JPH05211331A - Misfet device and manufacturing method thereof - Google Patents

Misfet device and manufacturing method thereof

Info

Publication number
JPH05211331A
JPH05211331A JP4014896A JP1489692A JPH05211331A JP H05211331 A JPH05211331 A JP H05211331A JP 4014896 A JP4014896 A JP 4014896A JP 1489692 A JP1489692 A JP 1489692A JP H05211331 A JPH05211331 A JP H05211331A
Authority
JP
Japan
Prior art keywords
boron
gallium
peak
single crystal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4014896A
Other languages
Japanese (ja)
Inventor
Hitoshi Abiko
仁 安彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4014896A priority Critical patent/JPH05211331A/en
Publication of JPH05211331A publication Critical patent/JPH05211331A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To shallowly distribute the impurity for threshold value adjustment by a method wherein gallium in specific concentration is contained in the part near substrate surface in a channel formation region. CONSTITUTION:Within the title MISFET formed on one main surface of a single crystal silicon substrate 101, gallium in the peak concentration of not exceeding 1X10<18>cm<-3> is contained in the part near substrate surface to be distributed notably shallower than boron. For example, an element separating silicon oxide 102 is formed on a single crystal silicon substrate 101 in the peak concentration of about 1X10<15>cm<-3>. Next, the silicon oxide 102 is implanted with baron ions in the dose of about 1X10<12>cm<-2> at 60KeV to be further implanted with gallium ions larger in mass numbers than boron in the dose of about 5X10<12>cm<-2> at 80KeV. Through these procedures, the impurities are distributed as follows, i.e., the shallow peak 103 by galluim will be about 0.05mum from the substrate surface while the deep peak 104 by boron will be about 0.2mum from the same.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はMIS型FET装置の構
造およびその製造方法に係わり、とくに、MIS型FE
T装置のチャネル領域に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a MIS type FET device and a manufacturing method thereof, and more particularly to a MIS type FE.
It relates to the channel region of the T device.

【0002】[0002]

【従来の技術】従来例えば表面チャネル型nチャネルM
IS型FET装置、図7に示すように、ボロン濃度1×
1015cm-3程度の単結晶けい素基板101に周知の従
来技術である選択酸化法等により素子分離用酸化けい素
102を形成し、ボロンを60eVでドーズ1×1012
cm-2程度イオン注入し、更にボロンを15KeVでド
ーズ5×1012cm-2程度イオン注入すると、不純物分
布は図8に示すように、浅いピーク103が基板表面か
ら約0.05μm、深いピーク104が約0.2μm程
度の所にくるようになる。この深いピーク104は主
に、ソースとドレイン間のパンチスルーを防止する為に
形成され、浅いピーク103が主にしきい値電圧を調整
する為に形成される。後は図9に示すようにゲート絶縁
膜105、ゲート電極106、n型のソースおよびドレ
インの不純物拡散層107を形成してMIS型FETを
得る。
2. Description of the Related Art Conventionally, for example, a surface channel type n channel M
IS type FET device, as shown in FIG. 7, boron concentration 1 ×
A silicon oxide 102 for element isolation is formed on a single crystal silicon substrate 101 of about 10 15 cm −3 by a well-known prior art selective oxidation method or the like, and boron is dosed at 60 eV and a dose of 1 × 10 12 is obtained.
When ion implantation is performed at about cm −2 and boron is ion-implanted at about 5 × 10 12 cm −2 at 15 KeV, the impurity distribution is as shown in FIG. 8 with a shallow peak 103 being about 0.05 μm from the substrate surface and a deep peak. 104 comes to a place of about 0.2 μm. The deep peak 104 is mainly formed to prevent punch-through between the source and the drain, and the shallow peak 103 is mainly formed to adjust the threshold voltage. After that, as shown in FIG. 9, a gate insulating film 105, a gate electrode 106, and an n-type source and drain impurity diffusion layer 107 are formed to obtain a MIS-type FET.

【0003】次に、埋込チャネル型PチャネルMIS型
FETの場合は、やはり図10に示すようにリン濃度1
×1015cm-3程度の単結晶けい素基板101に素子分
離用酸化けい素102を形成し、例えばリンを200K
eVでドーズ1×1012cm-2程度イオン注入し、続い
て、ボロンを10KeVでドーズ1×1012cm-2程度
イオン注入する。この時の不純物分布は図11に示すよ
うに表面付近にボロンによるP型領域108が形成さ
れ、基板との間にpn接合109が基板から0.06μ
m程度の所にできる。埋込チャネル型MIS型FET装
置では、ゲート電極は基板と同型の多結晶ケイ素を用
い、仕事関数の差でこのP型領域108を空乏化して遮
断状態にしている。埋込チャネル型MIS型FETでは
遮断状態から導通状態へと移っていく時にこのpn接合
109からチャネルができ始める為、埋込チャネル型M
IS型FET装置を微細化するには、このpn接合10
9を浅くする、つまり、P型領域108の深さを浅くす
ることが重要である。
Next, in the case of the buried channel type P channel MIS type FET, the phosphorus concentration is 1 as shown in FIG.
Silicon oxide 102 for element isolation is formed on a single crystal silicon substrate 101 of about 1015 cm-3, and phosphorous is added to 200 K, for example.
Ion implantation is performed at eV at a dose of about 1 × 10 12 cm −2 , and then boron is ion implanted at 10 KeV at a dose of about 1 × 10 12 cm −2 . At this time, the impurity distribution is such that a P-type region 108 of boron is formed near the surface as shown in FIG. 11, and a pn junction 109 is formed between the substrate and the substrate by 0.06 μm from the substrate.
It can be placed at about m. In the buried channel type MISFET device, the gate electrode is made of polycrystalline silicon of the same type as the substrate, and the P-type region 108 is depleted due to the difference in work function to bring it into a cutoff state. In the buried channel type MIS FET, a channel starts to be formed from the pn junction 109 when the cutoff state is changed to the conductive state.
To miniaturize the IS type FET device, this pn junction 10
It is important to make 9 shallow, that is, make the P-type region 108 shallow.

【0004】[0004]

【発明が解決しようとする課題】この従来のボロンでし
きい値調整を同う構造ではトランジスタの微細化ができ
ないという欠点がある。その理由は、ボロンは質量数が
小さいので浅い注入層を形成するには注入エネルギーを
小さくしなければならず、現在のイオン注入装置では1
0〜15KeV程度が限界である。
However, this conventional boron structure has the drawback that the transistor cannot be miniaturized in the same structure as the threshold adjustment. The reason is that since boron has a small mass number, it is necessary to reduce the implantation energy in order to form a shallow implantation layer.
The limit is about 0 to 15 KeV.

【0005】[0005]

【課題を解決するための手段】本発明のMIS型FET
装置は、単結晶けい素基板の一主面に形成されたMIS
型FETであって、チャンネル形成領域の前記基板表面
付近にピーク濃度が1×1018cm-3以下のガリウムも
しくはインジウムを含むことを特徴とする。又、製造方
法は、このガリウムもしくはインジウムはイオン注入法
により前記チャンネル形成領域に選択的に注入されるこ
とを特徴とする。ここで、ガリウムもしくはインジウム
のピーク濃度が1×1018cm-3より高くなると、実際
問題として、FETのカットオフがむずかしくなりエン
ハンスメントFETの製造が困難となる。
Means for Solving the Problems MIS FET of the present invention
The device is a MIS formed on one main surface of a single crystal silicon substrate.
The FET is characterized by including gallium or indium having a peak concentration of 1 × 10 18 cm −3 or less near the surface of the substrate in the channel formation region. The manufacturing method is characterized in that the gallium or indium is selectively implanted into the channel formation region by an ion implantation method. Here, if the peak concentration of gallium or indium is higher than 1 × 10 18 cm −3 , as a practical matter, the cutoff of the FET becomes difficult, and it becomes difficult to manufacture the enhancement FET.

【0006】[0006]

【実施例】以下図面に従って、本発明のMIS型FET
装置を、その製造方法も含めて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The MIS type FET of the present invention will be described below with reference to the drawings.
The device will be described in detail including the manufacturing method thereof.

【0007】第1の実施例として図1に示すように、例
えばボロン濃度が1×1015cm-3程度の単結晶けい素
基板101に、周知の選択酸化法等により素子分離用酸
化けい素102を形成する。次にボロンを60KeVで
ドーズ1×1012cm-2程度イオン注入し、続けて質量
数がボロンより大きいガリウムを80KeVで5×10
12cm-2程度イオン注入すると、不純物分布は図2に示
すように、ガリウムによる浅いピーク103が基板表面
から約0.05μm、ボロンによる深いピーク104が
約0.2μmの所にくるようになり、従来技術で説明し
た図11と同様な分布になる。勿論、ガリウムの代りに
ボロンを15KeVでイオン注入しても同程度の分布を
得ることは可能だが、更に分布を浅くしようとしても、
ボロンを用いた場合は10KeV程度で限界になるが、
ガリウムではボロンよりはるかに浅い分布が得られる。
As a first embodiment, as shown in FIG. 1, for example, a silicon oxide for element isolation is formed on a single crystal silicon substrate 101 having a boron concentration of about 1 × 10 15 cm -3 by a well-known selective oxidation method or the like. 102 is formed. Next, boron is ion-implanted at a dose of 1 × 10 12 cm -2 at 60 KeV, and then gallium having a mass number larger than boron is 5 × 10 at 80 KeV.
When ion implantation is performed at about 12 cm −2 , the impurity distribution is such that the shallow peak 103 due to gallium is approximately 0.05 μm from the substrate surface and the deep peak 104 due to boron is approximately 0.2 μm as shown in FIG. The distribution is similar to that shown in FIG. 11 described in the related art. Of course, even if boron is ion-implanted at 15 KeV instead of gallium, a similar distribution can be obtained, but even if the distribution is made shallower,
When using boron, the limit is about 10 KeV,
Gallium has a much shallower distribution than boron.

【0008】後は、従来技術と同様に図3に示すように
ゲート絶縁膜105,ゲート電極106,ソースドレイ
ンの不純物拡散107等を形成し、本発明のMIS型F
ET装置を得る。
After that, the gate insulating film 105, the gate electrode 106, the source / drain impurity diffusion 107, etc. are formed as shown in FIG.
Get an ET device.

【0009】以上の説明ではガリウムをイオン注入した
が、やはり質量数がボロンより大きいインジウムについ
ても、注入エネルギーを調整するだけで同様である。
又、単体トランジスタのみならず、CMOSあるいはB
iCMOS等にも適用可能なのはいうまでもない。
Although gallium is ion-implanted in the above description, the same applies to indium having a mass number larger than boron, only by adjusting the implantation energy.
Moreover, not only a single transistor but also CMOS or B
It goes without saying that it is also applicable to iCMOS and the like.

【0010】更にイオン注入の際、基板表面に保護用酸
化膜を設けるなど本発明の主旨を逸脱しない範囲で応用
することも可能である。
Further, during ion implantation, it is possible to apply the invention within a range not departing from the gist of the present invention, such as providing a protective oxide film on the surface of the substrate.

【0011】次に、本発明の第2の実施例として、埋込
みチャネル型のPチャネルMIS型FETの場合につき
説明する。
Next, as a second embodiment of the present invention, a case of a buried channel type P channel MIS type FET will be described.

【0012】図4に示すように、リン濃度が約1×10
15cm-3程度のn型単結晶けい素基板101に選択酸化
法で素子分離用酸化けい素102を形成し、例えばリン
を200KeVでドーズ1×1012cm-2程度イオン注
入し、続けてガリウムを10KeVで1×1012cm-2
程度イオン注入する。
As shown in FIG. 4, the phosphorus concentration is about 1 × 10.
A silicon oxide 102 for element isolation is formed on an n-type single crystal silicon substrate 101 of about 15 cm −3 by a selective oxidation method. For example, phosphorus is ion-implanted at 200 KeV and a dose of 1 × 10 12 cm −2. Gallium at 10 KeV at 1 × 10 12 cm -2
About ion implantation.

【0013】この時の不純物分布は図5に示すように、
ガリウムによるP型領域108と基板との間のPN接合
109は基板表面から0.02μmの所にくる。ボロン
を10KeVでイオン注入した場合は、図11からPN
接合深さは0.06μmであるから1/3程度の深さに
できる。埋込みチャネル型トランジスタの縮小化はこの
PN接合深さを浅くすることが必要なので、ガリウムを
使うことは大きなメリットである。
The impurity distribution at this time is as shown in FIG.
The PN junction 109 between the P-type region 108 made of gallium and the substrate is located 0.02 μm from the substrate surface. When boron is ion-implanted at 10 KeV, PN is obtained from Fig. 11.
Since the junction depth is 0.06 μm, the depth can be about 1/3. The use of gallium is a great advantage because it is necessary to reduce the depth of the PN junction in order to reduce the size of the buried channel transistor.

【0014】あとは図6に示すように第1の実施例と同
様に、ゲート絶縁膜105、ゲート電極106、ソース
ドレインの不純物拡散層107を形成して、本発明のM
IS型FETを得る。
Thereafter, as shown in FIG. 6, similarly to the first embodiment, a gate insulating film 105, a gate electrode 106, and an impurity diffusion layer 107 for source and drain are formed, and the M of the present invention is formed.
Obtain an IS type FET.

【0015】[0015]

【発明の効果】以上説明したように本発明は、しきい値
調整用の不純物の分布を浅くし、MIS型FETを微細
化する効果を有する。
As described above, the present invention has the effect of making the distribution of the impurities for adjusting the threshold shallow and miniaturizing the MIS type FET.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の単結晶けい素基板を示
す断面図。
FIG. 1 is a sectional view showing a single crystal silicon substrate according to a first embodiment of the present invention.

【図2】本発明の第1の実施例における不純物分布を示
す図。
FIG. 2 is a diagram showing an impurity distribution in the first embodiment of the present invention.

【図3】本発明の第1の実施例のMIS型FET装置の
概略を示す断面図。
FIG. 3 is a sectional view showing an outline of a MIS type FET device according to a first embodiment of the present invention.

【図4】本発明の第2の実施例の単結晶けい素基板を示
す断面図。
FIG. 4 is a sectional view showing a single crystal silicon substrate of a second embodiment of the present invention.

【図5】本発明の第2の実施例における不純物分布を示
す図。
FIG. 5 is a diagram showing an impurity distribution in the second embodiment of the present invention.

【図6】本発明の第2の実施例のMIS型FET装置の
概略を示す断面図。
FIG. 6 is a sectional view showing the outline of a MIS type FET device according to a second embodiment of the present invention.

【図7】従来技術の単結晶けい素基板を示す断面図。FIG. 7 is a cross-sectional view showing a conventional single crystal silicon substrate.

【図8】従来技術における不純物分布を示す図。FIG. 8 is a diagram showing an impurity distribution in a conventional technique.

【図9】従来技術のMIS型FET装置の概略を示す断
面図。
FIG. 9 is a sectional view schematically showing a conventional MIS type FET device.

【図10】他の従来技術の単結晶けい素基板を示す図。FIG. 10 is a diagram showing another conventional single crystal silicon substrate.

【図11】他の従来技術における不純物分布を示す図。FIG. 11 is a diagram showing an impurity distribution in another conventional technique.

【符号の説明】[Explanation of symbols]

101 単結晶けい素基板 102 酸化けい素 103 浅いピーク 104 深いピーク 105 ゲート絶縁膜 106 ゲート電極 107 ソースドレインの不純物拡散層 108 P型領域 109 pn接合 Reference Signs List 101 single crystal silicon substrate 102 silicon oxide 103 shallow peak 104 deep peak 105 gate insulating film 106 gate electrode 107 source / drain impurity diffusion layer 108 P-type region 109 pn junction

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7377−4M H01L 29/78 301 Y ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 7377-4M H01L 29/78 301 Y

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 単結晶けい素基板の一主面に形成された
MIS型FETであって、チャンネル形成領域の前記基
板表面付近にピーク濃度が1×1018cm-3以下のガリ
ウムもしくはインジウムを含むことを特徴とするMIS
型FET装置。
1. A MIS-type FET formed on one main surface of a single crystal silicon substrate, wherein gallium or indium having a peak concentration of 1 × 10 18 cm −3 or less is provided near the surface of the substrate in a channel formation region. MIS characterized by including
Type FET device.
【請求項2】 前記ガリウムもしくはインジウムはイオ
ン注入法により前記チャンネル形成領域に選択的に注入
されることを特徴とする請求項1に記載のMIS型FE
T装置の製造方法。
2. The MIS type FE according to claim 1, wherein the gallium or indium is selectively implanted into the channel formation region by an ion implantation method.
T device manufacturing method.
JP4014896A 1992-01-30 1992-01-30 Misfet device and manufacturing method thereof Withdrawn JPH05211331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4014896A JPH05211331A (en) 1992-01-30 1992-01-30 Misfet device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4014896A JPH05211331A (en) 1992-01-30 1992-01-30 Misfet device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH05211331A true JPH05211331A (en) 1993-08-20

Family

ID=11873757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4014896A Withdrawn JPH05211331A (en) 1992-01-30 1992-01-30 Misfet device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH05211331A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144079A (en) * 1996-04-01 2000-11-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
JP2002033477A (en) * 2000-07-13 2002-01-31 Nec Corp Semiconductor device and its fabricating method
WO2006070598A1 (en) * 2004-12-28 2006-07-06 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for manufacturing same
US10446645B2 (en) 2017-03-29 2019-10-15 Asahi Kasei Microdevices Corporation Semiconductor device and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144079A (en) * 1996-04-01 2000-11-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US6461920B1 (en) * 1996-04-01 2002-10-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
JP2002033477A (en) * 2000-07-13 2002-01-31 Nec Corp Semiconductor device and its fabricating method
WO2006070598A1 (en) * 2004-12-28 2006-07-06 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for manufacturing same
US7948048B2 (en) 2004-12-28 2011-05-24 Panasonic Corporation Semiconductor device and method for manufacturing same
US10446645B2 (en) 2017-03-29 2019-10-15 Asahi Kasei Microdevices Corporation Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5248627A (en) Threshold adjustment in fabricating vertical dmos devices
US4771014A (en) Process for manufacturing LDD CMOS devices
US5001073A (en) Method for making bipolar/CMOS IC with isolated vertical PNP
JPH06326306A (en) Mos transistor and preparation thereof
US4924277A (en) MIS transistor device
JP2001298188A (en) Semiconductor element and forming method thereof
US5045912A (en) Bi-CMOS integrated circuit device having a high speed lateral bipolar transistor
JPH05211331A (en) Misfet device and manufacturing method thereof
JPS6017946A (en) Semiconductor device
JP3110062B2 (en) Method for manufacturing semiconductor device
JPH02105469A (en) Mis type semiconductor device
JPH02174236A (en) Manufacture of semiconductor device
JP3126082B2 (en) Complementary transistor and method of manufacturing the same
SE501218C2 (en) Lateral bipolar variable base width transistor and a method for controlling the base width
JPH06350086A (en) Manufacture of semiconductor device
JPH01214169A (en) Semiconductor device
JPH08340108A (en) Mos field effect transistor and manufacture thereof
JPH04256355A (en) Semiconductor device
JPH05102466A (en) Mos type semiconductor device and manufacture thereof
JPH11186549A (en) Semiconductor device and manufacture thereof
JPS58153370A (en) Mos transistor and manufacture thereof
JPH02137270A (en) Dual gate mos field effect transistor
JPS6466962A (en) Manufacture of semiconductor device
JPH0541386A (en) Manufacture of semiconductor device
JPH02186640A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408