JPH02137270A - Dual gate mos field effect transistor - Google Patents

Dual gate mos field effect transistor

Info

Publication number
JPH02137270A
JPH02137270A JP63291316A JP29131688A JPH02137270A JP H02137270 A JPH02137270 A JP H02137270A JP 63291316 A JP63291316 A JP 63291316A JP 29131688 A JP29131688 A JP 29131688A JP H02137270 A JPH02137270 A JP H02137270A
Authority
JP
Japan
Prior art keywords
gate
effect transistor
field effect
mos field
channel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63291316A
Other languages
Japanese (ja)
Other versions
JPH0770723B2 (en
Inventor
Yoshito Ogawa
義人 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63291316A priority Critical patent/JPH0770723B2/en
Publication of JPH02137270A publication Critical patent/JPH02137270A/en
Publication of JPH0770723B2 publication Critical patent/JPH0770723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable low voltage operation without inserting a source resistor for self bias of a second gate by setting a first gate side in a remote cutoff depletion mode, and setting a second gate side in an enhancement mode. CONSTITUTION:The title device is constituted of the following; a first gate of remote cutoff depletion mode, a second gate insulating film 14 thinner than a gate insulating film 13 of the first gate, a second gate channel region 5 with impurity concentration higher than a channel region 3 of the first gate, and a second gate of enhancement mode. Thereby, the insertion of a resistor into the source is unnecessitated, and low voltage operation is enabled. Further a mutual conductance on the second gate side is increased, and AGC characteristics also are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はデュアルゲートMOS電界効果トランジスタに
関し、特に低電圧動作に適したゲート構造を有するデュ
アルゲー)−MO3電界効果トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dual-gate MOS field effect transistor, and more particularly to a dual-gate MOS field effect transistor having a gate structure suitable for low voltage operation.

〔従来の技術〕[Conventional technology]

従来、デュアルゲートMOS電解効果トランジスタ(以
下デュアルゲートMO3FETと記す)は、第1ゲート
及び第2ゲート共にゲート酸化膜厚、チャネル濃度は同
一であった。
Conventionally, in a dual-gate MOS field effect transistor (hereinafter referred to as dual-gate MO3FET), both the first gate and the second gate have the same gate oxide film thickness and the same channel concentration.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のデュアルゲートMOSFETでは、第1
ゲート及び第2ゲートが両方ともデプレッションモード
あるいは両方ともエンハンスメントモードであった。
In the conventional dual gate MOSFET described above, the first
The gate and the second gate were both in depletion mode or both in enhancement mode.

両方ともデプレッションモードであると、第2ゲートに
AGC電圧を印加してカットオフするときにソースに対
し負の電圧を印加する必要があり、実際にはセルフバイ
アス方式、すなわちカットオフに必要な負の電圧分を得
るため、ソースに抵抗を入れる必要があった。このため
、ソースに入れた抵抗による電圧降下分だけ余分なドレ
イン印加電圧を必要とし、低電圧動作化が妨げられてい
た。
If both are in depletion mode, it is necessary to apply a negative voltage to the source when applying the AGC voltage to the second gate to cut off. In order to obtain this voltage, it was necessary to insert a resistor into the source. Therefore, an extra voltage applied to the drain is required to compensate for the voltage drop caused by the resistor inserted in the source, which hinders low-voltage operation.

また、両方ともエンハンスメントモードであると、低電
圧動作は可能であるが、第1ゲートが常にカットオフ状
態であり、導通させるために正にバイアスする必要があ
った。また、動作点がカットオフに近いなめ、シャープ
カットオフになり、線形性が損われ、歪の増加をもたら
すという問題があった。
Furthermore, when both are in enhancement mode, low voltage operation is possible, but the first gate is always in a cutoff state and needs to be biased positively in order to conduct. Further, there is a problem in that the operating point is near the cutoff or sharp cutoff, resulting in loss of linearity and increased distortion.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のデュアルゲートMO3電界効果トランジスタは
、リモートカットオフのデプレッションモードの第1ゲ
ートと、前記第1ゲートのゲート絶縁膜よりも厚い膜厚
の第2ゲート絶縁膜と前記第1ゲートのチャネル領域よ
りも高い不純物濃度の第2ゲートチャネル領域とを有し
エンハンスメントモードの第2ゲートとを含んで構成さ
れる。
The dual-gate MO3 field effect transistor of the present invention includes a remote cut-off depletion mode first gate, a second gate insulating film thicker than a gate insulating film of the first gate, and a channel region of the first gate. a second gate channel region having an impurity concentration higher than that of the second gate channel region, and a second gate in an enhancement mode.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

1は比抵抗10Ω・cmのP型シリコン基板、2.4及
び6はN型高濃度(N+)拡散層であり、それぞれソー
スアイランド、ドレイン領域となっている。3及び5は
チャンネル領域で、それぞれ第1ゲート、第2ゲートの
チャンネル領域である。 この実施例では、第1ゲート
側をホウ素をドーズ量2X1011cm””、加速エネ
ルギー25keVでイオン注入し、第2ゲート側をホウ
素をドーズ量4×1011cm−2、加速エネルギー 
25 k e Vでイオン注入して形成する。また、1
2.14はそれぞれ第1ゲート酸化膜、第2ゲート酸化
膜であり、第1ゲート酸化膜12の厚さは、70nm、
第2ゲート酸化膜の厚さは49nmである。第2図(a
)、(b)は本発明の一実施例のV。−ID特性図であ
り、(a)図は第1ゲート側、(b)図は第2ゲート側
の特性を示す。 第2図に示されるように、第1ゲート
側のFET特性はリモートカットオフ特性をもち、デプ
レッションモードとなり、第2ゲート側のFET特性は
エンハンスメント型となる。さらに、第2ゲート側のゲ
ート酸化膜厚を薄くしであるので第2ゲート側の相互コ
ンダクタンスが高くなり、AGC特性も良好となる。
1 is a P-type silicon substrate with a specific resistance of 10 Ω·cm, and 2.4 and 6 are N-type high concentration (N+) diffusion layers, which serve as a source island and a drain region, respectively. 3 and 5 are channel regions, which are the channel regions of the first gate and the second gate, respectively. In this example, boron is ion-implanted on the first gate side at a dose of 2 x 1011 cm and an acceleration energy of 25 keV, and on the second gate side, boron is ion-implanted at a dose of 4 x 1011 cm and an acceleration energy of 25 keV.
It is formed by ion implantation at 25 keV. Also, 1
2.14 are a first gate oxide film and a second gate oxide film, respectively, and the thickness of the first gate oxide film 12 is 70 nm,
The thickness of the second gate oxide film is 49 nm. Figure 2 (a
) and (b) are V of one embodiment of the present invention. -ID characteristic diagrams, in which the (a) figure shows the characteristics on the first gate side, and the (b) figure shows the characteristics on the second gate side. As shown in FIG. 2, the FET characteristics on the first gate side have remote cutoff characteristics and are in depletion mode, and the FET characteristics on the second gate side are enhancement type. Furthermore, since the thickness of the gate oxide film on the second gate side is made thinner, the mutual conductance on the second gate side is increased, and the AGC characteristics are also improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、第1ゲート側をリモー
トカットオフデプレッションモード、第2ゲート側をエ
ンハンスメントモードにすることにより、第2ゲートの
セルフバイアス用ソース抵抗が不要となり、低電圧動作
が可能となり、また第1ゲートがノーマリ−オンとなり
リモートカットオフ特性をもつことがら歪特性の良いデ
ュアルゲートMO3FETが得られるという効果がある
As explained above, in the present invention, by setting the first gate side to the remote cutoff depression mode and the second gate side to the enhancement mode, the self-biasing source resistor of the second gate is unnecessary and low voltage operation is possible. Furthermore, since the first gate is normally on and has remote cutoff characteristics, it is possible to obtain a dual gate MO3FET with good distortion characteristics.

−スミ極、12・・・第1ゲート酸化膜、13・・・第
1ゲート電極、14・・・第2ゲート酸化膜、15・・
・第2ゲート電極、16・・・ドレイン電極。
- Sumir pole, 12... first gate oxide film, 13... first gate electrode, 14... second gate oxide film, 15...
- Second gate electrode, 16... drain electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図(a)
、(b)は本発明の一実施例のVB2−IDを示す特性
図である。
Figure 1 is a sectional view showing one embodiment of the present invention, Figure 2 (a)
, (b) are characteristic diagrams showing VB2-ID of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] リモートカットオフのデプレッションモードの第1ゲー
トと、前記第1ゲートのゲート絶縁膜よりも厚い膜厚の
第2ゲート絶縁膜と前記第1ゲートのチャネル領域より
も高い不純物濃度の第2ゲートチャネル領域とを有しエ
ンハンスメントモードの第2ゲートとを有することを特
徴とするデュアルゲートMOS電界効果トランジスタ。
a first gate in depletion mode of remote cutoff, a second gate insulating film thicker than the gate insulating film of the first gate, and a second gate channel region having a higher impurity concentration than the channel region of the first gate. and a second gate in an enhancement mode.
JP63291316A 1988-11-17 1988-11-17 Dual gate MOS field effect transistor Expired - Lifetime JPH0770723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63291316A JPH0770723B2 (en) 1988-11-17 1988-11-17 Dual gate MOS field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63291316A JPH0770723B2 (en) 1988-11-17 1988-11-17 Dual gate MOS field effect transistor

Publications (2)

Publication Number Publication Date
JPH02137270A true JPH02137270A (en) 1990-05-25
JPH0770723B2 JPH0770723B2 (en) 1995-07-31

Family

ID=17767325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63291316A Expired - Lifetime JPH0770723B2 (en) 1988-11-17 1988-11-17 Dual gate MOS field effect transistor

Country Status (1)

Country Link
JP (1) JPH0770723B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253541A (en) * 2003-02-19 2004-09-09 Ricoh Co Ltd Semiconductor device
JP2020043264A (en) * 2018-09-12 2020-03-19 株式会社東芝 Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127074A (en) * 1974-08-20 1976-03-06 Matsushita Electronics Corp Zetsuengeetogatadenkaikokahandotaisochino seizohoho
JPS567479A (en) * 1979-06-29 1981-01-26 Toshiba Corp Field-effect type semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127074A (en) * 1974-08-20 1976-03-06 Matsushita Electronics Corp Zetsuengeetogatadenkaikokahandotaisochino seizohoho
JPS567479A (en) * 1979-06-29 1981-01-26 Toshiba Corp Field-effect type semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253541A (en) * 2003-02-19 2004-09-09 Ricoh Co Ltd Semiconductor device
JP2020043264A (en) * 2018-09-12 2020-03-19 株式会社東芝 Semiconductor device

Also Published As

Publication number Publication date
JPH0770723B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
JP2976197B2 (en) Method for manufacturing semiconductor device
JPH01268171A (en) Semiconductor device
JPS63102264A (en) Thin film semiconductor device
JPH02137270A (en) Dual gate mos field effect transistor
JPS63293979A (en) Semiconductor device
JPH0521800A (en) Soimosfet
JP3413039B2 (en) Semiconductor device
JPH08222729A (en) Semiconductor device and manufacture thereof
JPH05211331A (en) Misfet device and manufacturing method thereof
JPH01276755A (en) Thin film transistor
JPH02137372A (en) Mos field-effect transistor
JPH06283713A (en) Semiconductor device and its manufacture
JPH03120836A (en) Semiconductor device
JPH0734469B2 (en) Method for manufacturing field effect transistor
JPH0234938A (en) Semiconductor device
JPH05102466A (en) Mos type semiconductor device and manufacture thereof
JPH02174236A (en) Manufacture of semiconductor device
JPH03235362A (en) Manufacture of semiconductor device
JPS6258681A (en) Insulated gate semiconductor device and manufacture thereof
JPS6024056A (en) Differential amplifier
JPS6211277A (en) Manufacture of semiconductor integrated circuit
JPS62112361A (en) Complementary semiconductor device
JPS61222176A (en) Schottky gate field effect transistor and manufacture thereof
JPS62283672A (en) Field-effect transistor and manufacture thereof
JPS63136669A (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070731

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 14