JPH05121436A - Thin film transistor and its manufacture - Google Patents

Thin film transistor and its manufacture

Info

Publication number
JPH05121436A
JPH05121436A JP30711891A JP30711891A JPH05121436A JP H05121436 A JPH05121436 A JP H05121436A JP 30711891 A JP30711891 A JP 30711891A JP 30711891 A JP30711891 A JP 30711891A JP H05121436 A JPH05121436 A JP H05121436A
Authority
JP
Japan
Prior art keywords
region
thin film
gate electrode
film transistor
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30711891A
Other languages
Japanese (ja)
Other versions
JP3293039B2 (en
Inventor
Yoshio Okamoto
良生 岡本
Shingo Yamauchi
愼吾 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP30711891A priority Critical patent/JP3293039B2/en
Publication of JPH05121436A publication Critical patent/JPH05121436A/en
Application granted granted Critical
Publication of JP3293039B2 publication Critical patent/JP3293039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To make the gradient of the concentration of impurities gentler in a source region and a drain region in a thin film transistor of an LDD construction. CONSTITUTION:If phosphorus ion of a high concentration is shallowly implanted at an angle of 30 deg. from the side of a drain region 12b using a gate electrode 14 as mask, its peak can be indicated by a curve P. Next, phosphorous ion of medium concentration is implanted slightly deeply from the same angle of 30 deg., its peak can be indicated by a curve Q. Next, phosphorous ion of a low concentration is more deeply implanted from the same angle of 30 deg. and then its peak is indicated by a curve R. Also, at the side of source region 12a, the phosphorous ion implantation is performed 3 times with the angle of 150 deg.. Thereafter, the implanted impurities are activated by performing laser annealing at about 400 deg.C, and then the gradient of impurities concentration becomes gentler even though the diffusion of implanted impurities is not performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は薄膜トランジスタおよ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film transistor and its manufacturing method.

【0002】[0002]

【従来の技術】薄膜トランジスタには、通常のMOS構
造の素子と比較して、耐圧の向上等を図って高信頼性化
した素子として、LDD(Lightly Doped
Drain)構造と呼ばれるものがある。図4は従来
のこのような薄膜トランジスタの一例を示したものであ
る。この薄膜トランジスタでは、セラミック等からなる
基板1の上面にポリシリコン等からなる半導体層2が設
けられ、半導体層2の中央部の上面にゲート絶縁膜3を
介してゲート電極4が設けられている。半導体層2は、
チャネル領域2aの両側に不純物濃度の低いソース領域
2bおよびドレイン領域2cが形成され、これら不純物
濃度の低いソース領域2bおよびドレイン領域2cの外
側に不純物濃度の高いソース領域2dおよびドレイン領
域2eが形成された構造となっている。このうち不純物
濃度の低いドレイン領域2cは高電界を緩和するための
領域であり、これにより通常のMOS構造の素子と比較
して、耐圧の向上等を図って高信頼性化した素子が得ら
れることになる。
2. Description of the Related Art A thin film transistor is an LDD (Lightly Doped) element which is highly reliable by improving withstand voltage and the like as compared with an element having a normal MOS structure.
There is a so-called Drain structure. FIG. 4 shows an example of such a conventional thin film transistor. In this thin film transistor, a semiconductor layer 2 made of polysilicon or the like is provided on an upper surface of a substrate 1 made of ceramic or the like, and a gate electrode 4 is provided on an upper surface of a central portion of the semiconductor layer 2 via a gate insulating film 3. The semiconductor layer 2 is
A source region 2b and a drain region 2c having a low impurity concentration are formed on both sides of the channel region 2a, and a source region 2d and a drain region 2e having a high impurity concentration are formed outside the source region 2b and the drain region 2c having a low impurity concentration. It has a different structure. Of these, the drain region 2c having a low impurity concentration is a region for alleviating a high electric field, and as a result, an element having higher reliability by improving withstand voltage and the like can be obtained as compared with an element having a normal MOS structure. It will be.

【0003】ところで、このような構造の薄膜トランジ
スタでは、ソース領域2b、2dおよびドレイン領域2
c、2eを低温度でアニールする場合、まずゲート電極
4をイオン注入マスクとして低濃度のイオンを注入し、
次いで不純物濃度の低いソース領域2bおよびドレイン
領域2cを覆うイオン注入マスクを用いて高濃度のイオ
ンを注入し、次いで400℃程度またはそれ以下の温度
のレーザアニールを行うことにより、結晶化や注入不純
物の活性化をするようにしている。この場合、低温度下
で行う関係から、注入不純物の拡散は行われず、このた
め図5に示すように、不純物濃度の勾配が急俊となって
しまう。
By the way, in the thin film transistor having such a structure, the source regions 2b and 2d and the drain region 2 are formed.
When annealing c and 2e at a low temperature, first, low concentration ions are implanted using the gate electrode 4 as an ion implantation mask,
Then, high-concentration ions are implanted using an ion implantation mask covering the source region 2b and the drain region 2c having a low impurity concentration, and then laser annealing at a temperature of about 400 ° C. or lower is performed to crystallize or implant impurities. I am trying to activate. In this case, since the impurities are not diffused at a low temperature, the gradient of the impurity concentration becomes steep as shown in FIG.

【0004】[0004]

【発明が解決しようとする課題】このように、従来の薄
膜トランジスタでは、ソース領域2b、2dおよびドレ
イン領域2c、2eを低温度でアニールすると、不純物
濃度の勾配が急俊となってしまうので、高電界を十分に
緩和することができず、このため耐圧の向上等を十分に
図ることができないという問題があった。また、特に高
濃度のイオンを注入するときイオン注入マスクを用いて
いるので、工程数が増大するという問題もあった。この
発明の目的は、不純物濃度の勾配を緩やかにすることが
でき、また工程数を減少することのできる薄膜トランジ
スタおよびその製造方法を提供することにある。
As described above, in the conventional thin film transistor, if the source regions 2b, 2d and the drain regions 2c, 2e are annealed at a low temperature, the gradient of the impurity concentration becomes abrupt, so that There is a problem that the electric field cannot be relaxed sufficiently, and thus the breakdown voltage cannot be sufficiently improved. Further, there is a problem that the number of steps is increased because an ion implantation mask is used when implanting ions of high concentration. An object of the present invention is to provide a thin film transistor and a method for manufacturing the same that can reduce the gradient of impurity concentration and reduce the number of steps.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
ソース領域およびドレイン領域の不純物濃度の等濃度線
のプロフィルをそれぞれゲート電極領域外の所定深さの
位置からゲート電極領域下の表面に向かって曲線状に形
成したものである。請求項2記載の発明は、ソース領域
側の斜めおよびドレイン領域側の斜めからドーズ量と加
速エネルギを変えてそれぞれ複数回ずつイオンを注入す
ることにより、ソース領域およびドレイン領域の不純物
濃度の等濃度線のプロフィルをそれぞれゲート電極領域
外の所定深さの位置からゲート電極領域下の表面に向か
って曲線状に形成するようにしたものである。
The invention according to claim 1 is
The profile of the isoconcentration lines of the impurity concentration of the source region and the drain region is formed in a curved shape from a position of a predetermined depth outside the gate electrode region toward the surface below the gate electrode region. According to a second aspect of the present invention, by implanting ions a plurality of times at different dose amounts and acceleration energies obliquely on the source region side and obliquely on the drain region side, the same concentration of the impurity concentration of the source region and the drain region is obtained. Each of the line profiles is formed in a curved shape from a position of a predetermined depth outside the gate electrode region toward the surface below the gate electrode region.

【0006】[0006]

【作用】この発明によれば、ソース領域およびドレイン
領域の不純物濃度の等濃度線のプロフィルをそれぞれゲ
ート電極領域外の所定深さの位置からゲート電極領域下
の表面に向かって曲線状に形成しているので、400℃
程度またはそれ以下の温度のレーザアニールを行って注
入不純物を拡散させることなく活性化しても、不純物濃
度の勾配を緩やかにすることができる。また、ソース領
域側の斜めおよびドレイン領域側の斜めからドーズ量と
加速エネルギを変えてそれぞれ複数回ずつイオンを注入
すると、高濃度のイオンを注入するときもイオン注入マ
スクを用いることなく行うことができ、したがって工程
数を減少することができる。
According to the present invention, the profile of the isoconcentration lines of the impurity concentration of the source region and the drain region is formed in a curved shape from the position of a predetermined depth outside the gate electrode region toward the surface below the gate electrode region. So 400 ℃
Even if the laser annealing is performed at a temperature of about or less to activate the implanted impurities without diffusing them, the gradient of the impurity concentration can be made gentle. In addition, when the dose amount and the acceleration energy are changed obliquely on the source region side and the drain region side, respectively, and ions are injected plural times, it is possible to perform high-concentration ion implantation without using an ion implantation mask. Therefore, the number of steps can be reduced.

【0007】[0007]

【実施例】図1はこの発明の一実施例におけるLDD構
造の薄膜トランジスタの要部を示したものである。この
薄膜トランジスタでは、セラミック等からなる基板11
の上面にアモルファスシリコンからなる半導体層12が
設けられ、半導体層12の全表面にゲート絶縁膜13が
設けられ、半導体層12の中央部に対応する部分のゲー
ト絶縁膜13の上面にゲート電極14が設けられてい
る。半導体層12は、後で詳述するように、ゲート電極
14をマスクとして30°および150°の角度から、
ドーズ量と加速エネルギを変えてそれぞれ3回ずつイオ
ンを注入することにより、ソース領域12aおよびドレ
イン領域12bの不純物濃度の等濃度線のプロフィルが
それぞれゲート電極14領域外の所定深さの位置からゲ
ート電極14領域下の表面に向かって曲線状に形成され
た構造となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an essential part of a thin film transistor having an LDD structure according to an embodiment of the present invention. In this thin film transistor, the substrate 11 made of ceramic or the like is used.
The semiconductor layer 12 made of amorphous silicon is provided on the upper surface of the semiconductor layer 12, the gate insulating film 13 is provided on the entire surface of the semiconductor layer 12, and the gate electrode 14 is provided on the upper surface of the gate insulating film 13 corresponding to the central portion of the semiconductor layer 12. Is provided. As will be described later in detail, the semiconductor layer 12 is formed from the angles of 30 ° and 150 ° using the gate electrode 14 as a mask,
By implanting ions three times with different dose amounts and acceleration energies, the contours of the isoconcentration profile of the impurity concentration of the source region 12a and the drain region 12b are respectively formed from the position of a predetermined depth outside the region of the gate electrode 14 to the gate. The structure is formed in a curved shape toward the surface under the electrode 14 region.

【0008】ここで、半導体層に対して垂直にドーズ量
と加速エネルギを変えて3回イオンを注入する場合の一
例について図3を参照しながら説明する。まず、ドーズ
量1×1014/cm2、加速エネルギ130keVの条
件下でリンイオンを注入すると、図3において曲線Aで
示すように、不純物濃度が高く、かつそのピークが深さ
xjの浅い部分に現われる。次に、ドーズ量2×1013
/cm2、加速エネルギ145keVの条件下でリンイ
オンを注入すると、図3において曲線Bで示すように、
不純物濃度が中位で、そのピークが深さxjのやや深い
部分に現われる。次に、ドーズ量5×1012/cm2
加速エネルギ160keVの条件下でリンイオンを注入
すると、図3において曲線Cで示すように、不純物濃度
が低く、かつそのピークが深さxjのより深い部分に現
われる。そして、この3回のリンイオン注入の合計は、
図3における曲線Dの如くなり、不純物濃度のピークが
深さxjの浅い部分に現われ、かつこの部分よりも深い
ところで不純物濃度の勾配が緩やかとなる。
Here, an example of implanting ions three times by changing the dose amount and the acceleration energy perpendicularly to the semiconductor layer will be described with reference to FIG. First, when phosphorus ions are implanted under the conditions of a dose amount of 1 × 10 14 / cm 2 and an acceleration energy of 130 keV, as shown by a curve A in FIG. 3, the impurity concentration is high and the peak is in a shallow portion of depth xj. Appears. Next, the dose amount 2 × 10 13
When phosphorus ions are implanted under the conditions of / cm 2 and an acceleration energy of 145 keV, as shown by a curve B in FIG.
The impurity concentration is medium, and its peak appears in a slightly deeper portion of the depth xj. Next, the dose amount is 5 × 10 12 / cm 2 ,
When phosphorus ions are implanted under the condition of the acceleration energy of 160 keV, as shown by the curve C in FIG. 3, the impurity concentration is low and its peak appears in the deeper part of the depth xj. And the total of these three phosphorus ion implantations is
As shown by the curve D in FIG. 3, the peak of the impurity concentration appears in the shallow portion of the depth xj, and the gradient of the impurity concentration becomes gentle in the deeper portion than this portion.

【0009】そこで、ゲート電極14をマスクとして、
斜め注入型イオン打ち込み装置を用いてドレイン領域1
2b側から30°の角度でリンイオン注入をドーズ量1
×1014/cm2、加速エネルギ130keVの条件下
で行うと、不純物濃度が高く、かつそのピークが図1に
おいて曲線Pで示すようになる。この曲線Pは、ゲート
電極14領域外の所定深さの位置からゲート電極14領
域下でゲート電極14領域の図1における右端部の近傍
の表面に向かって曲線状に形成される。次に、同じく3
0°の角度でリンイオン注入をドーズ量2×1013/c
2、加速エネルギ145keVの条件下で行うと、不
純物濃度が中位で、そのピークが図1において曲線Qで
示すようになる。この曲線Qは、ゲート電極14領域外
で曲線Pよりも深い位置からゲート電極14領域下でゲ
ート電極14領域の図1における右端部から左側にやや
離間した表面に向かって曲線状に形成される。次に、同
じく30°の角度でリンイオン注入をドーズ量5×10
12/cm2、加速エネルギ160keVの条件下で行う
と、不純物濃度が低く、かつそのピークが図1において
曲線Rで示すようになる。この曲線Rは、ゲート電極1
4領域外で曲線Qよりも深い位置からゲート電極14領
域下でゲート電極14領域の図1における右端部から左
側により大きく離間した表面に向かって曲線状に形成さ
れる。また、ソース領域12a側から150°の角度で
リンイオン注入を同様の条件下で同じく3回行うと、高
い不純物濃度のピークが図1において曲線Sで示すよう
になり、また中位の不純物濃度のピークが図1において
曲線Tで示すようになり、さらに低い不純物濃度のピー
クが図1において曲線Uで示すようになる。次に、40
0℃程度またはそれ以下の温度のレーザアニールを行っ
てアモルファスシリコンからなる半導体層12を結晶化
してポリシリコンにするとともに注入不純物を活性化す
ると、注入不純物の拡散が殆ど行われなくとも、図2に
示すように、不純物濃度の勾配が緩やかになる。
Therefore, using the gate electrode 14 as a mask,
Drain region 1 using oblique implantation type ion implanter
Phosphorus ion implantation with a dose of 1 at an angle of 30 ° from the 2b side
When performed under the conditions of × 10 14 / cm 2 and acceleration energy of 130 keV, the impurity concentration is high and the peak thereof is as shown by the curve P in FIG. 1. This curve P is formed in a curved shape from a position of a predetermined depth outside the region of the gate electrode 14 under the region of the gate electrode 14 toward the surface in the vicinity of the right end portion of the region of the gate electrode 14 in FIG. Then also 3
Phosphorus ion implantation with a dose of 2 × 10 13 / c at an angle of 0 °
Under the conditions of m 2 and acceleration energy of 145 keV, the impurity concentration is medium and the peak thereof is as shown by the curve Q in FIG. 1. The curve Q is formed in a curve shape from a position deeper than the curve P outside the region of the gate electrode 14 toward a surface slightly separated from the right end portion of the gate electrode 14 region in FIG. .. Next, phosphorus ion implantation is performed at the same angle of 30 ° and the dose amount is 5 × 10 5.
When performed under the conditions of 12 / cm 2 and acceleration energy of 160 keV, the impurity concentration is low and the peak thereof is as shown by the curve R in FIG. This curve R is the gate electrode 1
It is formed in a curved shape from a position deeper than the curve Q outside the region 4 to a surface below the region of the gate electrode 14 and further away from the right end portion of the gate electrode 14 region in FIG. 1 to the left. Further, when phosphorus ion implantation is performed three times under the same conditions at an angle of 150 ° from the source region 12a side, a peak of high impurity concentration becomes as shown by a curve S in FIG. The peak becomes as shown by the curve T in FIG. 1, and the peak of the lower impurity concentration becomes as shown by the curve U in FIG. Then 40
When laser annealing at a temperature of about 0 ° C. or lower is performed to crystallize the semiconductor layer 12 made of amorphous silicon into polysilicon and activate the implanted impurities, even if the implanted impurities are hardly diffused, FIG. As shown in, the gradient of the impurity concentration becomes gentle.

【0010】このように、この薄膜トランジスタでは、
ソース領域12aおよびドレイン領域12bの不純物濃
度の等濃度線のプロフィルをそれぞれゲート電極14領
域外の所定深さの位置からゲート電極14領域下の表面
に向かって曲線状に形成しているので、400℃程度の
レーザアニールを行って注入不純物を拡散させることな
く活性化しても、不純物濃度の勾配を緩やかにすること
ができ、ひいては高電界を十分に緩和することができ、
耐圧の向上等を十分に図ることができる。また、ソース
領域12a側の斜めおよびドレイン領域12b側の斜め
からドーズ量と加速エネルギを変えてそれぞれ3回ずつ
イオンを注入すると、高濃度のイオンを注入するときも
イオン注入マスクを用いることなく行うことができ、し
たがって工程数を減少することができる。
Thus, in this thin film transistor,
The profile of the isoconcentration lines of the impurity concentration of the source region 12a and the drain region 12b is formed in a curved shape from a position of a predetermined depth outside the region of the gate electrode 14 toward the surface below the region of the gate electrode 14, and therefore 400 Even if laser annealing at about ℃ is performed and the implanted impurities are activated without being diffused, the gradient of the impurity concentration can be made gentle, and the high electric field can be sufficiently relaxed.
It is possible to sufficiently improve the breakdown voltage. Further, when ions are implanted three times with the dose amount and the acceleration energy being changed obliquely on the source region 12a side and on the drain region 12b side, high-concentration ions are implanted without using an ion implantation mask. Therefore, the number of steps can be reduced.

【0011】[0011]

【発明の効果】以上説明したように、この発明によれ
ば、ソース領域およびドレイン領域の不純物濃度の等濃
度線のプロフィルをそれぞれゲート電極領域外の所定深
さの位置からゲート電極領域下の表面に向かって曲線状
に形成しているので、400℃程度またはそれ以下の温
度のレーザアニールを行って注入不純物を拡散させるこ
となく活性化しても、不純物濃度の勾配を緩やかにする
ことができ、ひいては高電界を十分に緩和することがで
き、耐圧の向上等を十分に図ることができる。また、ソ
ース領域側の斜めおよびドレイン領域側の斜めからドー
ズ量と加速エネルギを変えてそれぞれ複数回ずつイオン
を注入すると、高濃度のイオンを注入するときもイオン
注入マスクを用いることなく行うことができ、したがっ
て工程数を減少することができる。
As described above, according to the present invention, the profiles of the isoconcentration lines of the impurity concentration of the source region and the drain region are respectively provided at a predetermined depth outside the gate electrode region and on the surface below the gate electrode region. Since it is formed in a curved shape toward, even if laser annealing at a temperature of about 400 ° C. or lower is performed to activate the implanted impurities without diffusing, the impurity concentration gradient can be made gentle, As a result, the high electric field can be relaxed sufficiently, and the breakdown voltage can be sufficiently improved. In addition, when the dose amount and the acceleration energy are changed obliquely on the source region side and the drain region side, respectively, and ions are injected plural times, it is possible to perform high-concentration ion implantation without using an ion implantation mask. Therefore, the number of steps can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例におけるLDD構造の薄膜
トランジスタの要部の断面図。
FIG. 1 is a sectional view of an essential part of a thin film transistor having an LDD structure according to an embodiment of the present invention.

【図2】図1のX−X線に沿う部分の不純物濃度図。2 is an impurity concentration diagram of a portion along line XX in FIG. 1. FIG.

【図3】半導体層に対して垂直にドーズ量と加速エネル
ギを変えて3回イオンを注入した場合の不純物濃度分布
図。
FIG. 3 is an impurity concentration distribution diagram when ions are implanted three times while changing the dose amount and the acceleration energy perpendicularly to the semiconductor layer.

【図4】従来のLDD構造の薄膜トランジスタの一部の
断面図。
FIG. 4 is a partial cross-sectional view of a conventional thin film transistor having an LDD structure.

【図5】図4のY−Y線に沿う部分の不純物濃度図。5 is an impurity concentration diagram of a portion along line YY in FIG.

【符号の説明】[Explanation of symbols]

11 基板 12 半導体層 12a ソース領域 12b ドレイン領域 13 ゲート絶縁膜 14 ゲート電極 11 substrate 12 semiconductor layer 12a source region 12b drain region 13 gate insulating film 14 gate electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/12 8728−4M 8617−4M H01L 21/265 F 8617−4M A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location H01L 27/12 8728-4M 8617-4M H01L 21/265 F 8617-4MA

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体層に形成されたソース領域および
ドレイン領域の不純物濃度の等濃度線のプロフィルがそ
れぞれゲート電極領域外の所定深さの位置からゲート電
極領域下の表面に向かって曲線状に形成されていること
を特徴とする薄膜トランジスタ。
1. A profile of isoconcentration lines of impurity concentration of a source region and a drain region formed in a semiconductor layer is curved from a position at a predetermined depth outside the gate electrode region toward a surface below the gate electrode region. A thin film transistor, which is formed.
【請求項2】 半導体層のソース領域およびドレイン領
域にイオンが注入された薄膜トランジスタを製造するに
際し、 ソース領域側の斜めおよびドレイン領域側の斜めからド
ーズ量と加速エネルギを変えてそれぞれ複数回ずつイオ
ンを注入することにより、ソース領域およびドレイン領
域の不純物濃度の等濃度線のプロフィルをそれぞれゲー
ト電極領域外の所定深さの位置からゲート電極領域下の
表面に向かって曲線状に形成することを特徴とする薄膜
トランジスタの製造方法。
2. When manufacturing a thin film transistor in which ions are implanted into a source region and a drain region of a semiconductor layer, the dose amount and the acceleration energy are changed from an oblique angle on the source region side and an oblique angle on the drain region side a plurality of times. By injecting, the profile of the isoconcentration lines of the impurity concentration of the source region and the drain region is formed in a curved shape from the position of a predetermined depth outside the gate electrode region toward the surface below the gate electrode region. And a method of manufacturing a thin film transistor.
【請求項3】 前記半導体層はアモルファスシリコンで
あり、ソース領域およびドレイン領域にイオンを注入し
た後400℃以下でアニールを行うことを特徴とする請
求項2記載の薄膜トランジスタの製造方法。
3. The method of manufacturing a thin film transistor according to claim 2, wherein the semiconductor layer is amorphous silicon, and annealing is performed at 400 ° C. or lower after implanting ions into the source region and the drain region.
【請求項4】 前記アニールはレーザアニールであるこ
とを特徴とする請求項3記載の薄膜トランジスタの製造
方法。
4. The method of manufacturing a thin film transistor according to claim 3, wherein the annealing is laser annealing.
JP30711891A 1991-10-28 1991-10-28 Method for manufacturing thin film transistor Expired - Fee Related JP3293039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30711891A JP3293039B2 (en) 1991-10-28 1991-10-28 Method for manufacturing thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30711891A JP3293039B2 (en) 1991-10-28 1991-10-28 Method for manufacturing thin film transistor

Publications (2)

Publication Number Publication Date
JPH05121436A true JPH05121436A (en) 1993-05-18
JP3293039B2 JP3293039B2 (en) 2002-06-17

Family

ID=17965247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30711891A Expired - Fee Related JP3293039B2 (en) 1991-10-28 1991-10-28 Method for manufacturing thin film transistor

Country Status (1)

Country Link
JP (1) JP3293039B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0670604A2 (en) * 1994-03-03 1995-09-06 Xerox Corporation MOS thin-film transistors with a drain offset region
EP0675543A2 (en) * 1994-03-31 1995-10-04 Seiko Instruments Inc. Semiconductor device including protection means and manufacturing method thereof
WO1999036965A1 (en) * 1998-01-13 1999-07-22 Lsi Logic Corporation A high voltage transistor having a field oxide gate region
JPH11345978A (en) * 1998-04-03 1999-12-14 Toshiba Corp Thin film transistor, its manufacture, and liquid crystal display device
KR100332565B1 (en) * 1998-01-13 2003-06-12 엘지.필립스 엘시디 주식회사 Method for fabricating liquid crystal display
JP2005093874A (en) * 2003-09-19 2005-04-07 Seiko Epson Corp Semiconductor device and method of manufacturing semiconductor device
US6951793B2 (en) 2002-05-29 2005-10-04 Toppoly Optoelectronics Corp. Low-temperature polysilicon thin film transistor having buried LDD structure and process for producing same
JP2006032930A (en) * 2004-06-14 2006-02-02 Semiconductor Energy Lab Co Ltd Doping device
US7148091B2 (en) 2004-08-06 2006-12-12 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing thin film transistor
US7352003B2 (en) 1995-11-07 2008-04-01 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device having thin film transistor with LDD region
US7847348B2 (en) 2008-03-14 2010-12-07 Samsung Electronics Co., Ltd. Semiconductor apparatus
JP2011129332A (en) * 2009-12-17 2011-06-30 Nissin Ion Equipment Co Ltd Ion beam irradiation device
JP2014236120A (en) * 2013-06-03 2014-12-15 トヨタ自動車株式会社 Semiconductor device and manufacturing method therefor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0670604A3 (en) * 1994-03-03 1996-09-25 Xerox Corp MOS thin-film transistors with a drain offset region.
EP0670604A2 (en) * 1994-03-03 1995-09-06 Xerox Corporation MOS thin-film transistors with a drain offset region
US6097064A (en) * 1994-03-31 2000-08-01 Seiko Instruments Inc. Semiconductor device and manufacturing method thereof
EP0675543A2 (en) * 1994-03-31 1995-10-04 Seiko Instruments Inc. Semiconductor device including protection means and manufacturing method thereof
EP0675543A3 (en) * 1994-03-31 1996-10-16 Seiko Instr Inc Semiconductor device including protection means and manufacturing method thereof.
US7352003B2 (en) 1995-11-07 2008-04-01 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device having thin film transistor with LDD region
US6194766B1 (en) 1998-01-13 2001-02-27 Lsi Logic Corporation Integrated circuit having low voltage and high voltage devices on a common semiconductor substrate
US6133077A (en) * 1998-01-13 2000-10-17 Lsi Logic Corporation Formation of high-voltage and low-voltage devices on a semiconductor substrate
KR100332565B1 (en) * 1998-01-13 2003-06-12 엘지.필립스 엘시디 주식회사 Method for fabricating liquid crystal display
WO1999036965A1 (en) * 1998-01-13 1999-07-22 Lsi Logic Corporation A high voltage transistor having a field oxide gate region
JPH11345978A (en) * 1998-04-03 1999-12-14 Toshiba Corp Thin film transistor, its manufacture, and liquid crystal display device
US6951793B2 (en) 2002-05-29 2005-10-04 Toppoly Optoelectronics Corp. Low-temperature polysilicon thin film transistor having buried LDD structure and process for producing same
JP2005093874A (en) * 2003-09-19 2005-04-07 Seiko Epson Corp Semiconductor device and method of manufacturing semiconductor device
JP2006032930A (en) * 2004-06-14 2006-02-02 Semiconductor Energy Lab Co Ltd Doping device
US7148091B2 (en) 2004-08-06 2006-12-12 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing thin film transistor
US7847348B2 (en) 2008-03-14 2010-12-07 Samsung Electronics Co., Ltd. Semiconductor apparatus
JP2011129332A (en) * 2009-12-17 2011-06-30 Nissin Ion Equipment Co Ltd Ion beam irradiation device
JP2014236120A (en) * 2013-06-03 2014-12-15 トヨタ自動車株式会社 Semiconductor device and manufacturing method therefor

Also Published As

Publication number Publication date
JP3293039B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
KR900007046B1 (en) Method manufacturing fet
KR0172793B1 (en) Method of manufacturing semiconductor device
US5478763A (en) High performance field effect transistor and method of manufacture thereof
US4912053A (en) Ion implanted JFET with self-aligned source and drain
KR20000069811A (en) Well boosting threshold voltage rollup
US5565369A (en) Method of making retarded DDD (double diffused drain) device structure
JPH06275636A (en) Manufacture of semiconductor device
JP2000183348A (en) Mos gate power device
US5821147A (en) Integrated circuit fabrication
JP3293039B2 (en) Method for manufacturing thin film transistor
JP2956626B2 (en) Method for manufacturing MOS type semiconductor device
US6576521B1 (en) Method of forming semiconductor device with LDD structure
JPH0851207A (en) Film transistor and its manufacture
JPH07142565A (en) Semiconductor device and manufacture thereof
US6800528B2 (en) Method of fabricating LDMOS semiconductor devices
JPH05267327A (en) Misfet and its manufacture
JPH04259258A (en) Manufacture of mis field effect semiconductor device
JPH05326968A (en) Nonvolatile semiconductor memory and manufacture thereof
KR0146525B1 (en) Method for manufacturing thin film transistor
KR100562303B1 (en) MOS transistor having low junction capacitance and method for fabricating the same
JPH05335559A (en) Forming method for double diffused layer
JP3192935B2 (en) Method for manufacturing semiconductor device
KR940010543B1 (en) Fabricating method of mos transistor
JPH02105469A (en) Mis type semiconductor device
KR940001057B1 (en) Mos fet and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees