JPS6032354A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS6032354A
JPS6032354A JP58141576A JP14157683A JPS6032354A JP S6032354 A JPS6032354 A JP S6032354A JP 58141576 A JP58141576 A JP 58141576A JP 14157683 A JP14157683 A JP 14157683A JP S6032354 A JPS6032354 A JP S6032354A
Authority
JP
Japan
Prior art keywords
type
layer
polycrystalline silicon
gate electrode
channel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58141576A
Other languages
Japanese (ja)
Inventor
Toshiaki Umemoto
梅本 利明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP58141576A priority Critical patent/JPS6032354A/en
Publication of JPS6032354A publication Critical patent/JPS6032354A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0927Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising a P-well only in the substrate

Abstract

PURPOSE:To accelerate the speed of a C-MOS by forming a polycrystalline silicon layer of gate electrode in reverse conductive type to the conductive type of the opposed channel region, thereby performing an enhancement type MOS transistor. CONSTITUTION:A P type buried channel region 8, in which boron ions are implanted to the surface of an N type silicon substrate 6, is provided, while an N type buried channel region 9, in which arsenic ions are implanted to the surface of a P-well 7 is provided. Gate electrodes are respectively formed on both channel regions 8, 9 through a gate insulating film 3. A double layer formed of phosphorus-doped N type polycrystalline silicon layer 2 and a tungsten layer 10 are formed on the gate electrodes on the region 8. On the other hand, a gate electrode formed of a boron-doped P type polycrystalline silicon film 1 and a tungsten layer 10 is formed on the region 9. The source, and drain regions 4, 5 of both MOS transistors are formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路、詳しくは、相補型絶縁ゲート
電界効果半導体装置(以下、0MO3と略称する)の構
造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor integrated circuit, and more particularly to the structure of a complementary insulated gate field effect semiconductor device (hereinafter abbreviated as OMO3).

従来例の構成とその問題点 0MO3は、Nチャネル形およびPチャネル形の一対の
絶縁ゲート電界効果トランジスタを相補的に接続した回
路構成であるか、半導体装置の構造でみると、第1図の
要部断面図のように、2つの絶縁ゲート電界効果トラン
ジスタからなる。そして、ゲート電極には多結晶シリコ
ン層が用いられ、その場合、セルフアライメント方式で
ソース・ドレイン領域を形成する過程で、多結晶シリコ
ン層はソース・ドレイン領域と同じ電導型の不純物が導
入される。すなわち、第1図で、Pチャネル形MO3)
ランジスタはP型の多結晶シリコン層1のゲート電極を
有し、一方、Nチャネル形MOSトランジスタはNuの
多結晶シリコン層2のゲート電極を有する。なお、各ト
ランジスタ部は、それぞれ、ゲート絶縁膜3を介して、
P型拡散層でなるソース、ドレイン領域4ならびにN型
拡散層でなるソース、ドレイン領域6が、N型シリコン
基板6ならびにP型つェル7の各領域内に、設けられた
構造である。
Conventional configuration and its problems 0MO3 has a circuit configuration in which a pair of N-channel type and P-channel type insulated gate field effect transistors are connected in a complementary manner. As shown in the main cross-sectional view, it consists of two insulated gate field effect transistors. A polycrystalline silicon layer is used for the gate electrode, and in this case, impurities of the same conductivity type as the source and drain regions are introduced into the polycrystalline silicon layer during the process of forming the source and drain regions using a self-alignment method. . That is, in FIG. 1, P-channel type MO3)
The transistor has a gate electrode of a P-type polycrystalline silicon layer 1, while the N-channel type MOS transistor has a gate electrode of a Nu polycrystalline silicon layer 2. Note that each transistor section has a gate insulating film 3 interposed therebetween.
The structure is such that a source/drain region 4 made of a P-type diffusion layer and a source/drain region 6 made of an N-type diffusion layer are provided in each region of an N-type silicon substrate 6 and a P-type well 7.

ところが、このようなゲート電極材料の組合せによると
、ゲート電極と基板シリコンとの仕事関数差φMSは、
PチャネルMO3)ランジスタの場合に大きな正の値に
なり、一方、NチャネルMO8)ランジスタの場合に大
きな負の値になる。
However, according to such a combination of gate electrode materials, the work function difference φMS between the gate electrode and the substrate silicon is
This results in a large positive value in the case of a P-channel MO3) transistor, while it results in a large negative value in the case of an N-channel MO8) transistor.

これは、0MO8の各トランジスタに望まれるエンハン
スメント・タイプMO3にとって、不都合テアル。とく
に、MoSトランジスタの高速化をはかるために用いら
れる埋込みチャネル構造のMOS )ランジスタでハ、
エンハンスメント・タイプを実現するために、φMSは
、PチャネルMOSトランジスタの場合に負、Nチャネ
ルMOSトランジスタの場合に正である必要があり、上
述のゲート電極材料の組合せは、0MO8にとって、満
足できるものではない。
This is a disadvantage for the enhancement type MO3 desired for each transistor in 0MO8. In particular, MOS transistors with a buried channel structure are used to increase the speed of MoS transistors.
To realize the enhancement type, φMS needs to be negative for P-channel MOS transistors and positive for N-channel MOS transistors, and the above combination of gate electrode materials is satisfactory for 0MO8. isn't it.

発明の目的 本発明は、0MO8に適したゲート電極と基板半導体と
の組合せ、ないしはそのゲート電極構造を提供し、これ
によって、0MO3の高速化を実現するのが主要な目的
である。
OBJECTS OF THE INVENTION The main purpose of the present invention is to provide a combination of a gate electrode and a substrate semiconductor suitable for 0MO8, or a gate electrode structure thereof, and thereby realize high-speed operation of 0MO3.

発明の構成 本発明は、要約すると、単一半導体基板上に、Pチャネ
ル形およびNチャネル形の一対の絶縁ゲート電界効果ト
ランジスタをそなえ、前記両電界効果トランジスタは、
それぞれ、対応する電導形の埋込みチャネル領域を有す
るとともに、各ゲート電極を相対する前記埋込みチャネ
ル領域と反対電導形の多結晶シリコン層で形成した半導
体集積回路であり、これにより、ゲート電極と基板表面
のチャネル領域との仕事関数差φMS を、Pチャネル
MO8)ランジスタの側で負、NチャネルMO3)ラン
ジスタの側で正になして、両電界効果トランジスタを確
実にエンハンスメント・タイプにすることができ、加え
て、埋込みチャネル領域を0MO3に適用して、0MO
8の高速動作を達成することができる。
Structure of the Invention To summarize, the present invention includes a pair of insulated gate field effect transistors of a P-channel type and an N-channel type on a single semiconductor substrate, and both of the field effect transistors have the following features:
Each of the semiconductor integrated circuits has a buried channel region of a corresponding conductivity type, and each gate electrode is formed of a polycrystalline silicon layer of an opposite conductivity type to the buried channel region. The work function difference φMS with the channel region of the transistor can be made negative on the side of the P-channel MO8) transistor and positive on the side of the N-channel MO3) transistor to ensure that both field-effect transistors are of the enhancement type. In addition, a buried channel region is applied to 0MO3 to
8 high speed operation can be achieved.

実施例の説明 第2図は本発明の実施例装置の要部断面図であり、不純
物濃度約1×1015/clTPのN型シリコン基板6
の表面部には、イオン注入法によって約5×11015
Aの灼度のボロンを導入したP型埋込みチャネル領域8
をそなえ、一方、不純物濃度約1X 1016/cJの
P型つェル7の表面部には、イオン注入法によって約2
×1016/cn?の濃度の砒素を導入したN型埋込み
チャネル領域9をそなえている。また、厚さ約50nm
の二酸化シリコン膜でなるゲート絶縁膜3を介して、前
記両チャイル領域8,9の上に、それぞれ、ゲート′成
極が設けられるが、P型埋込みチャネル領域8の上のケ
ート電極には、燐を高濃度にドープしたN型多結晶29
37層2およびタングステン層10よりなる二重層を形
成し、一方、N型埋込みチャネル領域9の上には、ボロ
ンを高濃度にドープしたP型多結晶シリコンノーおよび
タングステン層10よりなるゲート電極を形成している
。そして、両方のMOS)ランジスタのソース、ドンイ
/領域4および6は、それぞれ、前記各ゲート電極をマ
スクとするセルンアライメント方式によって、ボロンお
よび砒素を注入して形成される。なお、ゲート電極をな
す多結晶シリコン層1および2上のタングステン層10
は、たとえば、六ふっ化タングステン(WF6 )と水
素(H2)との混合ガスを用いて、減圧下のCVD法に
より、多結晶シリコン層上にのみ選択的に成長させるこ
とができる。
DESCRIPTION OF EMBODIMENTS FIG. 2 is a cross-sectional view of a main part of an apparatus according to an embodiment of the present invention.
Approximately 5×11015 was added to the surface by ion implantation.
P-type buried channel region 8 into which boron of burning degree A is introduced
On the other hand, on the surface of the P-type well 7 with an impurity concentration of about 1×1016/cJ, about 2
×1016/cn? It has an N-type buried channel region 9 into which arsenic is introduced at a concentration of . Also, the thickness is about 50 nm
A gate electrode is provided on both the child regions 8 and 9 through a gate insulating film 3 made of a silicon dioxide film. N-type polycrystalline 29 heavily doped with phosphorus
A double layer consisting of the 37 layer 2 and the tungsten layer 10 is formed, and on the other hand, on the N type buried channel region 9, a gate electrode consisting of the P type polycrystalline silicon layer doped with boron at a high concentration and the tungsten layer 10 is formed. is forming. The sources and regions 4 and 6 of both MOS transistors are respectively formed by implanting boron and arsenic using the cell alignment method using each gate electrode as a mask. Note that the tungsten layer 10 on the polycrystalline silicon layers 1 and 2 forming the gate electrodes
can be selectively grown only on the polycrystalline silicon layer by, for example, a CVD method under reduced pressure using a mixed gas of tungsten hexafluoride (WF6) and hydrogen (H2).

かかる選択的成長法のみならず、一般的なCVDによっ
て、タングステン層1oを得てもよい。さらに、このタ
ングステン)iloは、同じような性能をもつ金属、た
とえば、モリブデン、タンタル。
The tungsten layer 1o may be obtained not only by such selective growth method but also by general CVD. Furthermore, this tungsten (ILO) is compatible with metals with similar performance, such as molybdenum and tantalum.

チタン、白金などの高融点金属群ならびにその金属シリ
コン化合物群から選定することが可能である。
It is possible to select from a group of high melting point metals such as titanium and platinum, as well as metal silicon compounds thereof.

本発明実施例の構造によると、1く型多結晶シリコンノ
ー2とP型埋込みチャネル領域8との仕事関数差φMS
は負の値になり、一方、P型子結晶シリコン層1とN型
埋込みチャネル領域9との仕事関数差φMSは正の値に
なる。したがって、これらの場合には、両方のMOSト
ランジスタトモ、エンハンスメント・タイプになり、安
定な0MO3特性が得られる。また、埋込みチャネル構
造のMOS)ランジスクでは、通常の表面チャネル構造
のものと異なり、シリコンー二酸化シリコン膜界面での
キャリアの散乱がないので、その5ンダクタンスが著し
く増大し、これによって、本実施例の1VIO3)ラン
ジスタは、同一寸法の表面チャネル型のものにくらべて
、飽和領域における相互コンダクタンス(、!9m )
値か約20〜40%高い値になる。このことは0MO3
の高速動作に好適である。
According to the structure of the embodiment of the present invention, the work function difference φMS between the D-type polycrystalline silicon No. 2 and the P-type buried channel region 8 is
has a negative value, and on the other hand, the work function difference φMS between the P-type subcrystalline silicon layer 1 and the N-type buried channel region 9 has a positive value. Therefore, in these cases, both MOS transistors are of the enhancement type, and stable 0MO3 characteristics can be obtained. In addition, in a buried channel structure MOS transistor, unlike a normal surface channel structure, there is no scattering of carriers at the silicon-silicon dioxide film interface, so its 5 inductance increases significantly. 1VIO3) Transistors have lower transconductance (,!9m) in the saturation region than surface channel type ones of the same dimensions.
The value will be about 20-40% higher. This means 0MO3
Suitable for high-speed operation.

さらに、ゲート電極として、多結晶シリコン層をおおっ
て、金属層または金属シリコン化合物層をそなえたこと
により、セルファライメイト方式でのソース、ドレイン
領域形成過程で、多結晶シリコン層に逆の電導型不純物
がトープされることを防ぎ、MOSトランジスタのしき
い値電圧の変動を確実に抑止できる。加えて、多結晶シ
リコン層と金属層または金属シリコン化合物層との二層
構造によるゲート電極はそれ自体で十分に低いシート抵
抗値のものであるが、逆電導型不純物の導入が抑制され
ることによって、そのシート抵抗層の上昇もみられず、
安定なゲート特性が保持される。
Furthermore, by providing a metal layer or a metal silicon compound layer covering the polycrystalline silicon layer as a gate electrode, the polycrystalline silicon layer has an opposite conductivity type during the process of forming the source and drain regions using the self-alignment method. It is possible to prevent impurities from being toped and reliably suppress fluctuations in the threshold voltage of the MOS transistor. In addition, although a gate electrode with a two-layer structure of a polycrystalline silicon layer and a metal layer or a metal silicon compound layer has a sufficiently low sheet resistance value by itself, the introduction of reverse conductivity type impurities is suppressed. However, no increase in the sheet resistance layer was observed,
Stable gate characteristics are maintained.

発明の効果 本発明によれば、Pチャネル形およびNチャネル形の両
方のMOS)ランンスタにおいて、ゲート電極の多結晶
シリコン層を、その相対するチャネル領域の電導型とは
逆の電導型になすことによって、確実なエンハンスメン
ト・タイプのMOSトランジスタを実現し、これによっ
て、CMOSを構成することで安定な0MO8特性か得
られる。
Effects of the Invention According to the present invention, in both P-channel type and N-channel type MOS transistors, the polycrystalline silicon layer of the gate electrode has a conductivity type opposite to that of its opposing channel region. By this, a reliable enhancement type MOS transistor is realized, and by configuring a CMOS, a stable 0MO8 characteristic can be obtained.

とりわけ、本発明によるゲート電極構造は、埋込みチャ
ネル構造のMOSトランジスタにおいても確実にエンハ
ンスメント・タイプのMO3特性を実現できるから、同
チャネル構造のMOSトランジスタによる0MO8構成
か容易に得られ、0MO3の高速化に有用である。
In particular, since the gate electrode structure according to the present invention can reliably achieve enhancement type MO3 characteristics even in a MOS transistor with a buried channel structure, it is possible to easily obtain an 0MO8 configuration using a MOS transistor with the same channel structure, thereby increasing the speed of 0MO3. It is useful for

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例装置の要部断面図、第2図は本発明実施
例装置の要部断面図である。 1・・・・・・P型子結晶シリコン層、2・・・・・N
型多結晶シリコン層、3・・・・・ゲート絶縁膜、4・
・・・・ソース、ドレインP型m域、5・・・・・・ソ
ース、トレインN型領域、6・・・・・N型ソリコン基
板、7・・・・・・P型f)x)へ8・・・・P型埋込
みチャネル領域、9・・・・・N型埋込みチャネル領域
、1o・・・・・タングステン層。
FIG. 1 is a sectional view of a main part of a conventional device, and FIG. 2 is a sectional view of a main part of a device according to an embodiment of the present invention. 1...P-type child crystal silicon layer, 2...N
type polycrystalline silicon layer, 3... gate insulating film, 4...
... Source, drain P-type m region, 5 ... Source, train N-type region, 6 ... N-type silicon substrate, 7 ... P-type f) x) 8... P-type buried channel region, 9... N-type buried channel region, 1o... tungsten layer.

Claims (3)

【特許請求の範囲】[Claims] (1) jll−半導体基板上に、Pチャネル形および
Nチャネル形の一対の絶縁ゲート電界効果トランジスタ
をそなえ、前記両電界効果トランジスタは、それぞれ、
対応する電導型のチャネル領域を有するとともに、各ゲ
ート電極を相対する前記チャネル領域と逆の電導型の多
結晶シリコン層で形成した半導体集積回路。
(1) A pair of insulated gate field effect transistors of a P-channel type and an N-channel type are provided on a jll-semiconductor substrate, and both of the field-effect transistors each have a
A semiconductor integrated circuit having a channel region of a corresponding conductivity type, and each gate electrode formed of a polycrystalline silicon layer of a conductivity type opposite to that of the channel region.
(2)各ゲート電極が金属層もしくは金属シリコン化合
物層でおおわれた多結晶シリコン層でなる特許請求の範
囲第1項に記載の半導体集積回路。
(2) The semiconductor integrated circuit according to claim 1, wherein each gate electrode is a polycrystalline silicon layer covered with a metal layer or a metal silicon compound layer.
(3) チャネル領域か埋込みチャネル構造でなる特許
請求の範囲第1項に記載の半導体集積回路。
(3) The semiconductor integrated circuit according to claim 1, wherein the channel region has a buried channel structure.
JP58141576A 1983-08-02 1983-08-02 Semiconductor integrated circuit Pending JPS6032354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58141576A JPS6032354A (en) 1983-08-02 1983-08-02 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58141576A JPS6032354A (en) 1983-08-02 1983-08-02 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS6032354A true JPS6032354A (en) 1985-02-19

Family

ID=15295189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58141576A Pending JPS6032354A (en) 1983-08-02 1983-08-02 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS6032354A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165470A (en) * 1984-09-07 1986-04-04 Hitachi Ltd Semiconductor ic device
FR2673326A1 (en) * 1991-02-26 1992-08-28 Samsung Electronics Co Ltd MOS LDD field-effect transistor with gate structure in the shape of an inverted T, and method of fabricating it
US6066880A (en) * 1997-08-26 2000-05-23 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
WO2003009374A1 (en) * 2001-07-16 2003-01-30 Renesas Technology Corp. Production method of semiconductor device
JP2010212714A (en) * 2010-04-27 2010-09-24 Canon Inc Solid state image sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165470A (en) * 1984-09-07 1986-04-04 Hitachi Ltd Semiconductor ic device
FR2673326A1 (en) * 1991-02-26 1992-08-28 Samsung Electronics Co Ltd MOS LDD field-effect transistor with gate structure in the shape of an inverted T, and method of fabricating it
US6066880A (en) * 1997-08-26 2000-05-23 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US6492676B2 (en) 1997-08-26 2002-12-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having gate electrode in which depletion layer can be generated
WO2003009374A1 (en) * 2001-07-16 2003-01-30 Renesas Technology Corp. Production method of semiconductor device
JP2010212714A (en) * 2010-04-27 2010-09-24 Canon Inc Solid state image sensor

Similar Documents

Publication Publication Date Title
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JP2780670B2 (en) Manufacturing method of epitaxial channel MOS transistor
JP2795259B2 (en) Semiconductor device and manufacturing method thereof
JPH08186179A (en) Complementary semiconductor device
JPH06268215A (en) Mis type semiconductor device
JPS6032354A (en) Semiconductor integrated circuit
US4812889A (en) Semiconductor device FET with reduced energy level degeneration
JPH0290683A (en) Thin film transistor and manufacture thereof
JPH03160761A (en) Semiconductor device
JPH08293557A (en) Semiconductor device and manufacture thereof
JPH0521800A (en) Soimosfet
JP2880712B2 (en) Semiconductor device
JP2605757B2 (en) Method for manufacturing semiconductor device
JPS63278273A (en) Semiconductor device
JPH0812917B2 (en) Method of operating MIS transistor and MIS transistor
JPS60143665A (en) Semiconductor memory
JPH02137372A (en) Mos field-effect transistor
JPS63114160A (en) Integrated circuit for complementary type misfet
KR930017097A (en) Semiconductor device and manufacturing method thereof
JPH05183131A (en) Thin film transistor
JPH11224945A (en) Semiconductor device
JPS61131476A (en) Semiconductor device
JPH02105566A (en) Complementary semiconductor device
JPH02174236A (en) Manufacture of semiconductor device
JPH03204968A (en) Semiconductor device and manufacture thereof