JPH01268171A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01268171A
JPH01268171A JP9757888A JP9757888A JPH01268171A JP H01268171 A JPH01268171 A JP H01268171A JP 9757888 A JP9757888 A JP 9757888A JP 9757888 A JP9757888 A JP 9757888A JP H01268171 A JPH01268171 A JP H01268171A
Authority
JP
Japan
Prior art keywords
region
concentration impurity
conductivity type
type
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9757888A
Other languages
Japanese (ja)
Other versions
JPH0770717B2 (en
Inventor
Kayoko Omoto
かよ子 尾本
Kazuaki Miyata
和明 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9757888A priority Critical patent/JPH0770717B2/en
Publication of JPH01268171A publication Critical patent/JPH01268171A/en
Publication of JPH0770717B2 publication Critical patent/JPH0770717B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent irreversible breakdown in a high breakdown strength field effect transistor structure and to properly hold the value of a transistor conductance by providing a second conductivity type second low concentration impurity diffused region for forming a junction to a high concentration impurity region. CONSTITUTION:A second conductivity type first low concentration impurity diffused region 8 is formed between at least any one of high concentration source, drain regions 4, 7 and a gate region in a first conductivity type substrate 1 in a state that the gate region 7 and the regions 4, 7 at both sides of the gate region are provided, and a second conductivity type second low concentration impurity diffused region 9 for forming a junction to a first conductivity type high concentration impurity region 3 is provided adjacent to the source, drain regions provided with the region 8. The impurity concentrations of the regions for forming the junctions are optimized to move an electric field concentration generated when a bias voltage is applied to the drain region from the left or right end of the first low concentration impurity diffused region to the junction between the high concentration impurity region and the second low concentration impurity diffused region.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置に関し、さらに詳しくは、高耐
圧電界効果トランジスタ構造にあって、ドレインにバイ
アス電圧を印加させた場合での不可逆破壊を防止するた
めの改良構造に係るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor device, and more specifically, to a high voltage field effect transistor structure that prevents irreversible breakdown when a bias voltage is applied to the drain. This relates to an improved structure to prevent this.

〔従来の技術〕[Conventional technology]

従来例によるこの種の高耐圧電界効果トランジスタ構造
として、こSでは、例えば、特開昭60−83348号
(特願昭58−190777号)公報に開示された半導
体装置の概要構成を第3図に示す。
As a conventional high-voltage field effect transistor structure of this type, for example, FIG. Shown below.

すなわち、この第3図従来例による電界効果トランジス
タ構成において、符号1はP型シリコン基板(または、
 P型ウェル)であり、2,2aはこのP型シリコン基
板1の主面上に形成された素子間分離用の厚いフィール
ド酸化膜である。
That is, in the field effect transistor configuration according to the conventional example shown in FIG.
2 and 2a are thick field oxide films for isolation between elements formed on the main surface of this P-type silicon substrate 1.

また、3は前記フィールド酸化膜2の直下の一部に設け
られたチャネルストッパ用のP型アイソレーション領域
、4は前記P型シリコン基板1の主面に形成されたN+
型ソース領域であり、5は同主面上に形成された薄いゲ
ート酸化膜、6はその上に形成されて厚い酸化膜2a上
に延びるゲート電極であってゲート領域を形成し、7は
このゲート領域を挟み前記N++ソース領域4に対向し
て形成されたN十型ドレイン領域であり、さらに、8は
前記ゲート領域とN+型トドレイン領域7の間で、前記
厚い酸化膜2aに覆われて形成された第1のN−型不純
物拡散領域、9はこの第1のN−型不純物拡散領域8を
除く前記N+型トドレイン領域の部分を取り囲んで隣接
され、前記ビ型アイソレーション領域3との間に所定距
離を距で工形酸された第2のN−型不純物拡散領域であ
る。
Further, numeral 3 denotes a P-type isolation region for a channel stopper provided in a part directly under the field oxide film 2, and 4 an N+ type isolation region formed on the main surface of the P-type silicon substrate 1.
5 is a thin gate oxide film formed on the same main surface, 6 is a gate electrode formed thereon and extending on the thick oxide film 2a to form a gate region, and 7 is a gate electrode formed on the thick oxide film 2a. An N+ type drain region 8 is formed opposite to the N++ source region 4 with the gate region in between, and 8 is a region between the gate region and the N+ type drain region 7, which is covered with the thick oxide film 2a. The formed first N- type impurity diffusion region 9 surrounds and adjoins a portion of the N+ type drain region excluding the first N- type impurity diffusion region 8, and is connected to the vi type isolation region 3. A second N-type impurity diffusion region is formed with a predetermined distance therebetween.

しかして、この従来例構成の場合、トランジスタをオン
させるために、 P型シリコン基板IとN++ソース領
域4とをOvに保持した状態で、ゲート電極6に正の所
定バイアス電圧(通常、  5V程度)を印加させると
、エレクトロンは、このN+型ソース領域イから、ゲー
ト酸化膜5の直下に形成されるチャネル領域を通り、か
つ第1のN−型不純物拡散領域8を経た上でN+型トド
レイン領域7至り、このようにして電流が流れる。
In the case of this conventional configuration, in order to turn on the transistor, a predetermined positive bias voltage (usually about 5 V) is applied to the gate electrode 6 while the P-type silicon substrate I and the N++ source region 4 are held at Ov. ), electrons pass from this N+ type source region A, through the channel region formed directly under the gate oxide film 5, and through the first N- type impurity diffusion region 8, and then enter the N+ type drain region A. Region 7 is reached and current flows in this way.

また、一方、 P型シリコン基板1とN++ソース領域
4とゲート電極6とをOvに保持しておき、この状態て
、N+型トドレイン領域7正のバイアス電圧を印加させ
てゆくと、第1のN−型不純物拡散領域8の左端、また
は右端部分に電界集中がなされ、こ\では、いわゆる、
アバランシェ・ブレークダウンを生ずることになる。
On the other hand, if the P-type silicon substrate 1, the N++ source region 4, and the gate electrode 6 are held at Ov, and a positive bias voltage is applied to the N+-type drain region 7 in this state, the first An electric field is concentrated at the left end or right end of the N-type impurity diffusion region 8, and here, the so-called
This will result in avalanche breakdown.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記構成による従来例装置にあっては、前記したように
、N+型型トレイ領領域7正のバイアス電圧を印加させ
た場合に、第1のN−型不純物拡散領域8の左端、また
は右端部分に電界集中を生ずることになるが、この際、
一方で、第1のN−型不純物拡散領域8での電界集中を
避けるために、不純物濃度を高くすると、デバイス自体
が不可逆破壊される惧れがあり、また、他方、この第1
のN−型不純物拡散領域8の不純物濃度を低くすると、
これが高抵抗となって、デバイス自体のgm (hラン
スコンダクタンス)か悪くなると云う問題点かあつた。
In the conventional device having the above configuration, as described above, when a positive bias voltage is applied to the N+ type tray region 7, the left end or right end portion of the first N− type impurity diffusion region 8 This will cause electric field concentration to occur, but in this case,
On the other hand, if the impurity concentration is increased to avoid electric field concentration in the first N- type impurity diffusion region 8, there is a risk that the device itself will be irreversibly destroyed.
When the impurity concentration of the N- type impurity diffusion region 8 is lowered,
There was a problem in that this resulted in high resistance and the gm (h-lance conductance) of the device itself deteriorated.

この発明は、従来のこのような問題点を解消するために
なされたものであって、その目的とするところは、高耐
圧電界効果トランジスタ構造における不可逆破壊を防止
すると共に、併せてgmの値を適正に保持し得るように
した。この種の半導体装置を提供することである。
This invention was made to solve these conventional problems, and its purpose is to prevent irreversible breakdown in a high-voltage field effect transistor structure, and at the same time, to reduce the value of gm. I made it possible to maintain it properly. An object of the present invention is to provide a semiconductor device of this type.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、この発明に係る半導体装置
は、所定導電形の基板、またはウェル上に設けられると
ころの、逆導電形の高濃度ソース・ドレイン領域のうち
、少なくとも何れか一方に隣接させて、チャネルストッ
パとしての同一導電形の高濃度不純物領域との間に接合
部を形成する逆導電形の低濃度不純物拡散領域を設けた
ものである。
In order to achieve the above object, a semiconductor device according to the present invention provides a semiconductor device that is adjacent to at least one of a substrate of a predetermined conductivity type or a high concentration source/drain region of an opposite conductivity type provided on a well. A low concentration impurity diffusion region of an opposite conductivity type is provided to form a junction between the high concentration impurity region of the same conductivity type and serving as a channel stopper.

すなわち、この発明は、第1s電形の基板またはウェル
にあって、素子間分離酸化膜、その直下の第1導電形の
高濃度不純物領域で距てられた主面上に、薄いゲート酸
化膜、その上のゲート電極からなるゲート領域と、この
ゲート領域を挟んで第2導電形の高濃度ソース領域、お
よびドレイン領域とを設けた電界効果トランジスタ構造
において、前記ソース領域、トレイン領域のうちの少な
くとも何れか一方と、前記ゲート領域との間に厚い酸化
膜で覆われた第2導電形の第1の低濃度不純物拡散領域
を設けると共に、この第1の低濃度不純物拡散領域を設
けたソース領域、ドレイン領域に隣接させて、前記高濃
度不純物領域との間に接合部を形成する第2導電形の第
2の低濃度不純物拡散領域を設けたことを特徴とする半
導体装置である。
That is, the present invention provides a thin gate oxide film on a main surface of a substrate or well of the first S conductivity type separated by an element isolation oxide film and a high concentration impurity region of the first conductivity type immediately below the element isolation oxide film. , a gate region consisting of a gate electrode thereon, and a highly doped source region of a second conductivity type and a drain region sandwiching this gate region. A first low concentration impurity diffusion region of the second conductivity type covered with a thick oxide film is provided between at least one of the gate regions and the gate region, and a source provided with the first low concentration impurity diffusion region This semiconductor device is characterized in that a second low concentration impurity diffusion region of a second conductivity type is provided adjacent to the drain region and the drain region to form a junction with the high concentration impurity region.

〔作   用〕[For production]

従って、この発明装置においては、第1導電形の基板、
またはウェル上に、ゲート領域、およびこのゲート領域
を挟んで第2導電形の高濃度ソース・ドレイン各領域を
設けた状態で、これらの高濃度領域のうちの少なくとも
何れか一方と、ゲート領域との間に第2導電形の第1の
低濃度不純物拡散領域を設け、かつ同領域を設けたソー
ス・ドレイン各領域に隣接させて、第1導電形の高濃度
不純物領域との間に接合部を形成する第2導電形の第2
の低濃度不純物拡散領域を設けて構成したから、これら
の接合部を形成する各領域の不純物濃度を最適化設定さ
せることにより、ドレイン領域側にバイアス電圧を印加
させたときに生ずる電界集中を、第1の低濃度不純物拡
散領域の左端。
Therefore, in the device of the present invention, the substrate of the first conductivity type,
Alternatively, with a gate region and high concentration source/drain regions of the second conductivity type provided on both sides of the gate region, at least one of these high concentration regions and the gate region are provided. A first low-concentration impurity diffusion region of the second conductivity type is provided between the regions, and a junction is formed between the first low-concentration impurity region of the first conductivity type and adjacent to each source/drain region in which the same region is provided. a second conductivity type forming a second
By optimizing the impurity concentration of each region that forms these junctions, the electric field concentration that occurs when a bias voltage is applied to the drain region can be reduced. The left end of the first low concentration impurity diffusion region.

または右端部分から、高濃度不純物領域と第2の低濃度
不純物拡散領域との接合部に移し得るもので、この場合
、第1の低濃度不純物拡散領域での耐圧に対し、接合部
での耐圧を幾分低く設定させれば、デバイスでの耐圧、
ならびにgmの値を適正に保持して、その不可逆破壊を
防止できるのである。
Alternatively, it can be transferred from the right end portion to the junction between the high concentration impurity region and the second low concentration impurity diffusion region. By setting it somewhat lower, the withstand voltage of the device,
In addition, it is possible to maintain an appropriate gm value and prevent its irreversible destruction.

〔実 施 例〕〔Example〕

以下、この発明に係る半導体装置の各別の実施例につき
、第1図および第2図を参照して詳細に説明する。
Hereinafter, different embodiments of the semiconductor device according to the present invention will be described in detail with reference to FIGS. 1 and 2.

第1図はこの発明装置の一実施例を適用した電界効果ト
ランジスタの概要を模式的に示す断面構成図であり、こ
の第1図実施例構成において、前記第3図従来例構成と
同一符号は同一または相当部分を示している。
FIG. 1 is a cross-sectional configuration diagram schematically showing the outline of a field effect transistor to which an embodiment of the device of the present invention is applied. In the configuration of the embodiment shown in FIG. Indicates the same or equivalent parts.

すなわち、この第1図に示す実施例構成においても、符
号lはP型シリコン基板(または、ウェル)であり、2
,2aはこのP型シリコン基板1の主面上に形成された
素子間分離用の厚いフィールド酸化膜である。
That is, also in the embodiment shown in FIG. 1, the symbol l is a P-type silicon substrate (or well), and
, 2a are thick field oxide films formed on the main surface of the P-type silicon substrate 1 for isolation between elements.

また、3は前記フィールド酸化膜2の直下の一部に設け
られたチャネルストッパ用のピ型アイソレーション領域
(高濃度不純物拡散領域)、4は前記P型シリコン基板
lの主面に形成されたN1型ソース領域であり、5は同
主面上に形成された薄いゲート酸化膜、6はその上に形
成されて厚い酸化膜2a上に延びるゲート電極であって
ゲート領域を形成し、7はこのゲート領域を挟み前記N
+型リソース領域に対向して形成されたN9型ドレイン
領域である。
Further, reference numeral 3 indicates a p-type isolation region (high concentration impurity diffusion region) for a channel stopper provided in a portion directly under the field oxide film 2, and 4 a p-type isolation region (high concentration impurity diffusion region) formed on the main surface of the above-mentioned p-type silicon substrate l. 5 is a thin gate oxide film formed on the main surface, 6 is a gate electrode formed thereon and extends on the thick oxide film 2a to form a gate region, and 7 is an N1 type source region. The N
This is an N9 type drain region formed opposite to the + type resource region.

さらに、8は前記ゲート領域とN“型ドレイン領域7と
の間で、前記厚い酸化膜2aに覆われて形成された第1
のN−型不純物拡散領域、9はこの第1のN−型不純物
拡散領域8を除く前記N+型トドレイン領域の部分を取
り囲んで隣接され、前記P+型アイソレーション領域3
に接して形成された第2のN−型不純物拡散領域である
Furthermore, 8 is a first region formed between the gate region and the N" type drain region 7 and covered with the thick oxide film 2a.
The N- type impurity diffusion region 9 surrounds and adjoins a portion of the N+ type drain region excluding the first N- type impurity diffusion region 8, and is adjacent to the P+ type isolation region 3.
This is a second N- type impurity diffusion region formed in contact with.

しかして、この実施例構成においては、トランジスタを
オンさせるため、 P型シリコン基板1とN+型リソー
ス領域4をOvに保持した状態で、ゲート電極6に正の
所定バイアス電圧(通常、  5V程度)を印加させる
と、前記した従来例構成の場合と同様に、エレクトロン
は、このN+型リソース領域4ら、ゲート酸化膜5の直
下に形成されるチャネル領域を通って、第1のN−型不
純物拡散領域8を経た後、N+型トドレイン領域7至り
、このようにして電流が流れる。
Therefore, in this embodiment configuration, in order to turn on the transistor, a predetermined positive bias voltage (usually about 5 V) is applied to the gate electrode 6 while the P type silicon substrate 1 and the N+ type resource region 4 are held at Ov. When is applied, electrons pass from this N+ type resource region 4, through the channel region formed directly under the gate oxide film 5, to the first N- type impurity, as in the case of the conventional configuration described above. After passing through the diffusion region 8, it reaches the N+ type drain region 7, and thus current flows.

また、一方、 P型シリコン基板1とN+型リソース領
域4ゲート電極6とをOvに保持しておき、この状態で
、N+型トドレイン領域7正のバイアス電圧を印加させ
てゆくと、こSでは、P+型アイソレーション領域3と
第2のN−型不純物拡散領域9との不純物濃度を最適化
させておくことにより、前記した従来例構成の場合、第
1のN−型不純物拡散領域8の左端、または右端部分に
生じていた電界集中を、これらの第2のN−型不純物拡
散領域9とP+アイソレーション領域3との接合部に移
動させ得るもので、この場合、前者第1のN−型不純物
拡散領域8の左端、または右端部分での耐圧よりも、後
者第2のN−型不純物拡散領域9とP+アイソレーショ
ン領域3との接合部での耐圧が幾分か低目になるように
設定しておけば、デバイス自体の耐圧、ひいてはgmの
値をあまり低下させずに、その不可逆破壊を防止できる
のである。
On the other hand, if the P type silicon substrate 1 and the N+ type resource region 4 gate electrode 6 are held at Ov and a positive bias voltage is applied to the N+ type drain region 7 in this state, in this S. By optimizing the impurity concentrations of the P+ type isolation region 3 and the second N- type impurity diffusion region 9, in the case of the conventional configuration described above, the first N- type impurity diffusion region 8 can be The electric field concentration occurring at the left end or right end portion can be moved to the junction between the second N- type impurity diffusion region 9 and the P+ isolation region 3; The breakdown voltage at the junction between the second N- type impurity diffusion region 9 and the P+ isolation region 3 is somewhat lower than the breakdown voltage at the left end or right end of the - type impurity diffusion region 8. By setting in this way, irreversible destruction of the device can be prevented without significantly lowering the withstand voltage of the device itself, and even the value of gm.

また、前記第1図実施例構成においては、N+型トドレ
イン領域7側にのみ、厚い酸化膜2a、および第1.第
2のN−型不純物拡散領域8,9を形成させているが、
第2図実施例構成に示すように、N+型リソース領域4
側にあっても、これらを全く同様に形成させてもよく、
この場合には、内領域4゜7の何れをソース、もしくは
ドレインに利用しても差支えはない。
In the configuration of the embodiment shown in FIG. 1, the thick oxide film 2a and the first . Although the second N-type impurity diffusion regions 8 and 9 are formed,
As shown in the configuration of the embodiment in FIG.
They may be formed in exactly the same way, even if they are on the side.
In this case, there is no problem in using either of the inner regions 4.7 as the source or the drain.

なお、前記各実施例においては、 P型シリコン基板I
を用いているが、 N型シリコン基板上に形成されるP
型ウェルを用いてもよく、また、各実施例では、kチャ
ネル電界効果トランジスタに適用する場合について述べ
ているが、導電形式を逆に設定することにより、Pチャ
ネル電界効果トランジスタにも適用できて同様な作用、
効果を得られることは勿論である。
In addition, in each of the above embodiments, P-type silicon substrate I
However, P formed on an N-type silicon substrate
In addition, although each embodiment describes the case where it is applied to a k-channel field effect transistor, it can also be applied to a p-channel field effect transistor by setting the conduction type in the opposite way. similar effect,
Of course, it is effective.

(発明の効果) 以上詳述したように、この発明によれば、第1導電形の
基板、またはウェル上に、ゲート領域。
(Effects of the Invention) As detailed above, according to the present invention, a gate region is formed on a substrate or a well of the first conductivity type.

およびこのゲート領域を挟んで第2導電形の高濃度ソー
ス・ドレイン領域を設けた電界効果トランジスタにおい
て、これらのソース・トレイン領域のうちの少なくとも
何れか一方と、ゲート領域との間に第2導電形の第1の
低濃度不純物拡散領域を設け、かつ同領域を設けたソー
ス・ドレイン領域に隣接させて、チャネルストッパとし
ての第1導電形の高濃度不純物領域との間に接合部を形
成する第2導電形の第2の低濃度不純物拡散領域を設け
た構成、つまり、換言すると、第1導電形の高濃度不純
物領域と第2導電形の第2の低濃度不純物拡散領域とを
、接合部を形成して隣接構成させたから、これらの各領
域の不純物濃度を最適化させておくことにより、ドレイ
ン領域側にバイアス電圧を印加させたときに生ずる電界
集中を、第1の低濃度不純物拡散領域の左端、または右
端部分から、高濃度不純物領域と第2の低濃度不純物拡
散領域との接合部に容易に移し得るもので、こ工では、
第1の低濃度不純物拡散領域での耐圧に対し、接合部で
の耐圧を幾分低く設定させておけば、この種の電界効果
トランジスタの耐圧、およびそのgmの値を殆んど低下
させずに、デバイスの不可逆破壊を効果的に防止できて
、その信頼性向上に役立ち、しかも、従来例に比較する
とき、構造的にも簡単で容易に実施できるなどの優れた
特長を有するものである。
In a field effect transistor having a second conductivity type high concentration source/drain region sandwiching the gate region, a second conductivity type is provided between at least one of these source/train regions and the gate region. A first low-concentration impurity diffusion region of a shape is provided, and the same region is adjacent to the provided source/drain region to form a junction with a high-concentration impurity region of a first conductivity type serving as a channel stopper. A configuration in which a second low concentration impurity diffusion region of the second conductivity type is provided, in other words, a high concentration impurity region of the first conductivity type and a second low concentration impurity diffusion region of the second conductivity type are bonded. By optimizing the impurity concentration of each of these regions, the electric field concentration that occurs when a bias voltage is applied to the drain region can be reduced by the first low concentration impurity diffusion. It can be easily transferred from the left end or right end of the region to the junction between the high concentration impurity region and the second low concentration impurity diffusion region.
If the breakdown voltage at the junction is set somewhat lower than the breakdown voltage at the first low concentration impurity diffusion region, the breakdown voltage and gm value of this type of field effect transistor will hardly decrease. In addition, it can effectively prevent irreversible destruction of the device, helping to improve its reliability, and has superior features such as being structurally simple and easy to implement when compared to conventional examples. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、および第2図はこの発明装置の各別の実施例を
適用した電界効果トランジスタの概要をそわぞれ模式的
に示す断面構成図であり、また、第3図は従来例による
電界効果トランジスタの概要を模式的に示す断面構成図
である。 l・・・・P型シリコン基板(P型ウェル)、2.2a
・・・・厚いフィールド酸化膜、3・・・・P+型アイ
ソレーション領域(高濃度不純物拡散領域)、4・・・
・N+型リソース領域5および6・・・・薄いゲート酸
化膜、およびゲート電Fj(ゲート領域)、7・・・・
N++ドレイン領域、8・・・・第1のN−型不純物拡
散領域、9・・・・第2のN−型不純物拡散領域。 代理人  大  岩  増  雄 昭和  年  月   [1 1,事件の表示   特願昭63−97578号2、発
明の名称 半導体装置 3 補止をする借 民 補正の対象 明細簀の発明の詳細な説明の欄 6、補正の内容 (1)  F!A細書3頁15行の[に保持した状態で
、」の後に「N+ドレイン領域Iに正の所定バイアス電
圧(通常、5V程度)を印加し、」を加入する。 に2)同15頁5行のr gmの値」を「gm及び耐圧
の値」と補正する。 (3)同書9頁8行の「に保持した状態で、jの後に1
N+ドレイン領域1に正の所定バイアス電圧(通常、 
5V程度)全印加し、」を加入する。 以上
1 and 2 are cross-sectional configuration diagrams schematically showing the outline of field effect transistors to which different embodiments of the device of the present invention are applied, and FIG. 3 is a diagram showing a field effect transistor according to a conventional example. FIG. 2 is a cross-sectional configuration diagram schematically showing an outline of an effect transistor. l...P-type silicon substrate (P-type well), 2.2a
...Thick field oxide film, 3...P+ type isolation region (high concentration impurity diffusion region), 4...
- N+ type resource regions 5 and 6...thin gate oxide film and gate electric field Fj (gate region), 7...
N++ drain region, 8... first N- type impurity diffusion region, 9... second N- type impurity diffusion region. Agent Masu Oiwa Showa Year/Month [1 1. Indication of the case Japanese Patent Application No. 63-97578 2. Title of the invention Semiconductor device 3. Tenant making the amendment Detailed description of the invention in the specification list subject to amendment 6. Contents of correction (1) F! On page 3, line 15 of the A specification, add ``A predetermined positive bias voltage (usually about 5 V) is applied to the N+ drain region I'' after ``while holding the voltage at ''. 2) Correct "value of r gm" on page 15, line 5 to "value of gm and breakdown voltage." (3) In the same book, page 9, line 8, ``1 after j while holding it in
A predetermined positive bias voltage (usually
5V) and add ". that's all

Claims (1)

【特許請求の範囲】[Claims]  第1導電形の基板またはウェルにあつて、素子間分離
酸化膜、その直下の第1導電形の高濃度不純物領域で距
てられた主面上に、薄いゲート酸化膜、その上のゲート
電極からなるゲート領域と、このゲート領域を挟んで第
2導電形の高濃度ソース領域、およびドレイン領域とを
設けた電界効果トランジスタ構造において、前記ソース
領域、ドレイン領域のうちの少なくとも何れか一方と、
前記ゲート領域との間に厚い酸化膜で覆われた第2導電
形の第1の低濃度不純物拡散領域を設けると共に、この
第1の低濃度不純物拡散領域を設けたソース領域、ドレ
イン領域に隣接させて、前記高濃度不純物領域との間に
接合部を形成する第2導電形の第2の低濃度不純物拡散
領域を設けたことを特徴とする半導体装置。
In the substrate or well of the first conductivity type, on the principal surface separated by the element isolation oxide film and the high concentration impurity region of the first conductivity type immediately below the element isolation oxide film, a thin gate oxide film and a gate electrode on the main surface are separated. A field effect transistor structure including a gate region consisting of a gate region, a second conductivity type high concentration source region, and a drain region sandwiching the gate region, at least one of the source region and the drain region;
A first low concentration impurity diffusion region of a second conductivity type covered with a thick oxide film is provided between the gate region and the first low concentration impurity diffusion region is provided adjacent to the source region and the drain region. A semiconductor device further comprising: a second low concentration impurity diffusion region of a second conductivity type forming a junction with the high concentration impurity region.
JP9757888A 1988-04-20 1988-04-20 Semiconductor device Expired - Fee Related JPH0770717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9757888A JPH0770717B2 (en) 1988-04-20 1988-04-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9757888A JPH0770717B2 (en) 1988-04-20 1988-04-20 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH01268171A true JPH01268171A (en) 1989-10-25
JPH0770717B2 JPH0770717B2 (en) 1995-07-31

Family

ID=14196128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9757888A Expired - Fee Related JPH0770717B2 (en) 1988-04-20 1988-04-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0770717B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407844A (en) * 1990-11-23 1995-04-18 Texas Instruments Incorporated Process for simultaneously fabricating an insulated gate field-effect transistor and a bipolar transistor
US6531356B1 (en) 1999-01-27 2003-03-11 Seiko Epson Corporation Semiconductor devices and methods of manufacturing the same
US6768178B2 (en) * 2002-03-06 2004-07-27 Seiko Epson Corporation Semiconductor device
US6853038B2 (en) 2002-03-08 2005-02-08 Seiko Epson Corporation Semiconductor device and method for manufacturing the same
US6887750B2 (en) 2002-03-07 2005-05-03 Seiko Epson Corporation Method for manufacturing semiconductor device including implanting a first impurity through an anti-oxidation mask
US6905948B2 (en) 2002-03-26 2005-06-14 Seiko Epson Corporation Method for manufacturing semiconductor device
US6924535B2 (en) 2002-03-06 2005-08-02 Seiko Epson Corporation Semiconductor device with high and low breakdown voltage transistors
US6929994B2 (en) 2002-03-07 2005-08-16 Seiko Epson Corporation Method for manufacturing semiconductor device that includes well formation
US6933575B2 (en) 2002-03-18 2005-08-23 Seiko Epson Corporation Semiconductor device and its manufacturing method
US6953718B2 (en) 2002-03-22 2005-10-11 Seiko Epson Corporation Method for manufacturing semiconductor device
JP2006041533A (en) * 2004-07-27 2006-02-09 Robert Bosch Gmbh High voltage mos transistor and suitable manufacture
US7005340B2 (en) 2002-03-06 2006-02-28 Seiko Epson Corporation Method for manufacturing semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407844A (en) * 1990-11-23 1995-04-18 Texas Instruments Incorporated Process for simultaneously fabricating an insulated gate field-effect transistor and a bipolar transistor
US6531356B1 (en) 1999-01-27 2003-03-11 Seiko Epson Corporation Semiconductor devices and methods of manufacturing the same
US6768178B2 (en) * 2002-03-06 2004-07-27 Seiko Epson Corporation Semiconductor device
US6924535B2 (en) 2002-03-06 2005-08-02 Seiko Epson Corporation Semiconductor device with high and low breakdown voltage transistors
US7005340B2 (en) 2002-03-06 2006-02-28 Seiko Epson Corporation Method for manufacturing semiconductor device
US6887750B2 (en) 2002-03-07 2005-05-03 Seiko Epson Corporation Method for manufacturing semiconductor device including implanting a first impurity through an anti-oxidation mask
US6929994B2 (en) 2002-03-07 2005-08-16 Seiko Epson Corporation Method for manufacturing semiconductor device that includes well formation
US6853038B2 (en) 2002-03-08 2005-02-08 Seiko Epson Corporation Semiconductor device and method for manufacturing the same
US6933575B2 (en) 2002-03-18 2005-08-23 Seiko Epson Corporation Semiconductor device and its manufacturing method
US6953718B2 (en) 2002-03-22 2005-10-11 Seiko Epson Corporation Method for manufacturing semiconductor device
US6905948B2 (en) 2002-03-26 2005-06-14 Seiko Epson Corporation Method for manufacturing semiconductor device
JP2006041533A (en) * 2004-07-27 2006-02-09 Robert Bosch Gmbh High voltage mos transistor and suitable manufacture

Also Published As

Publication number Publication date
JPH0770717B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
JPH01268171A (en) Semiconductor device
JPH08130308A (en) Semiconductor device
JPS58175872A (en) Insulated gate field effect transistor
JP3198766B2 (en) Conductivity modulation type transistor
JPS6123669B2 (en)
JPS6164165A (en) Mos type field-effect transistor
JP2730088B2 (en) High voltage semiconductor device
JP2608976B2 (en) Semiconductor device
JPH0428149B2 (en)
JPH01276755A (en) Thin film transistor
JP2973450B2 (en) Semiconductor device
JPH0997844A (en) Semiconductor integrated circuit device
JPH0462875A (en) Semiconductor device
JPS62140464A (en) Mos type semiconductor device
JPH02137270A (en) Dual gate mos field effect transistor
JP2668713B2 (en) High voltage semiconductor device
JPS61113269A (en) Semiconductor device
JPS61222177A (en) Schottky gate field effect transistor and manufacture thereof
JPS5858747A (en) Metal oxide semiconductor type semiconductor integrated circuit
JPH01304785A (en) Semiconductor integrated circuit
JPH06132526A (en) Field effect transistor
JPS61222176A (en) Schottky gate field effect transistor and manufacture thereof
JPH0644575B2 (en) Field effect transistor
JPH0251278A (en) Manufacture of double diffusion type field effect semiconductor device
JPS6014512B2 (en) Insulated gate field effect transistor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees