JPS58153370A - Mos transistor and manufacture thereof - Google Patents

Mos transistor and manufacture thereof

Info

Publication number
JPS58153370A
JPS58153370A JP3615382A JP3615382A JPS58153370A JP S58153370 A JPS58153370 A JP S58153370A JP 3615382 A JP3615382 A JP 3615382A JP 3615382 A JP3615382 A JP 3615382A JP S58153370 A JPS58153370 A JP S58153370A
Authority
JP
Japan
Prior art keywords
substrate
concentration
source
drain
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3615382A
Other languages
Japanese (ja)
Inventor
Masao Fukuma
福間 雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP3615382A priority Critical patent/JPS58153370A/en
Publication of JPS58153370A publication Critical patent/JPS58153370A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To obtain the MOS element having small source-drain junction capacity, and moreover having the small short channel effect and the quasi-floating substrate effect using a substrate of normal concentration by a method wherein a low impurity concentration region is provided on the surface coming in contact with a gate insulating film of the semiconductor substrate shallowly at the part to face with a gate electrode, and moreover deeply at the source-drain region forming parts. CONSTITUTION:A thick field oxide film 3 is formed at the circumference of the p type Si substrate 1, the thin gate oxide film 2 is adhered on the surface of the substrate 1 surrounded with the film thereof, P ions are implanted therein to make the shallow P type region 4 to compensate for B in the surface of the substrate 1 and having low concentration equivalently to be generated. Then the gate electrode 5 consisting of polycrystalline Si is formed on the surface at the central part of the film 2, P ions are implanted again to convert only the regions 4 on both the sides of the electrode 5 into the deep and low concentration P type regions 6, and As ions of high concentration are implanted therein to form N type source and drain regions 8 on both the sides of the electrode 5.

Description

【発明の詳細な説明】 本発明はソース及びドレインの接合容量が少なくかつ短
チヤネル効果が弱いMOS)ランジスタの構造とその製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure of a MOS (MOS) transistor having a small source/drain junction capacitance and a weak short channel effect, and a method for manufacturing the same.

MOS)ランジスタの微細化の指標としては、いわゆる
スケーリング則が有名である。スケーリング則はサイズ
の縮小と共に基板濃度の上昇を要求しているが、これを
そのtt実行すると、ソース・ドレインなど拡散層の単
位面積当りの接合容量が増加し、かつトランジスタ特性
に関しても基板効果は改善されない。これらは高性能L
SI’i実現する上では好ましくない現象であり、今ま
でにもより少ない接合容量と基板効果を得るべく努力が
払われて来た。
The so-called scaling law is well-known as an index for miniaturization of MOS transistors. The scaling law requires an increase in substrate concentration as the size decreases, but if this is implemented, the junction capacitance per unit area of diffusion layers such as sources and drains will increase, and the substrate effect will not affect transistor characteristics. No improvement. These are high performance L
This is an unfavorable phenomenon in realizing SI'i, and efforts have been made to obtain lower junction capacitance and substrate effect.

その最も一般的な例が低濃度基板上にMOS)ランジス
タを作成し、チャネルドープによって閾電圧(7丁)を
コントロールしようというものである。この方法は比較
的簡便に接合容量と基板効果の少ないMOS)う/ジス
タを作成することができ、特に短チャネルにするにはパ
ンチスルー防止用の深いチャネルドープとvTコントロ
ール用の浅いチャネルドープとを組み合わせることによ
って良い結果が得られている。しかしこの方法ではや′
C1り短チヤネル化に限界があり、例えば実効チャネル
長が11IIn近くにもなるとパンチスルー防止用の蒙
いチャネルドープを相当量打ち込まなければならず、接
合容量と基板効果は大きくならざるを得ない。
The most common example is to create a MOS transistor on a lightly doped substrate and control the threshold voltage (7 transistors) by doping the channel. This method can relatively easily create a MOS resistor with low junction capacitance and low substrate effects, and in particular, for short channels, deep channel doping for punch-through prevention and shallow channel doping for vT control are required. Good results have been obtained by combining them. However, with this method,
There is a limit to the shortening of C1 channels, for example, when the effective channel length approaches 11IIn, a considerable amount of channel doping must be implanted to prevent punch-through, and the junction capacitance and substrate effect inevitably increase. .

さらにこの様な低濃度基板を使った場合、チャネルドー
プ層は高抵抗で基板バイアス電源あるいはグラウンドに
*Sされるので電気的に浮遊した状態とほとんど等価に
なる。このためドレイン端で弱いアバランシが生じ、伝
導キャリアと逆の型のキャリアが基板へ注入されるとバ
イポーラ動作をしてドレイン耐圧が下っ九り、あるいは
チャージボンピング現象によりて伝導キャリアと同型の
キャリアが基板へ注入されてみかけ上達基板バイアスが
加えられ九のと同じになり、7丁が高くなるなどの諸問
題(凝浮遊基板効果という)が生じる。
Furthermore, when such a lightly doped substrate is used, the channel doped layer has a high resistance and is connected to the substrate bias power supply or ground, making it almost equivalent to an electrically floating state. Therefore, a weak avalanche occurs at the drain end, and when carriers of the opposite type to the conduction carriers are injected into the substrate, bipolar operation occurs and the drain breakdown voltage decreases, or due to the charge bombing phenomenon, carriers of the same type as the conduction carriers is injected into the substrate, an apparent upward substrate bias is added, and it becomes the same as 9, causing various problems such as the height of the 7th column (called the suspended substrate effect).

従って本発明の目的は通常濃度の基板t′便いながらソ
ース・ドレインの接合容量會実用上充分低くおさえ、か
つ短チヤネル効果及び凝浮遊基板効果の少ないMOS)
ランジスタと、この様なMOSトランジスタを簡便にし
かも確実に実現し得る製造方法を提供することにある。
Therefore, the purpose of the present invention is to suppress the source/drain junction capacitance to a sufficiently low value for practical use while using a substrate with a normal concentration (t'), and to create a MOS (MOS) with little short channel effect and suspended substrate effect.
The object of the present invention is to provide a transistor and a manufacturing method that can easily and reliably realize such a MOS transistor.

本発明によるMOS)ランジスタはソース・ドレイン拡
散層の直下及びゲート絶縁膜の直下に不純物l1111
wILのごく低い層が存在し、この層が各領域で基板半
導体に接する面、すなわち境界面は平坦ではなく段差を
有しており、ゲート絶縁膜の直下の領域の境界面だけが
、エリ表面近くに存在することを特徴として卦り、比較
的高濃度な基板を使うことにより上記目的を遅成し次も
のである。また、本発明の製造方法はまず、第1導伝型
半導体基板上に、ゲート絶縁膜を形成し、久いてイオン
注入で第2導伝型9不純物を注入し、ゲート電極を形成
し九後、各々の領域で基板不純物を補償するように選ば
れたイオン注入量でやや深く第2導伝型不純物を注入し
、しかる後に@2導伝型の不純物を浅く高濃度にイオン
注入してソース、ドレインを形成することを4I徴とし
ており、上記本発明の構造のMOS)う/ジスタを容易
かつ確実に製造し得る卓絶した効果を発揮するものであ
る。
The MOS) transistor according to the present invention has an impurity l1111 directly under the source/drain diffusion layer and directly under the gate insulating film.
There is a layer with a very low wIL, and the surface of this layer in contact with the substrate semiconductor in each region, that is, the boundary surface, is not flat but has a step, and only the boundary surface in the region directly under the gate insulating film has an edge surface. It is characterized by the fact that it exists nearby, and by using a substrate with a relatively high concentration, the above purpose can be achieved late. Further, in the manufacturing method of the present invention, first, a gate insulating film is formed on a first conductivity type semiconductor substrate, and then a second conductivity type 9 impurity is implanted by ion implantation to form a gate electrode. In each region, impurities of the second conductivity type are implanted somewhat deeply at an ion implantation amount selected to compensate for the substrate impurities, and then impurities of the @2 conductivity type are ion-implanted shallowly and at a high concentration to form the source. , forming a drain is a 4I feature, and exhibits an outstanding effect in easily and reliably manufacturing a MOS/MOS transistor having the structure of the present invention.

以下に本発明の典型的な一実施例につきその構造及び製
造方法を図によって説明する。なお、実施例では、説明
の便宜上NチャネルMOSトランジスタについて述べる
が、PチャネルMO5)ランジスタの場合も本質的に同
じであり当然とれも本発明に含まれる。
The structure and manufacturing method of a typical embodiment of the present invention will be explained below with reference to the drawings. In the embodiment, an N-channel MOS transistor will be described for convenience of explanation, but a P-channel MOS transistor is essentially the same, and both are naturally included in the present invention.

第1!g(m)t!、不IA物11[5x1ots/−
のp型基板1上に通常のLOCO8酸化によってフィー
ルド酸化膜3を形成し喪後、約400Xのゲート酸化膜
2を成長させ、さらに150KeVのエネルギーでリン
をイオン注入し、基板1の表面のボロ/を補償し、等測
的に低濃度の領域4を形成した状at示している。この
ときのリンの注入量は最終的に得られる7丁をコントロ
ールするととKなるので注意深く選ぶ必要があるが、こ
の実施例ではI X 10”/cIRsとした。1lK
1図(b)は約s o o oXのポリシリコンを成長
させ、レジストアをマスクとしてポリシリコンゲート5
を形成した後リンy400KeVのエネルギーで2.5
 X 10 ”7’am”程度打ち込み、等測的に不純
物濃度が低い領域6を形成した状態である。この時、既
に形成されている低濃度領域4と合わさるため、図に示
すように低源領域は全体で1つにまとまる。
1st! g(m)t! , non-IA item 11 [5x1ots/-
A field oxide film 3 is formed on a p-type substrate 1 by normal LOCO 8 oxidation, and then a gate oxide film 2 of about 400X is grown, and phosphorous is ion-implanted at an energy of 150 KeV to remove the borosiness on the surface of the substrate 1. / is compensated to form a low concentration region 4 isometrically. The amount of phosphorus injected at this time needs to be carefully selected because it will be K if the final 7 guns are controlled, but in this example it was set to I x 10"/cIRs. 1lK
Figure 1 (b) shows that polysilicon of approximately s o o o x is grown and a polysilicon gate 5 is formed using resist as a mask.
After forming phosphorus y2.5 at an energy of 400KeV
This is a state in which a region 6 with an isometrically low impurity concentration is formed by implanting at about X 10 "7'am". At this time, since it is combined with the already formed low concentration region 4, the entire low source region is integrated into one as shown in the figure.

第1図(C)は第1図(b)におけるレジストアを取り
除いたあと、ヒ素を100 KeVのエネルギーで1×
101・15+3程度、打ち込み、ソース及びドレイン
拡散層8を形成した状態である。第1図(d)はさらに
CVD@化膜9を成長させ、コンタクトホール會あけて
メタル配@10を施した状態である。この第1図(d)
が本発明の構造の典型的な一例である。
Figure 1(C) shows that after removing the resist in Figure 1(b), arsenic was added 1x at an energy of 100 KeV.
This is the state in which implantation and source and drain diffusion layers 8 have been formed by approximately 101·15+3. FIG. 1(d) shows a state in which a CVD film 9 is further grown, contact holes are opened, and metal wiring 10 is applied. This figure 1(d)
is a typical example of the structure of the present invention.

本発明の構造によるMOSトランジスタは、比較的高濃
度の基板を用いていながら、第1図(d) K示すごと
くソース、ドレイン及びゲートの下が非常に低濃度にか
っているため、空乏層はこの領域のほとんど全てに広が
る。この様子を上記実施例のパラメータを用いて2次元
解析プログラムで解□ 析し九例を第2図に示す。第2
図中11はシリコン基板、12はソース、13はドレイ
ン、14はゲート電極、15Fiゲート酸化膜、16#
″を等ポテンシャル纏、17ij空乏層端である。なお
、ここにゲート電圧は2V、  ドレイン電圧は1vで
ある。
Although the MOS transistor with the structure of the present invention uses a relatively highly doped substrate, as shown in FIG. Spread over almost all areas. This situation was analyzed using a two-dimensional analysis program using the parameters of the above embodiment, and nine examples are shown in FIG. Second
In the figure, 11 is a silicon substrate, 12 is a source, 13 is a drain, 14 is a gate electrode, 15Fi gate oxide film, 16#
'' is the equipotential, 17ij is the depletion layer edge. Here, the gate voltage is 2V and the drain voltage is 1V.

第2図から明らかなように、ソース側でも空乏層中は約
un*m@f有り、事実上5 x 10”/a*”gい
う低源縦基板に作った場合と同程度の低接合容量になっ
ている。又、ゲート下で本釣[13μmの空乏層が広が
りでおp1基板バイアス効果は弱められている。それに
もかかわらず、これらの低源[8域と基板との境界は、
段差によって第1図(dlに示す様にゲート直下の部分
のみが表面近くに位置しているので第2図に示すごとく
、ゲートの下の方では5X 10”/a1m という比
較的高濃度の不純物が、ドレイン空乏層の伸びを抑制す
る丸め、短チヤネル効果は弱められている。しかも、こ
の様な高濃度基板の使用により凝浮遊基板効果も有効に
抑制されるという卓絶した効果を発生するものである。
As is clear from Figure 2, there is approximately un*m@f in the depletion layer on the source side, and in fact, the junction is as low as 5 x 10"/a*"g, which is the same level as when the source is made on a vertical substrate. capacity. In addition, a depletion layer of 13 μm wide under the gate weakens the p1 substrate bias effect. Nevertheless, these low sources [8 the boundary between the region and the substrate are
Due to the step, only the part directly under the gate is located near the surface as shown in Figure 1 (dl), so as shown in Figure 2, a relatively high concentration of impurities of 5X 10''/a1m is present under the gate. However, the rounding and short channel effects that suppress the elongation of the drain depletion layer are weakened.Moreover, the use of such a highly doped substrate also effectively suppresses the floating substrate effect, which is an outstanding effect. It is.

本発明の製造方法によれば、ソース、ドレイン拡散層直
下及びゲート絶縁膜の直下にごく低不純物濃度領域を従
来と同程度のイオン注入回数で設けること!ができる。
According to the manufacturing method of the present invention, extremely low impurity concentration regions can be provided directly under the source and drain diffusion layers and directly under the gate insulating film with the same number of ion implantations as in the conventional method! I can do it.

さらにこの低III!度領斌と基板との境界面のうち、
ゲート絶縁膜の直下の部分のみ、表面近くに位置させる
ことをセルフアンインで実施して、上記構造を得ること
ができるものである。
Furthermore, this low III! Of the interface between the doweling bin and the substrate,
The above structure can be obtained by performing self-unin to position only the portion immediately below the gate insulating film near the surface.

以上の説明では説明の便宜上、典型的でしかも簡単な一
実施例についてのみ述べて来たが、本発明はこの様な実
施例についてのみ限定されるものではない。例えば第1
図(mlで低濃度層4は最終的なVTtさらに精度良く
コントロールする丸めにリンだけでなくボロン等を2重
に注入してもよい。
In the above description, for convenience of explanation, only one typical and simple embodiment has been described, but the present invention is not limited to such an embodiment. For example, the first
Figure (ml) In the low concentration layer 4, not only phosphorus but also boron or the like may be doubly implanted to control the final VTt with more precision.

父、@1図(blで低濃度領域6を形成する際、ポリシ
リコンゲート5が7000A以上有ればレジスト7は残
しておく必要もない。この様な変形も当然本発明に含ま
れる。
Father, Figure 1 (When forming the low concentration region 6 with BL, there is no need to leave the resist 7 if the polysilicon gate 5 is 7000A or more.Such a modification is naturally included in the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(13〜(d)は本発明MO8)ランジスタの製
造方法の典型的な実施例を工程順に示す主要断面、第2
図は第1図に示し九実施例のMOS)ランジスタのポテ
ンシャル分布を示す図である。 1・・・シリコン基板   2・・・ゲート酸化膜5・
・・フィールド酸化膜 4・・・浅い低不純物濃度領域
5・・・ゲートポリシリコン 6・・・深い低不純物濃
度領域7・・・レジスト      8・・・ソース及
びドレイン!・・・CVD酸化膜  10・・・メタル
配線特許出願人 日本電気株式会社 第1図 (b)
FIG. 1 (13 to d) are main cross sections showing a typical example of the method for manufacturing MO8 transistors of the present invention in the order of steps;
This figure is a diagram showing the potential distribution of the MOS transistor of the ninth embodiment shown in FIG. 1. 1... Silicon substrate 2... Gate oxide film 5.
...Field oxide film 4...Shallow low impurity concentration region 5...Gate polysilicon 6...Deep low impurity concentration region 7...Resist 8...Source and drain! ...CVD oxide film 10...Metal wiring patent applicant NEC Corporation Figure 1 (b)

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に形成されたソースとドレイン拡散
層の直下及びゲート絶縁膜の直下に、不純物濃度のごく
低い半導体のJllt−存在させ、このごく低濃度の半
導体の層の各領域と基板半導体とが接する′WJK段差
を付し、ゲート絶縁膜の直下の面を表面近くに位置させ
九ことを特徴とするMOSトツンジヌタ。
(1) A semiconductor with a very low impurity concentration is made to exist directly under the source and drain diffusion layers formed on the semiconductor substrate and directly under the gate insulating film, and each region of this extremely low concentration semiconductor layer and the substrate A MOS transistor is characterized in that it has a WJK step in contact with a semiconductor, and that the surface immediately below the gate insulating film is located near the surface.
(2)第1導伝蓋半導体基板上にゲート絶縁jIKを形
成し、次いで、イオン注入によって表面近くに第24伝
型不純物を注入し、ゲート電極を形成した俵、イオン注
入によりてやや深く第2導伝型不純物を注入して各々、
基板の不純物濃度を補償させ、しかる壁に第24伝習不
純物を浅く高濃度にイオン注入してソース、ドレインを
形成することを特徴トするMOS)ランジスタの製造方
法。゛
(2) A gate insulator jIK is formed on the first conductive lid semiconductor substrate, and then a 24th conduction type impurity is implanted near the surface by ion implantation to form a gate electrode, and a gate insulator jIK is formed slightly deeper by ion implantation. By implanting two conductivity type impurities, each
1. A method of manufacturing a MOS transistor, which comprises compensating the impurity concentration of a substrate and ion-implanting a 24th type impurity into the corresponding wall shallowly and at a high concentration to form a source and a drain.゛
JP3615382A 1982-03-08 1982-03-08 Mos transistor and manufacture thereof Pending JPS58153370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3615382A JPS58153370A (en) 1982-03-08 1982-03-08 Mos transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3615382A JPS58153370A (en) 1982-03-08 1982-03-08 Mos transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS58153370A true JPS58153370A (en) 1983-09-12

Family

ID=12461830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3615382A Pending JPS58153370A (en) 1982-03-08 1982-03-08 Mos transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58153370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249667A (en) * 1985-06-19 1987-03-04 エツセジ−エツセ ミクロエレツトロニカソチエタ ペル アノニマ N channel mos transistor and manufacture thereof
US5061649A (en) * 1986-03-31 1991-10-29 Kabushiki Kaisha Toshiba Field effect transistor with lightly doped drain structure and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249667A (en) * 1985-06-19 1987-03-04 エツセジ−エツセ ミクロエレツトロニカソチエタ ペル アノニマ N channel mos transistor and manufacture thereof
US5061649A (en) * 1986-03-31 1991-10-29 Kabushiki Kaisha Toshiba Field effect transistor with lightly doped drain structure and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5406110A (en) Resurf lateral double diffused insulated gate field effect transistor
US4306916A (en) CMOS P-Well selective implant method
KR100344735B1 (en) Depleted poly-silicon edged mosfet structure and method
US5510279A (en) Method of fabricating an asymmetric lightly doped drain transistor device
KR100459872B1 (en) Buried channel transistor having trench gate and Method of manufacturing the same
US6930361B2 (en) Semiconductor device realizing characteristics like a SOI MOSFET
US6872640B1 (en) SOI CMOS device with reduced DIBL
US20050151171A1 (en) JFET structure for integrated circuit and fabrication method
EP0898304B1 (en) Method of fabricating an asymmetric channel doped MOS structure
JPH0510828B2 (en)
US6767778B2 (en) Low dose super deep source/drain implant
US6600205B2 (en) Method for making low voltage transistors with increased breakdown voltage to substrate having three different MOS transistors
US6103561A (en) Depletion mode MOS capacitor with patterned VT implants
US7968415B2 (en) Transistor with reduced short channel effects and method
US6476430B1 (en) Integrated circuit
KR100918182B1 (en) Method of ion implantation for achieving desired dopant concentration
JP2933796B2 (en) Method for manufacturing semiconductor device
JPS58153370A (en) Mos transistor and manufacture thereof
EP0160183A2 (en) High voltage mos field effect transistor
US6890832B1 (en) Radiation hardening method for shallow trench isolation in CMOS
US6507058B1 (en) Low threshold compact MOS device with channel region formed by outdiffusion of two regions and method of making same
CN215731714U (en) Microelectronic device
JP4542736B2 (en) Semiconductor device
JPH1012876A (en) Semiconductor device
JPS58157169A (en) Semiconductor device