of T is formed of a p-type impurity-containing semiconductor, its MO
The SFET becomes an enhancement type without implanting impurities in the channel region. Therefore, the process is also simplified.

【0020】[0020]

【実施例】図1〜3は、本発明の一実施例装置の製造工
程を示す断面図で、図3(i) は、その工程を経て形成さ
れた本発明の一実施例装置を示すものである。
1 to 3 are cross-sectional views showing a manufacturing process of an embodiment device of the present invention, and FIG. 3 (i) shows an embodiment device of the present invention formed through the process. Is.

【0021】図において符号1は、貼合わせ法、SIM
OX等により形成されたSOI基板で、このSOI基板
1は、シリコンよりなる支持層2と、SiO2よりなる埋込
絶縁層3と、例えば膜厚200〜5000Åの単結晶シ
リコンよりなるn--型の素子形成半導体層4から構成さ
れており、そのうちの素子形成半導体層4は、1×10
13〜1×1017/cm3 程度の低濃度の燐を含んで形成さ
れている。
In the figure, reference numeral 1 is a bonding method, SIM.
The SOI substrate 1 is made of OX or the like, and the SOI substrate 1 includes a support layer 2 made of silicon, a buried insulating layer 3 made of SiO 2 , and n made of single crystal silicon having a film thickness of 200 to 5000 Å, for example. The element-forming semiconductor layer 4 of which is 1 × 10
It is formed to contain phosphorus at a low concentration of about 13 to 1 × 10 17 / cm 3 .

【0022】そこで、まず図1(a) に示すように、フォ
トレジストを塗布し、これを露光、現像して、nMOS
形成領域XとpMOS形成領域Yを覆うレジストマスク
5を形成した後に、レジストマスク5から露出した領域
の素子形成半導体層4を塩素系ガスを用いて反応性イオ
ンエッチング(RIE)法によりエッチング除去し、素
子形成半導体層4をnMOS形成領域XとpMOS形成
領域Yに島状に残存させる(図1(b))。
Therefore, first, as shown in FIG. 1A, a photoresist is applied, exposed and developed to form an nMOS.
After forming the resist mask 5 covering the formation region X and the pMOS formation region Y, the element formation semiconductor layer 4 in the region exposed from the resist mask 5 is removed by etching by a reactive ion etching (RIE) method using a chlorine-based gas. The element forming semiconductor layer 4 is left in the nMOS forming region X and the pMOS forming region Y in an island shape (FIG. 1B).

【0023】次に、レジストマスク5を除去してから、
島状の素子形成半導体層4を熱酸化してその表面に10
0〜200ÅのSiO2絶縁膜6を形成した後に、例えばC
VD法によりノンドープ多結晶シリコン膜7を2000
Å程度成長し、その表面を熱酸化して100〜200Å
の膜厚のSiO2膜8を形成する(図1(c))。反応ガスとし
てはSiH4、Si2H6 等がある。
Next, after removing the resist mask 5,
The island-shaped element forming semiconductor layer 4 is thermally oxidized to form 10
After forming the SiO 2 insulating film 6 of 0 to 200Å, for example, C
The non-doped polycrystalline silicon film 7 is made to 2000 by the VD method.
Å About Å growth, the surface is thermally oxidized 100 ~ 200 Å
The SiO 2 film 8 having the film thickness is formed (FIG. 1 (c)). Examples of the reaction gas include SiH 4 and Si 2 H 6 .

【0024】この後に、図2(d) に示すように、pMO
S形成領域Yを覆うレジストマスク9を形成し、表出し
ているnMOS形成領域Xの多結晶シリコン膜7に硼素
をイオン注入してp型化する。この場合のイオン注入の
条件としては、例えばドーズ量を1×1015〜1×10
16/cm2 、加速エネルギーを30keV とする。
After this, as shown in FIG. 2 (d), pMO
A resist mask 9 covering the S formation region Y is formed, and boron is ion-implanted into the exposed polycrystalline silicon film 7 in the nMOS formation region X to make it p-type. The conditions for ion implantation in this case are, for example, a dose of 1 × 10 15 to 1 × 10 5.
16 / cm 2 and acceleration energy of 30 keV.

【0025】さらに、レジストマスク9を除去してか
ら、今度は図2(e) に示すように、nMOS形成領域X
を覆うレジストマスク10を形成し、pMOS形成領域
Yに燐又は砒素をイオン注入してその領域の多結晶シリ
コン膜7をn型化する。この場合のイオン注入は、前の
工程のp型不純物と同一条件にする。
Further, after removing the resist mask 9, this time, as shown in FIG. 2 (e), the nMOS formation region X is formed.
A resist mask 10 is formed to cover the pMOS formation region Y, and phosphorus or arsenic is ion-implanted into the pMOS formation region Y to make the polycrystalline silicon film 7 in that region n-type. Ion implantation in this case is performed under the same conditions as the p-type impurities in the previous step.

【0026】ついで、レジストマスク10を除去してか
ら、再びフォトレジストを塗布してこれを露光、現像
し、nMOS形成領域XとpMOS形成領域Yの各ゲー
ト領域を覆うレジストマスク11を形成し、このレジス
トマスク11から露出したSiO2膜とn型及びp型の多結
晶シリコン膜7を、図2(f) に示すようにRIE法によ
り除去する。つづいてレジストマスク11を除去する。
Then, after removing the resist mask 10, a photoresist is applied again, and the photoresist is exposed and developed to form a resist mask 11 covering each gate region of the nMOS formation region X and the pMOS formation region Y. The SiO 2 film and the n-type and p-type polycrystalline silicon film 7 exposed from the resist mask 11 are removed by the RIE method as shown in FIG. 2 (f). Subsequently, the resist mask 11 is removed.

【0027】これにより、pMOS形成領域YとnMO
S形成領域Xに残った多結晶シリコン膜7をそれぞれゲ
ート電極G1 、G2 とする。次に、図3(g) に示すよう
に、レジストマスク12を形成してpMOS形成領域Y
と、nMOS形成領域Xのゲート電極G1 とを覆った後
に、そのゲート電極G1 の両側にあるn--型半導体層4
に例えば燐をドーズ量1×1013/cm2 でイオン注入し
てn- 型層4nを形成する。
As a result, the pMOS formation region Y and the nMO are formed.
The polycrystalline silicon films 7 remaining in the S formation region X are used as gate electrodes G 1 and G 2 , respectively. Next, as shown in FIG. 3G, a resist mask 12 is formed and a pMOS formation region Y is formed.
And the n -- type semiconductor layer 4 on both sides of the gate electrode G 1 after covering the gate electrode G 1 of the nMOS formation region X.
Then, for example, phosphorus is ion-implanted at a dose of 1 × 10 13 / cm 2 to form an n type layer 4n.

【0028】この後に、CVD法により全体にSiO2膜1
3を1000〜2000Åの厚さに形成し、これをRI
E法により垂直方向に異方性エッチングを行い、そのSi
O2膜13をゲート電極G1 ,G2 の側部にのみ残す(図
3(h))。
After this, the SiO 2 film 1 is entirely formed by the CVD method.
3 is formed to a thickness of 1000 to 2000Å, and this is RI
Anisotropic etching is performed in the vertical direction by the E method, and the Si
The O 2 film 13 is left only on the sides of the gate electrodes G 1 and G 2 (FIG. 3 (h)).

【0029】つづいて、pMOS形成領域Yのゲート電
極G2 とnMOS形成領域Xとをレジストマスク(不図
示)によって覆い、硼素を1×1015〜1×1016/cm
2 のドーズ量でイオン注入して、図3(i) の右に示すよ
うなpMOSFETのソース層4ps、ドレイン層4p
dを形成する。
Subsequently, the gate electrode G 2 in the pMOS formation region Y and the nMOS formation region X are covered with a resist mask (not shown), and boron is added at 1 × 10 15 to 1 × 10 16 / cm 3.
Ion implantation is performed at a dose of 2 to form a pMOSFET source layer 4ps and a drain layer 4p as shown on the right side of FIG. 3 (i).
to form d.

【0030】さらに、レジストマスクを取り替えて、n
MOS形成領域Xのゲート電極G1とpMOS形成領域
Yとをレジスト(不図示)によって覆い、そのゲート電
極G 1 の両側にあるn- 型層4nに砒素を1×1015
1×1016/cm2 のドーズ量でイオン注入し、図3(i)
の左側に示すようなnMOSFETのソース層4nsと
ドレイン層4ndを形成する。それらのソース層4ns
とドレイン層4ndは、ゲート電極G1 の近傍にn-
層4nを有してLDD構造となる。
Further, by replacing the resist mask, n
Gate electrode G of MOS formation region X1And pMOS formation area
Y and Y are covered with a resist (not shown),
Pole G 1On both sides of-Arsenic 1 × 10 in the mold layer 4n15~
1 x 1016/cm2Ion implantation with a dose of
Nns source layer 4ns as shown on the left side of
The drain layer 4nd is formed. Those source layers 4ns
And the drain layer 4nd are the gate electrode G1Near n-Type
The LDD structure is formed by including the layer 4n.

【0031】そして、この後に層間絶縁膜を形成し、活
性化熱処理、アルミニウム配線等を行ってトランジスタ
を完成させることになる。なお、素子形成半導体層4及
び多結晶シリコン膜7にイオン注入された不純物は、注
入後の成膜温度または独立した加熱処理によって活性化
される。
Then, after that, an interlayer insulating film is formed, activation heat treatment, aluminum wiring, etc. are performed to complete the transistor. The impurities ion-implanted into the element-forming semiconductor layer 4 and the polycrystalline silicon film 7 are activated by the film-forming temperature after implantation or an independent heat treatment.

【0032】次に、以上の工程を経て形成されたnMO
SFETとpMOSFETの作用について説明する。上
記したnMOSFETのチャネル領域にはゲート電極と
の間の仕事関数差により、ゲートにゼロバイアスの状態
でも、その表面から空乏層が広がり、その深さは次の関
係にある。
Next, the nMO formed through the above steps
The operation of the SFET and pMOSFET will be described. Due to the work function difference between the channel region of the nMOSFET and the gate electrode, the depletion layer spreads from the surface of the nMOSFET even when the gate is at zero bias, and its depth has the following relationship.

【0033】〔空乏層の深さ〕∝〔不純物濃度〕-1/2 例えば、1×1014/cm3 の場合には1μmの深さであ
り、また、1×1016/cm3 の場合には0.1μmの深
さである。
[Depletion layer depth] ∝ [impurity concentration] -1/2 For example, in the case of 1 × 10 14 / cm 3 , the depth is 1 μm, and in the case of 1 × 10 16 / cm 3 . Has a depth of 0.1 μm.

【0034】ところで、上記した素子形成半導体層4に
形成されたnMOSFET及びpMOSFETのチャネ
ル領域の不純物濃度は1×1013〜1×1017/cm3
あり、チャネル領域の表面から生じる空乏層の深さは、
3〜0.03μm程度となるので、素子形成半導体層4
の厚さをそれに合わせれば、チャネル領域は完全に空乏
化している状態になる。
The impurity concentration of the channel regions of the nMOSFET and pMOSFET formed in the element forming semiconductor layer 4 is 1 × 10 13 to 1 × 10 17 / cm 3 , and the depletion layer generated from the surface of the channel region is formed. Depth is
Since it is about 3 to 0.03 μm, the element forming semiconductor layer 4
If the thickness of P is adjusted to that, the channel region is completely depleted.

【0035】また、nMOSFETのゲート電極にはp
型不純物を、pMOSFETのゲート電極にはn型不純
物を導入しているので、仕事関数差の関係より、それら
のMOSFETは、エンハンスメント型となっており、
閾値電圧の調整が不要になる。このため、チャネル領域
の不純物イオン注入を打ち分ける必要がなくなり、工程
も簡略化される。
The gate electrode of the nMOSFET has p
Type impurities and n-type impurities are introduced into the gate electrode of the pMOSFET, the MOSFETs are enhancement type due to the work function difference.
There is no need to adjust the threshold voltage. Therefore, it is not necessary to separately implant the impurity ions in the channel region, and the process is simplified.

【0036】したがって、ウェハとして通常使用されて
いる1×1015/cm3 程度の不純物濃度のものから素子
形成半導体層4を形成し、その厚さを0.3μm以下に
すれば、結晶の品質もよく、量産性が可能になり、低コ
ストで高性能のデバイスの製造が可能となる。
Therefore, if the element forming semiconductor layer 4 is formed from the one having an impurity concentration of about 1 × 10 15 / cm 3 which is usually used as a wafer and the thickness thereof is set to 0.3 μm or less, the crystal quality is improved. In addition, mass production is possible, and high-performance devices can be manufactured at low cost.

【0037】なお、ゲート電極G1 ,G2 に不純物を注
入する場合には、図2(d),(e) に示すように独立して行
ってもよいが、ソース層4ns,4ps、ドレイン層4nd,
4pdに不純物をイオン注入する際にマスクパターンを変
えて同時に注入すれば、工程が簡略化される。
When the impurities are implanted into the gate electrodes G 1 and G 2 , they may be independently implanted as shown in FIGS. 2 (d) and 2 (e). Layer 4nd,
If impurities are ion-implanted into 4 pd, if the mask pattern is changed and the impurities are simultaneously implanted, the process is simplified.

【0038】また、上記した実施例では、pMOSFE
T、nMOSFETのチャネル領域となる素子形成半導
体層4の不純物を燐や砒素を導入したn--型としている
が、硼素等を用いてp--型にしてもチャネル領域は空乏
化することになる。この場合には、nMOSFETは横
方向にn+ −p−n+ 構造となり、pMOSFETはp
+ −p−p+ 構造となり、その領域のp型不純物濃度や
素子形成半導体層の厚さも上記と同じ条件で決まる。
In the above embodiment, pMOSFE is used.
Although the impurity of the element forming semiconductor layer 4 to be the channel region of the T and nMOSFET is n -- type in which phosphorus or arsenic is introduced, the channel region is depleted even if it is p -- type using boron or the like. Become. In this case, the nMOSFET has a lateral n + -p-n + structure, and the pMOSFET has p
A + -p-p + structure is formed, and the p-type impurity concentration in that region and the thickness of the element forming semiconductor layer are determined under the same conditions as above.

【0039】さらに、閾値電圧の制御は、nMOSFE
T、pMOSFETのそれぞれのゲート電極の導電型を
相違させることにより対応しているが、nMOSFET
又はpMOSFETのいずれか一方のチャネル領域に不
純物をイオン注入して濃度を相違させて微調整してもよ
い。これによる各チャネル領域は、同一の導電型とす
る。
Further, the control of the threshold voltage is performed by nMOSFE.
This is achieved by making the gate electrodes of the T and pMOSFETs have different conductivity types.
Alternatively, the impurity may be ion-implanted into one of the channel regions of the pMOSFET to make the concentration different and fine adjustment is performed. The channel regions thus formed have the same conductivity type.

【0040】また、不純物濃度は上記した数字に限定さ
れるものではなく、1013/cm3 以上であればよく、こ
れに決まる空乏層の深さに応じて素子形成用半導体層の
厚さを決定すればよい。
Further, the impurity concentration is not limited to the above-mentioned numbers, and may be 10 13 / cm 3 or more, and the thickness of the semiconductor layer for element formation is determined according to the depth of the depletion layer determined by this. Just decide.

【0041】[0041]

【発明の効果】以上述べたように本発明によれば、絶縁
層上の素子形成用半導体層の上に形成されるpMOSF
ETとnMOSFETの双方ほチャネル領域を同一導電
型にするとともに、その不純物濃度を1×1013/cm3
以上にし、しかも、素子形成層の厚さを、その表面から
広がる空乏層の深さと同一又はそれより小さくしている
ので、素子形成用半導体層として使用するウェハの不純
物濃度を一般的な値と同じにでき、素子形成用半導体層
の結晶性を良くし、量産性が可能な高性能のデバイスの
製造が可能になる。
As described above, according to the present invention, the pMOSF formed on the element forming semiconductor layer on the insulating layer.
The channel regions of both ET and nMOSFET have the same conductivity type, and the impurity concentration thereof is 1 × 10 13 / cm 3
In addition, since the thickness of the element formation layer is made equal to or smaller than the depth of the depletion layer spreading from the surface thereof, the impurity concentration of the wafer used as the element formation semiconductor layer is set to a general value. The same can be done, the crystallinity of the element forming semiconductor layer is improved, and a high-performance device capable of mass production can be manufactured.

【0042】また、pMOSFETのゲート電極をn型
不純物含有半導体より形成する一方nMOSFETのゲ
ート電極をp型不純物含有半導体により形成しているの
で、仕事関数差の関係より、それらのMOSFETは、
チャネル領域の不純物を打ち分けずにエンハンスメント
型にすることが可能になる。このため、工程の簡略化も
可能となる。
Further, since the gate electrode of the pMOSFET is formed of the n-type impurity-containing semiconductor and the gate electrode of the nMOSFET is formed of the p-type impurity-containing semiconductor, the MOSFETs are
It is possible to make an enhancement type without separately implanting impurities in the channel region. Therefore, the process can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例装置の製造工程を示す断面図
(その1)である。
FIG. 1 is a cross-sectional view (1) showing a manufacturing process of a device according to an embodiment of the present invention.

【図2】本発明の一実施例装置の製造工程を示す断面図
(その2)である。
FIG. 2 is a sectional view (No. 2) showing the manufacturing process of the device according to the embodiment of the present invention.

【図3】本発明の一実施例装置の製造工程を示す断面図
(その3)である。
FIG. 3 is a sectional view (3) showing the manufacturing process of the device according to the embodiment of the present invention.

【図4】従来装置の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a conventional device.

【符号の説明】[Explanation of symbols]

1 SOI基板 2 支持層 3 埋込絶縁層 4 素子形成半導体層 5、9、10、11、12 レジストマスク 6 絶縁膜 7 多結晶シリコン膜(半導体膜) 8、13 SiO2膜 G1 、G2 ゲート電極1 SOI Substrate 2 Support Layer 3 Buried Insulation Layer 4 Element Forming Semiconductor Layer 5, 9, 10, 11, 12 Resist Mask 6 Insulation Film 7 Polycrystalline Silicon Film (Semiconductor Film) 8, 13 SiO 2 Film G 1 , G 2 Gate electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/12 Z 8728−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 27/12 Z 8728-4M

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】絶縁層(3)上の素子形成半導体層(4)
に、p型MOS電界効果トランジスタとn型MOS電界
効果トランジスタを併存させて構成される半導体装置に
おいて、 前記素子形成半導体層(4)のうち、前記p型MOS電
界効果トランジスタと前記n型MOS電界効果トランジ
スタの双方のチャネル領域は、不純物濃度1×1013
cm3 以上の不純物が含まれて同一導電型となっていると
ともに、 前記素子形成半導体層(4)の厚さは、ゲート電圧を印
加しない状態で前記素子形成半導体層(4)の表面から
広がる空乏層の深さと同一又はそれ以下に形成されてい
ることを特徴とする半導体装置。
1. A device forming semiconductor layer (4) on an insulating layer (3).
In a semiconductor device configured by coexisting a p-type MOS field effect transistor and an n-type MOS field effect transistor, in the element forming semiconductor layer (4), the p-type MOS field effect transistor and the n-type MOS field effect transistor are included. Both channel regions of the effect transistor have an impurity concentration of 1 × 10 13 /
The element-forming semiconductor layer (4) has the same conductivity type by containing impurities of cm 3 or more, and the thickness of the element-forming semiconductor layer (4) spreads from the surface of the element-forming semiconductor layer (4) without applying a gate voltage. A semiconductor device, wherein the semiconductor device is formed to be equal to or less than the depth of the depletion layer.
【請求項2】前記n型MOS電界効果トランジスタのゲ
ート電極(G1 )はp型不純物含有半導体により形成さ
れる一方、前記p型MOS電界効果トランジスタのゲー
ト電極(G2 )はn型不純物含有半導体によって形成さ
れていることを特徴とする請求項1記載の半導体装置。
2. The gate electrode (G 1 ) of the n-type MOS field effect transistor is formed of a semiconductor containing p-type impurities, while the gate electrode (G 2 ) of the p-type MOS field effect transistor contains n-type impurities. The semiconductor device according to claim 1, wherein the semiconductor device is formed of a semiconductor.
JP4039820A 1992-02-26 1992-02-26 Semiconductor device Withdrawn JPH05235350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4039820A JPH05235350A (en) 1992-02-26 1992-02-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4039820A JPH05235350A (en) 1992-02-26 1992-02-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH05235350A true JPH05235350A (en) 1993-09-10

Family

ID=12563615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4039820A Withdrawn JPH05235350A (en) 1992-02-26 1992-02-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH05235350A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153813A (en) * 1994-06-13 1999-06-08 Semiconductor Energy Lab Co Ltd Active matrix device
JPH11160737A (en) * 1994-06-13 1999-06-18 Semiconductor Energy Lab Co Ltd Active matrix device
JP2005332980A (en) * 2004-05-20 2005-12-02 Seiko Epson Corp Semiconductor device and method for manufacturing the same
US7161178B2 (en) 1994-06-13 2007-01-09 Semiconductor Energy Laboratory Co., Ltd. Display device having a pixel electrode through a second interlayer contact hole in a wider first contact hole formed over an active region of display switch
US7190428B2 (en) 1997-03-26 2007-03-13 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2007273968A (en) * 2006-03-08 2007-10-18 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
WO2008001680A1 (en) * 2006-06-27 2008-01-03 National University Corporation Tohoku University Semiconductor device
US8294157B2 (en) 2006-03-08 2012-10-23 Semiconducter Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2012209603A (en) * 2003-11-21 2012-10-25 Agere Systems Inc Metal-oxide-semiconductor device formed in silicon-on-insulator
WO2013161331A1 (en) * 2012-04-27 2013-10-31 独立行政法人産業技術総合研究所 Complementary semiconductor device and method for manufacturing same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479657B2 (en) 1994-06-13 2009-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including active matrix circuit
JPH11160737A (en) * 1994-06-13 1999-06-18 Semiconductor Energy Lab Co Ltd Active matrix device
JPH11153813A (en) * 1994-06-13 1999-06-08 Semiconductor Energy Lab Co Ltd Active matrix device
US7161178B2 (en) 1994-06-13 2007-01-09 Semiconductor Energy Laboratory Co., Ltd. Display device having a pixel electrode through a second interlayer contact hole in a wider first contact hole formed over an active region of display switch
US7436463B2 (en) 1997-03-26 2008-10-14 Semiconductor Energy Laboratory Co., Ltd. Display device
US7190428B2 (en) 1997-03-26 2007-03-13 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2012209603A (en) * 2003-11-21 2012-10-25 Agere Systems Inc Metal-oxide-semiconductor device formed in silicon-on-insulator
JP2005332980A (en) * 2004-05-20 2005-12-02 Seiko Epson Corp Semiconductor device and method for manufacturing the same
JP2007273968A (en) * 2006-03-08 2007-10-18 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
US8294157B2 (en) 2006-03-08 2012-10-23 Semiconducter Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9029864B2 (en) 2006-03-08 2015-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2008010498A (en) * 2006-06-27 2008-01-17 Tohoku Univ Semiconductor device
WO2008001680A1 (en) * 2006-06-27 2008-01-03 National University Corporation Tohoku University Semiconductor device
US8643106B2 (en) 2006-06-27 2014-02-04 National University Corporation Tohoku University Semiconductor device
WO2013161331A1 (en) * 2012-04-27 2013-10-31 独立行政法人産業技術総合研究所 Complementary semiconductor device and method for manufacturing same

Similar Documents

Publication Publication Date Title
US6316302B1 (en) Isotropically etching sidewall spacers to be used for both an NMOS source/drain implant and a PMOS LDD implant
US6861304B2 (en) Semiconductor integrated circuit device and method of manufacturing thereof
US4866002A (en) Complementary insulated-gate field effect transistor integrated circuit and manufacturing method thereof
US20020168802A1 (en) SiGe/SOI CMOS and method of making the same
US9076867B2 (en) Semiconductor device structures including strained transistor channels
JPH08153880A (en) Semiconductor device and fabrication thereof
US7018891B2 (en) Ultra-thin Si channel CMOS with improved series resistance
JPH098297A (en) Semiconductor device, manufacture thereof and field-effect transistor
JPH05235350A (en) Semiconductor device
US6020231A (en) Method for forming LDD CMOS
US6555482B2 (en) Process for fabricating a MOS transistor having two gates, one of which is buried and corresponding transistor
JPS626671B2 (en)
JPH06268215A (en) Mis type semiconductor device
US6780700B2 (en) Method of fabricating deep sub-micron CMOS source/drain with MDD and selective CVD silicide
KR100499755B1 (en) Method of fabricating deep sub-micron cmos source/drain with mdd and selective cvd silicide
JPH0613606A (en) Semiconductor device
JPH0766296A (en) Mis semiconductor device and manufacture thereof
JPH0521800A (en) Soimosfet
JP3020729B2 (en) Method for manufacturing semiconductor device
JP2001196467A (en) Semiconductor integrated circuit device and its manufacturing method
JPH04257267A (en) Manufacture of soi-structured semiconductor device
JPH03286569A (en) Mes-type field-effect transistor
JPH0472770A (en) Manufacture of semiconductor device
JPH04146628A (en) Thin film semiconductor device
JP2973479B2 (en) Thin film transistor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518