JPS6017946A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6017946A
JPS6017946A JP58126631A JP12663183A JPS6017946A JP S6017946 A JPS6017946 A JP S6017946A JP 58126631 A JP58126631 A JP 58126631A JP 12663183 A JP12663183 A JP 12663183A JP S6017946 A JPS6017946 A JP S6017946A
Authority
JP
Japan
Prior art keywords
channel
type
boron
arsenic
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58126631A
Other languages
Japanese (ja)
Inventor
Masahiro Yamada
正弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP58126631A priority Critical patent/JPS6017946A/en
Publication of JPS6017946A publication Critical patent/JPS6017946A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Abstract

PURPOSE:To accelerate a CMOS semiconductor element by shallowly forming dif fusions only in the channel under gate electrodes for both P-channel and N-channel transistors. CONSTITUTION:A groove of 2 to 20mum is formed on an N type silicon substrate 101, and a P type epitaxial silicon layer 102 is formed in the groove. N type impurity 108 such as arsenic and P type impurity 107 such as boron are respectively shallowing ion implanted to the substrate 101 and the region 102. After a gate electrode 109 is formed, boron and arsenic diffused layers 111, 110 are respectively formed by ion implanting in the P-channel and N-channel regions. At this time, boron and arsenic are diffused in the layers 108, 107 in the same or deeper depth.

Description

【発明の詳細な説明】 本発明は、高速動作を目的とするCMO8半導体素子に
関する。MO8型トランジスタでスイッチング特性を決
める要素として、 (1) 閾値電圧(vth ) (2)電流増巾率(β) (3)寄生容量(OL) 等があり、さらに、容量に対しては、次段のトランジス
タの負荷容量がある。vthは、使用上の制約があり、
電源電圧によりほぼ決められる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a CMO8 semiconductor device intended for high-speed operation. The factors that determine the switching characteristics of MO8 type transistors include (1) threshold voltage (vth), (2) current amplification rate (β), and (3) parasitic capacitance (OL). There is a load capacitance of each stage transistor. vth has usage restrictions,
It is almost determined by the power supply voltage.

そこで、MOS)ランジスタを高速化する一般的な方法
としては、βを大きくし、C1を小さくすることが考え
られる。そこで、本発明は、βを大きくシ、シかもOL
を低減することを可能とするものであり、さらに、0M
0Eli素子固有の問題である、寄生サイリスタ構造か
ら生じるラッチアップ現象にも強いものとなる。
Therefore, a general method for increasing the speed of a MOS transistor is to increase β and decrease C1. Therefore, in the present invention, β can be increased, and OL
It is possible to reduce the 0M
It is also resistant to the latch-up phenomenon caused by the parasitic thyristor structure, which is a problem specific to OEli devices.

第一図が、本発明の実施例の工程断面図である。ここで
は、N型シリコン基板を例にして説明するがP型シリコ
ン基板でも同様に行なえる。N型シリコン基板101上
に、2ないし20μ常程度の溝を形成後、P型エピタキ
シャルシリコン層102を形成し、上記溝をエビタキシ
ャルシリコン層で埋める。次に、チャネルストッパー1
03及び104を不純物拡散により形成後、素子分周[
鮮として、シリコン酸化膜105を形成し、ゲート酸化
膜106を熱酸化により形成する。次に、チャネル部を
形成するようN型基板101領域に、リン、ヒ素等N型
不純物108を、P型エピ102領域に、ボロン等P型
不純物107を各々浅くイオン打込み形成する。この時
、この不純物により、目的とするvthに合せる。次に
、ゲート電極109を形成する。本実施例では、ゲート
電極109の材料として、モリブデン珪化物を用いた。
FIG. 1 is a process sectional view of an embodiment of the present invention. Here, an explanation will be given using an N-type silicon substrate as an example, but the same process can be performed with a P-type silicon substrate. After forming a groove of about 2 to 20 μm on an N-type silicon substrate 101, a P-type epitaxial silicon layer 102 is formed and the groove is filled with the epitaxial silicon layer. Next, channel stopper 1
After forming 03 and 104 by impurity diffusion, element frequency division [
First, a silicon oxide film 105 is formed, and a gate oxide film 106 is formed by thermal oxidation. Next, an N-type impurity 108 such as phosphorus or arsenic is ion-implanted into the N-type substrate 101 region, and a P-type impurity 107 such as boron is formed into the P-type epitaxial region 102 by shallow ion implantation to form a channel portion. At this time, this impurity adjusts the target vth. Next, a gate electrode 109 is formed. In this example, molybdenum silicide was used as the material for the gate electrode 109.

さらに、イオン打込みにより、上記ゲート電極109の
自己整合により、ボロン拡散N111及び、ヒ素拡散M
110を、各々、Pチャネル領域及びNチャネル領域に
、拡散形成を行なう。このとき、上記のP型不純物層1
08及びN型不純物層107と同じ、もしくは深くなる
ようボロン及びヒ素を拡散する。この後、PEGをデボ
後、コンタクトホールを形成し、金属配線を行ない、パ
ッシベーションM莫をデボし、ポンディングパッドを(
3) 作る。次に、本発明のCMO8半導体素子の特徴につい
て述べる。
Further, by ion implantation, self-alignment of the gate electrode 109 results in boron diffusion N111 and arsenic diffusion M.
110 is diffused into the P-channel region and the N-channel region, respectively. At this time, the above P-type impurity layer 1
Boron and arsenic are diffused so as to be the same as or deeper than the N-type impurity layer 107 and the impurity layer 107. After this, after debossing the PEG, forming contact holes, performing metal wiring, debossing the passivation layer, and bonding pads (
3) Make. Next, the characteristics of the CMO8 semiconductor device of the present invention will be described.

(1)Pチャネル及びNチャネルトランジスタともに、
ゲート電極下のチャネル部のみ、拡散層が浅く形成され
ている。尚vthはこの拡散層の表面近傍(1000〜
5oooX)の濃度により決められている。よって、ド
レインと接触する領域の全んどが、N型基板及びエビ層
であり、ドレイン−サブ間のジャンクション容量は、P
及びNチャネルとも、N型基板及びエビ層の不純物濃度
により決定される。そこで、これらの不純物濃度を低く
設定することにより、ドレイン容量は、低減出来る。
(1) Both P-channel and N-channel transistors,
A shallow diffusion layer is formed only in the channel portion under the gate electrode. Note that vth is near the surface of this diffusion layer (1000~
5oooX). Therefore, the entire region in contact with the drain is the N-type substrate and the shrimp layer, and the junction capacitance between the drain and the sub is P
Both the N channel and the N channel are determined by the impurity concentration of the N type substrate and the shrimp layer. Therefore, by setting the concentration of these impurities low, the drain capacitance can be reduced.

(2)一般に、基板濃度を低くシ、拡散層を浅くすると
、寄生サイリスク構造から起こる、ラッチアップ現象に
弱くなるが、本発明の゛ように、Nチャネル部をエビ層
上に形成することにより、回避できる。
(2) Generally, when the substrate concentration is low and the diffusion layer is shallow, it becomes vulnerable to latch-up phenomenon caused by the parasitic silicon risk structure, but as in the present invention, by forming the N-channel part on the shrimp layer, , can be avoided.

(3)本発明の方法は、短チヤネル化にマツチして構造
であり、(1)とともに、高速化を目的とする(4) 0MO8構造となる。
(3) The method of the present invention has a structure that is suitable for shortening the channel, and in addition to (1), it has a 0MO8 structure that is aimed at increasing speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図((L)e Cb)、CC)は、本発明の工程断
面図である。 102は、エピタキシャルシリコンJi、107及び1
08が、イオン打込みにより形成された浅いチャネル部
である。 以 上 第1巨
FIG. 1 ((L)e Cb), CC) is a process sectional view of the present invention. 102 is epitaxial silicon Ji, 107 and 1
08 is a shallow channel portion formed by ion implantation. The first giant

Claims (1)

【特許請求の範囲】[Claims] N型もしくはP型のシリコン基板の一部に、2ないし2
0μ情の溝が形成されていること、該シリコン基板と異
なる型の、エピタキシャル成長による単結晶シリコン層
が、該溝の中に形成されていること、該シリコン基板上
及び該エピタキシャルシリコン層上に異なるチャネルの
MOS )ランジスタが形成され0M08構造となるこ
と、P及びNチャネルトランジスタともに、チャネル部
が、ソース・ドレイン拡散層より浅い拡散層よりなるこ
とを特徴とする半導体装置。
2 or 2 on a part of the N-type or P-type silicon substrate.
A groove with a thickness of 0μ is formed, a single crystal silicon layer of a type different from the silicon substrate and epitaxially grown is formed in the groove, and a different type is formed on the silicon substrate and on the epitaxial silicon layer. Channel MOS) A semiconductor device characterized in that a transistor is formed to have an 0M08 structure, and that the channel portions of both P and N channel transistors are made of a diffusion layer shallower than a source/drain diffusion layer.
JP58126631A 1983-07-12 1983-07-12 Semiconductor device Pending JPS6017946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58126631A JPS6017946A (en) 1983-07-12 1983-07-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58126631A JPS6017946A (en) 1983-07-12 1983-07-12 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6017946A true JPS6017946A (en) 1985-01-29

Family

ID=14939964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58126631A Pending JPS6017946A (en) 1983-07-12 1983-07-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6017946A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02235345A (en) * 1989-03-08 1990-09-18 Rohm Co Ltd Manufacture of semiconductor device
US5086006A (en) * 1984-12-11 1992-02-04 Seiko Epson Corporation Semiconductor device and method of production
JPH0486794U (en) * 1990-12-03 1992-07-28
US5190886A (en) * 1984-12-11 1993-03-02 Seiko Epson Corporation Semiconductor device and method of production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086006A (en) * 1984-12-11 1992-02-04 Seiko Epson Corporation Semiconductor device and method of production
US5190886A (en) * 1984-12-11 1993-03-02 Seiko Epson Corporation Semiconductor device and method of production
JPH02235345A (en) * 1989-03-08 1990-09-18 Rohm Co Ltd Manufacture of semiconductor device
JPH0486794U (en) * 1990-12-03 1992-07-28

Similar Documents

Publication Publication Date Title
US5016066A (en) Vertical power MOSFET having high withstand voltage and high switching speed
JP3043367B2 (en) Mixed technology integrated device comprising complementary LDMOS power transistors, CMOS and vertical PNP integrated structures with outstanding ability to withstand relatively high supply voltages
KR910019215A (en) BICMOS device and its manufacturing method
JPH09186241A (en) Semiconductor device and manufacture thereof
JPH0442968A (en) Semiconductor device and manufacture thereof
US8618583B2 (en) Junction gate field effect transistor structure having n-channel
KR20070012882A (en) Improved process for resurf diffusion for high votage mosfet
US5045912A (en) Bi-CMOS integrated circuit device having a high speed lateral bipolar transistor
JPH0237777A (en) Vertical type field-effect transistor
JPH02203566A (en) Mos type semiconductor device
JPS6017946A (en) Semiconductor device
US4683485A (en) Technique for increasing gate-drain breakdown voltage of ion-implanted JFET
CN111463132A (en) Preparation method of power semiconductor device capable of reducing on-resistance and increasing safe working area
JPH04346272A (en) Semiconductor device and manufacture thereof
KR100482950B1 (en) Semiconductor device and manufacturing method thereof
JP2508218B2 (en) Complementary MIS integrated circuit
JPS63175463A (en) Manufacture of bipolar mos integrated circuit
JPH05211331A (en) Misfet device and manufacturing method thereof
JPH0414815A (en) Manufacture of semiconductor device
JPS62211959A (en) Semiconductor device
JPH07249760A (en) Fabrication of semiconductor device
JP3122103B2 (en) Semiconductor device manufacturing method
JPS63240058A (en) Manufacture of semiconductor device
JPH05102479A (en) Semiconductor device and manufacture thereof
JPS62179758A (en) Complementary semiconductor device