JPH02105469A - Mis type semiconductor device - Google Patents

Mis type semiconductor device

Info

Publication number
JPH02105469A
JPH02105469A JP25861888A JP25861888A JPH02105469A JP H02105469 A JPH02105469 A JP H02105469A JP 25861888 A JP25861888 A JP 25861888A JP 25861888 A JP25861888 A JP 25861888A JP H02105469 A JPH02105469 A JP H02105469A
Authority
JP
Japan
Prior art keywords
diffusion layer
type
substrate
contact
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25861888A
Other languages
Japanese (ja)
Other versions
JP2727590B2 (en
Inventor
Kou Noguchi
江 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63258618A priority Critical patent/JP2727590B2/en
Publication of JPH02105469A publication Critical patent/JPH02105469A/en
Application granted granted Critical
Publication of JP2727590B2 publication Critical patent/JP2727590B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a channel length without increasing a junction capacity between an impurity diffusion layer and a substrate by containing one conductivity type diffusion layer whose impurity concentration is lower than that of a semiconductor substrate which is in contact with a bottom side of a source/drain region consisting of a reverse conductivity type diffusion layer in contact with an edge end section of a gate insulating film and is formed apart from a channel region. CONSTITUTION:A semiconductor device contains; a p-type silicon substrate 1, a gate insulating film 2 and a polycrystalline silicon gate electrode 3, an N-type low concentration diffusion layer 4 of a source/drain region having an impurity concentration of about 5X10<17> <18>cm<-3>, for example, which is formed in an area near a channel region to come into contact with an edge end section of the gate insulating film 2, an N-type high concentration diffusion layer 5 of a source/drain region having an impurity concentration of about 1X10<20>cm<-3>, for example, which is in contact with an end side of an N-type low concentration diffusion layer 4 and formed apart from a channel region, and a P-type low concentration diffusion layer 7 of an impurity concentration of about 5X10<5>cm<-3> which is in contact with a bottom side of the N-type high concentration diffusion layer 5 and is formed inside the p-type silicon substrate 1 apart from a channel region further than the N-type high concentration diffusion layer 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMIS型半導体装置に関し、特に短チヤネル絶
縁ゲート型電界効果トランジスタに関する゛。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to MIS type semiconductor devices, and particularly to short channel insulated gate field effect transistors.

〔従来の技術〕[Conventional technology]

第5図は従来のLDD構造を有するNチャネル絶縁ゲー
ト型電界効果トランジスタの断面構造図を示すもので、
P型シリコン基板1上にゲート絶縁膜2を介して多結晶
シリコン・ゲート電極3が形成され、また、このゲート
電極3およびザイド・ウオール6をマスクに自己整合で
ソースまたはドレイン領域のn型低濃度拡散層4および
n型高濃度拡散層5がそれぞれ基板1上に設けられたも
のである。
FIG. 5 shows a cross-sectional structural diagram of an N-channel insulated gate field effect transistor having a conventional LDD structure.
A polycrystalline silicon gate electrode 3 is formed on a P-type silicon substrate 1 via a gate insulating film 2, and an n-type low voltage layer in the source or drain region is formed in a self-aligned manner using the gate electrode 3 and the Zide wall 6 as a mask. A concentration diffusion layer 4 and an n-type high concentration diffusion layer 5 are provided on a substrate 1, respectively.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、−上述したLDDi造を含む従来一般の
MIS型半導体装置では、チャンネル長が短くなるにつ
れソース、ドレイン間のパンチ・スルーが発生し易く・
なるので、短チヤネル化を図る場合はこれを防止するた
め基板の不純物濃度を高くする必要が生じる0例えば、
ゲート長を1μm程度にまで短くした場合には、基板の
不純物濃度を5 X 1016Cal−3〜I X I
 O”cry−3にまで高める必要が生じる。しかし、
他方では、基板の不純物濃度が高まるとソース、ドレイ
ンの各不純物拡散層と基板との間の接合容量が増大する
ので、トランジスタの動作速度が遅くなるという不都合
が新たに生じる結果となる。
However, in conventional general MIS semiconductor devices including the above-mentioned LDDi structure, punch-through between the source and drain tends to occur as the channel length becomes shorter.
Therefore, when trying to shorten the channel, it is necessary to increase the impurity concentration of the substrate to prevent this. For example,
When the gate length is shortened to about 1 μm, the impurity concentration of the substrate is reduced to 5×1016Cal-3~I×I
It becomes necessary to increase the temperature to O”cry-3. However,
On the other hand, as the impurity concentration of the substrate increases, the junction capacitance between the source and drain impurity diffusion layers and the substrate increases, resulting in a new disadvantage of slowing down the operating speed of the transistor.

本発明の目的は、上記の情況に鑑み、ソース。In view of the above circumstances, the object of the present invention is to provide a source.

ドレインの各不純物拡散層と基板間の接合容量を増大さ
せることなくチャネル長を短縮化できるMIS型半導体
装置を提供することである。
It is an object of the present invention to provide a MIS type semiconductor device in which the channel length can be shortened without increasing the junction capacitance between each impurity diffusion layer of the drain and the substrate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、MIS型半導体装置は、−導電型の半
導体基板と、前記半導体基板上に形成されるゲート絶縁
膜およびゲート電極と、前記ゲート絶縁膜の縁端部にそ
れぞれ接するように形成される逆導電型拡散層からなる
ソースおよびドレイン領域と、前記ソースおよびドレイ
ン領域の底面と接し且つチャネル領域から離間して半導
体基板内に形成される前記半導体基板の不純物濃度より
低濃度の一導電型拡散層とを含んで構成される。
According to the present invention, a MIS type semiconductor device includes a -conductivity type semiconductor substrate, a gate insulating film and a gate electrode formed on the semiconductor substrate, and a gate insulating film and a gate electrode formed so as to be in contact with edge portions of the gate insulating film, respectively. source and drain regions formed of opposite conductivity type diffusion layers, and a conductive layer with a lower impurity concentration than that of the semiconductor substrate formed in the semiconductor substrate in contact with the bottom surfaces of the source and drain regions and spaced apart from the channel region. and a type diffusion layer.

〔実施例〕〔Example〕

以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第1図および第2図はそれぞれ本発明をLDD構造のN
チャネルMOS絶縁ゲート型電界効果トランジスタに実
施した場合の一実施例を示す断面構造図およびそのA−
A’ 、B−B’断面の基板濃度分布図である。本実施
例によれば、LDD構造のNチャネルMOS絶縁ゲート
型電界効果トランジスタは、不純物濃度IX 1017
cm−’のp型シリコン基板1と、ゲート絶縁膜2およ
び多結晶シリコン・ゲート電極3と、ゲート絶縁膜2の
縁端部に接するようにチャネル領域近傍に形成される例
えば不純物濃度約5 X 101718cm−’を有す
るソース1 ドレイン領域のn型低濃度拡散層4と、n
型低濃度拡散層4の端面と接し且つチャネル領域から離
れて形成される例えば不純物濃度約1×10”cm−’
を有するソース、ドレイン領域のn型高濃度拡散層5と
、n型高濃度拡散層5の底面と接し且つこのn型高濃度
拡散層5より更にチャネル領域から離れてp型シリコン
基板1内に形成される不純物濃度約5 X 1015c
m””のp型紙濃度拡散層7とを含む。ここで、8はn
型高濃度拡散層5およびp型紙濃度拡散層7の形成にそ
れぞれ用いられたサイド・ウオールの一体化構造体であ
る。本実施例によれば、第2図の基板濃度分布図から明
らかなように、n型高濃度拡散層5の底面近傍の基板濃
度はp型紙濃度拡散層7の形成により点線で示す如く約
1/20に薄められているので、ソース、ドレイン領域
のn型高濃度拡散層らとp型シリコン基板1との間の接
合容量を約1/4に低減することができる。上記実施例
のMO3電界効果トランジスタはつぎの手法で製造する
ことが可能である。
FIG. 1 and FIG. 2 illustrate the present invention in an LDD structure, respectively.
A cross-sectional structural diagram showing an example of implementation in a channel MOS insulated gate field effect transistor and its A-
It is a substrate concentration distribution map of A' and BB' cross section. According to this embodiment, the N-channel MOS insulated gate field effect transistor with the LDD structure has an impurity concentration of IX 1017
cm-' p-type silicon substrate 1, gate insulating film 2, polycrystalline silicon gate electrode 3, and an impurity concentration of about 5. n-type low concentration diffusion layer 4 in the source 1 and drain region and n
For example, an impurity concentration layer of approximately 1×10"cm-' is formed in contact with the end face of the type low concentration diffusion layer 4 and away from the channel region.
n-type high concentration diffusion layer 5 in the source and drain regions having Formed impurity concentration: approximately 5 x 1015c
m"" p-type paper concentration diffusion layer 7. Here, 8 is n
This is an integrated structure of side walls used to form the type high concentration diffusion layer 5 and the p type paper concentration diffusion layer 7, respectively. According to this embodiment, as is clear from the substrate concentration distribution diagram in FIG. Since it is diluted to /20, the junction capacitance between the n-type heavily doped diffusion layers in the source and drain regions and the p-type silicon substrate 1 can be reduced to about 1/4. The MO3 field effect transistor of the above embodiment can be manufactured by the following method.

第3図(a)〜(f)は上記実施例を製造する一つの手
法を示す工程順序図である。すなわち、不純物濃度がI
 X 10 ”cm−’のp型シリコン基板1をまず準
備し、この基板1上にゲート絶縁膜2および多結晶シリ
コン・ゲート電極3をそれぞれ所定の形状に選択形成し
、ついでゲート電極3をマスクとしてn型不純物イオン
9(例えば、リン)を加速電圧40KeV、  ドーズ
量1 X 10 ” (C111−2>の条件で注入す
る〔第3図(a)〕。ついで熱処理を行なってn型低濃
度拡散層4を形成した後、基板全面にCVD法により酸
化シリコン膜10を2000人の膜厚に形成する〔第3
図(b)〕。つぎに、異方性のエッチ・バックを行ない
ゲート電極3の側面にのみサイド・ウオール8aを形成
した後、ゲート電極3およびサイド・ウオール8aをマ
スクとしてN型不純物イオン11(例えば、ヒ素)を加
速電圧70KeV、ドーズ量5 X 1015(cm−
”)の条件で注入する〔第3図(c))、ついで活性化
の熱処理を施してn型高濃度拡散層5を形成した後、基
板全面にCVD法により再び酸化シリコン膜10を40
00人の厚膜に形成する〔第3図(d))、つぎに異方
性のエッチ・バックを行ない、サイド・ウオール8aの
外壁に沿って第2のサイド・つオニル8bを形成した後
、サイド・つオール8a、8bおよびゲート電極3をマ
スクとしてn型不純物イオン12(例えばリン)を加速
電圧200 K e V 、ドーズ量5 X 1012
(C1m−2)の条件で注入する〔第3図(e)〕。こ
の後、熱処理を施して不純物を活性化させることにより
、第3図(f)に示すように、n型高濃度拡散層5の底
面に接する基板領域の不純物濃度を約1/20に低減さ
せる濃度的5 X 10 ”cmづノル型紙濃度拡散層
7を得る。
FIGS. 3(a) to 3(f) are process flow diagrams showing one method of manufacturing the above embodiment. That is, the impurity concentration is I
A p-type silicon substrate 1 of x 10 "cm-" is first prepared, and a gate insulating film 2 and a polycrystalline silicon gate electrode 3 are selectively formed on the substrate 1 into predetermined shapes, and then the gate electrode 3 is masked. As shown in Fig. 3(a), n-type impurity ions 9 (for example, phosphorus) are implanted at an acceleration voltage of 40 KeV and a dose of 1 x 10''(C111-2>).Then, heat treatment is performed to form an n-type low concentration. After forming the diffusion layer 4, a silicon oxide film 10 is formed to a thickness of 2000 nm over the entire surface of the substrate by the CVD method.
Figure (b)]. Next, after performing anisotropic etch back to form side walls 8a only on the side surfaces of gate electrode 3, N-type impurity ions 11 (for example, arsenic) are etched using gate electrode 3 and side walls 8a as masks. Accelerating voltage 70 KeV, dose amount 5 x 1015 (cm-
") [Fig. 3(c)), and then heat treatment for activation is performed to form an n-type high concentration diffusion layer 5. After that, a silicon oxide film 10 is again deposited on the entire surface of the substrate by the CVD method for 40 minutes.
After forming a thick film of 0.00 mm (Fig. 3(d)), an anisotropic etch back is performed to form a second side film 8b along the outer wall of the side wall 8a. , using the side gates 8a and 8b and the gate electrode 3 as masks, the n-type impurity ions 12 (for example, phosphorus) are accelerated at a voltage of 200 K e V and a dose of 5 x 1012
Inject under the conditions of (C1m-2) [Figure 3(e)]. Thereafter, by performing heat treatment to activate the impurities, the impurity concentration in the substrate region in contact with the bottom surface of the n-type high concentration diffusion layer 5 is reduced to about 1/20, as shown in FIG. 3(f). A Nord paper density diffusion layer 7 having a density of 5×10” cm is obtained.

第4図(a)〜(f)は本発明の半導体装置を製造する
他の手法を示す工程順序図である。本発明の半導体装置
を製造するには、n型低濃度拡散層7を形成するに際し
行なうn型不純物イオン12の注入には比較的高いエネ
ルギーが必要である。これは例えばリンなどの不純物イ
オンをソース、ドレインの底面近傍の深さにまで注入す
る必要があるからである。従って、ゲート電極3の膜厚
が十分厚くない場合はイオンを阻止することができずに
チャネル領域にまで突き抜けさせる恐れがある。このよ
うな時はつぎに示す製造手法が有効である。
FIGS. 4(a) to 4(f) are process flow diagrams showing another method for manufacturing the semiconductor device of the present invention. To manufacture the semiconductor device of the present invention, relatively high energy is required for implanting n-type impurity ions 12 when forming n-type low concentration diffusion layer 7. This is because it is necessary to implant impurity ions, such as phosphorus, to a depth near the bottom of the source and drain. Therefore, if the gate electrode 3 is not thick enough, the ions may not be blocked and may penetrate into the channel region. In such cases, the following manufacturing method is effective.

すなわち、第4図(a)に示すように、まずp型シリコ
ン基板1上にゲート絶縁膜2および多結晶シリコン・ゲ
ート電g+3をレジスト・パターン13をマスクとして
所定の形状に積層して形成する。つぎに、レジスト・パ
ターン13を残したまま再びレジスト材を塗布し、ゲー
ト電極3を適当なマージンを持っ厚膜のレジスト・パタ
ーン14で覆った後、n型不純物イオン12(例えばリ
ン)を加速電圧300KeVドーズ量5×1012(C
Ifi−2)の条件で注入する〔第3図(b)〕。つい
で、レジスト・パターン13.14をそれぞれ除去し熱
処理を施すとn型低濃度拡散層7が基板内部に形成され
る〔第3図(C)〕。あとは第3図の手法にならい、ゲ
ート電極3をマスクとしてn型不純物イオン9(例えば
、リン)を加速電圧40KeV、  ドーズ量I X 
10 ” (cm−2)の条件で注入し〔第3図(d)
)、熱処理を行ってn型低濃度拡散層4を形成した後、
サイド・ウオール8aを形成し、ゲート電極3およびサ
イド・ウオール8aをマスクとしてn型不純物イオン1
1〈例えばヒ素)を加速電圧70KeV、ドーズ量5 
X 1015(cm−2)の条件で注入する〔第3図(
d)〕。ついで、適当な熱処理を施してこの不純物イオ
ンを活性化することにより、基板内のn型低濃度拡散層
7に接する形のn型高濃度拡散層5を形成し得る〔第3
図(f)〕。この手法では、高エネルギー不純物イオン
の注入マスクにレジスト膜を使用するのでゲート電極3
からチャネル領域へのイオンの突き抜けを完全に防ぐこ
とが可能である。また、サイド・ウオールを形成するた
めのエッチ・バック工程が1回で済むので、この工程を
2回行う第3図の手法と比べれば基板へのダメージが低
減できる利点がある。
That is, as shown in FIG. 4(a), first, a gate insulating film 2 and a polycrystalline silicon gate electrode g+3 are formed on a p-type silicon substrate 1 by laminating them in a predetermined shape using a resist pattern 13 as a mask. . Next, a resist material is applied again while leaving the resist pattern 13, and after covering the gate electrode 3 with a thick resist pattern 14 with an appropriate margin, the n-type impurity ions 12 (for example, phosphorus) are accelerated. Voltage: 300 KeV Dose: 5×1012 (C
Inject under the conditions of Ifi-2) [Figure 3(b)]. Then, the resist patterns 13 and 14 are removed and heat treated to form an n-type low concentration diffusion layer 7 inside the substrate [FIG. 3(C)]. After that, following the method shown in Fig. 3, using the gate electrode 3 as a mask, n-type impurity ions 9 (for example, phosphorus) are accelerated at a voltage of 40 KeV and a dose of IX.
10" (cm-2) [Fig. 3(d)
), after performing heat treatment to form the n-type low concentration diffusion layer 4,
A side wall 8a is formed, and n-type impurity ions 1 are injected using the gate electrode 3 and the side wall 8a as a mask.
1 (for example, arsenic) at an accelerating voltage of 70 KeV and a dose of 5
Inject under the condition of X 1015 (cm-2) [Figure 3 (
d)]. Then, by activating these impurity ions by performing appropriate heat treatment, it is possible to form an n-type high concentration diffusion layer 5 in contact with the n-type low concentration diffusion layer 7 in the substrate.
Figure (f)]. In this method, a resist film is used as a mask for implanting high-energy impurity ions, so the gate electrode 3
It is possible to completely prevent ions from penetrating into the channel region. Furthermore, since the etch-back step for forming the side walls only needs to be performed once, there is an advantage that damage to the substrate can be reduced compared to the method shown in FIG. 3 in which this step is performed twice.

以上はLDD構造の場合についてのみ説明したが、本発
明はこれに限られることなく全てのMIS型半導体装置
への実施が可能である。この際、n型低濃度拡散層7は
チャンネル領域から一定の距離だけ離れて形成されるた
め、チャネル領域の基板濃度には全く影響しない、従っ
て、ゲートしきい値電圧値(Vih)を含むトランジス
タの電圧−電流特性、ドレイン降伏電圧値およびスナッ
プ・バック電圧値などに影響を与えずに、チャネル長が
短縮化された場合に生じるソース、ドレイン拡散層と基
板間の接合容量の増大を抑止することができる。
Although only the case of the LDD structure has been described above, the present invention is not limited to this and can be implemented to all MIS type semiconductor devices. At this time, since the n-type low concentration diffusion layer 7 is formed at a certain distance from the channel region, it does not affect the substrate concentration of the channel region at all. Therefore, the transistor including the gate threshold voltage value (Vih) Suppresses the increase in junction capacitance between the source and drain diffusion layers and the substrate that occurs when the channel length is shortened, without affecting the voltage-current characteristics, drain breakdown voltage, and snapback voltage of the transistor. be able to.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、ソース、
ドレイン領域の底面近傍の基板不純物濃度を低減するこ
とができるので、チャネル長を短縮化した場合に問題と
なるソース、トレイン領域と基板間の接合容量の増大を
完全に解決することが可能である。この際、基板を打ち
返しする領域がチャンネル領域から一定の距離だけ離さ
れているので、ゲートしきい値電圧(Vth)を含むト
ランジスタの電圧−電流特性、ドレイン降伏電圧。
As explained in detail above, according to the present invention, the source,
Since the substrate impurity concentration near the bottom of the drain region can be reduced, it is possible to completely solve the problem of increased junction capacitance between the source and train regions and the substrate, which occurs when the channel length is shortened. . At this time, since the region where the substrate is pushed back is separated from the channel region by a certain distance, the voltage-current characteristics of the transistor including the gate threshold voltage (Vth) and the drain breakdown voltage.

スナップ・バック電圧等に何ら影響を与えずにすむ、す
なわち、本発明によれば、MIS型半導体装置の微細化
および高速度化にきわめて顕著なる効果を奏することが
可能である。
In other words, according to the present invention, there is no need to affect the snap-back voltage or the like, and it is possible to achieve a very significant effect in miniaturizing and increasing the speed of MIS type semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本発明をLDD構造のN
チャネルMO8絶縁ゲート型電界効果トランジスタに実
施した場合の一実施例を示す断面構造図およびそのA−
A’ 、B−B’断面の基板濃度分布図、第3図(a)
〜(f)は上記実施例を製造する一つの手法を示す工程
順序図、第4図(a)〜(f)は本発明の半導体装置を
製造する他の手法を示す工程順序図、第5図は従来のL
DD構造を有するNチャネル絶縁ゲート型電界効果トラ
ンジスタの断面構造図である。 1・・・p型シリコン基板、2・・・ゲート絶縁膜、3
・・・多結晶シリコン・ゲート電極、4・・・n型低濃
度拡散層、5・・・n型高濃度拡散層、7・・・p型紙
濃度拡散層、8.(8a、8b)・・・サイド・つオー
ル、9,1.1.12・・・n型不純物イオン、10・
・・CVDシリコン酸化膜、13.14・・・レジスト
・パターン。
FIG. 1 and FIG. 2 illustrate the present invention in an LDD structure, respectively.
A cross-sectional structural diagram showing an example of implementation in a channel MO8 insulated gate field effect transistor and its A-
A', BB' cross-section substrate concentration distribution diagram, Figure 3 (a)
4(a) to (f) are process sequence diagrams showing one method of manufacturing the above embodiment, FIGS. 4(a) to 4(f) are process sequence diagrams showing another method of manufacturing the semiconductor device of the present invention, and FIG. The figure shows the conventional L
FIG. 2 is a cross-sectional structural diagram of an N-channel insulated gate field effect transistor having a DD structure. 1...p-type silicon substrate, 2...gate insulating film, 3
... Polycrystalline silicon gate electrode, 4... N-type low concentration diffusion layer, 5... N-type high concentration diffusion layer, 7... P-type paper concentration diffusion layer, 8. (8a, 8b)...Side two-all, 9,1.1.12...n-type impurity ion, 10.
...CVD silicon oxide film, 13.14...resist pattern.

Claims (1)

【特許請求の範囲】[Claims]  一導電型の半導体基板と、前記半導体基板上に形成さ
れるゲート絶縁膜およびゲート電極と、前記ゲート絶縁
膜の縁端部にそれぞれ接するように形成される逆導電型
拡散層からなるソースおよびドレイン領域と、前記ソー
スおよびドレイン領域の底面と接し且つチャネル領域か
ら離間して半導体基板内に形成される前記半導体基板の
不純物濃度より低濃度の一導電型拡散層とを含むことを
特徴とするMIS型半導体装置。
A source and a drain consisting of a semiconductor substrate of one conductivity type, a gate insulating film and a gate electrode formed on the semiconductor substrate, and a diffusion layer of opposite conductivity type formed in contact with the edge of the gate insulating film, respectively. and a diffusion layer of one conductivity type formed in the semiconductor substrate in contact with the bottom surfaces of the source and drain regions and spaced apart from the channel region, the impurity concentration being lower than that of the semiconductor substrate. type semiconductor device.
JP63258618A 1988-10-13 1988-10-13 MIS type semiconductor device Expired - Fee Related JP2727590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63258618A JP2727590B2 (en) 1988-10-13 1988-10-13 MIS type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63258618A JP2727590B2 (en) 1988-10-13 1988-10-13 MIS type semiconductor device

Publications (2)

Publication Number Publication Date
JPH02105469A true JPH02105469A (en) 1990-04-18
JP2727590B2 JP2727590B2 (en) 1998-03-11

Family

ID=17322781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63258618A Expired - Fee Related JP2727590B2 (en) 1988-10-13 1988-10-13 MIS type semiconductor device

Country Status (1)

Country Link
JP (1) JP2727590B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449937A (en) * 1993-03-19 1995-09-12 Sharp Kabushiki Kaisha Field effect transistor with short channel and manufacturing method therefor
US5648668A (en) * 1994-11-01 1997-07-15 Mitsubishi Denki Kabushiki Kaisha High breakdown voltage field effect transistor
US5698902A (en) * 1994-12-19 1997-12-16 Matsushita Electric Industrial Co., Ltd. Semiconductor device having finely configured gate electrodes
US6008722A (en) * 1994-08-02 1999-12-28 Mazda Motor Corporation Anti-vehicle-thief apparatus and code setting method of the apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141778A (en) * 1985-12-16 1987-06-25 Toshiba Corp Insulated gate type field effect transistor and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141778A (en) * 1985-12-16 1987-06-25 Toshiba Corp Insulated gate type field effect transistor and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449937A (en) * 1993-03-19 1995-09-12 Sharp Kabushiki Kaisha Field effect transistor with short channel and manufacturing method therefor
US6008722A (en) * 1994-08-02 1999-12-28 Mazda Motor Corporation Anti-vehicle-thief apparatus and code setting method of the apparatus
US5648668A (en) * 1994-11-01 1997-07-15 Mitsubishi Denki Kabushiki Kaisha High breakdown voltage field effect transistor
US5698902A (en) * 1994-12-19 1997-12-16 Matsushita Electric Industrial Co., Ltd. Semiconductor device having finely configured gate electrodes

Also Published As

Publication number Publication date
JP2727590B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
EP0446893B1 (en) Method of manufacturing semiconducting devices having floating gates
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
KR930010121B1 (en) Process for forming high and low voltage cmos transistors on a single integrated circuit chip
US5998848A (en) Depleted poly-silicon edged MOSFET structure and method
EP0164449B1 (en) Process for producing a semiconductor integrated circuit device including a misfet
EP0471131B1 (en) Process for obtaining an N-channel single polysilicon level EPROM cell
JPH08222645A (en) Method for forming lightly doped drain region
JPH06326306A (en) Mos transistor and preparation thereof
JPH05299594A (en) Complementary mis transistor device
JPS6055665A (en) Manufacture of semiconductor device
US4713329A (en) Well mask for CMOS process
JPH05121436A (en) Thin film transistor and its manufacture
US6525380B2 (en) CMOS with a fixed charge in the gate dielectric
JPH07142565A (en) Semiconductor device and manufacture thereof
EP0091256B1 (en) Cmos device
JPH11284178A (en) Insulating gate transistor, its manufacture and semiconductor integrated circuit device
JPH02105469A (en) Mis type semiconductor device
KR940016938A (en) MOS transistor and its manufacturing method
KR0146525B1 (en) Method for manufacturing thin film transistor
JP2000068499A (en) Semiconductor device and manufacture of the same
JP2595058B2 (en) Manufacturing method of nonvolatile semiconductor memory device
KR100217899B1 (en) Method of manufacturing transistor of semiconductor device
JPH0472770A (en) Manufacture of semiconductor device
JPS63302562A (en) Manufacture of mos type semiconductor device
JPS6074663A (en) Manufacture of complementary type semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees