JPS59228764A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59228764A
JPS59228764A JP58103800A JP10380083A JPS59228764A JP S59228764 A JPS59228764 A JP S59228764A JP 58103800 A JP58103800 A JP 58103800A JP 10380083 A JP10380083 A JP 10380083A JP S59228764 A JPS59228764 A JP S59228764A
Authority
JP
Japan
Prior art keywords
layer
transistor
region
diffusion layer
withstand voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58103800A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takenaka
竹中 計廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP58103800A priority Critical patent/JPS59228764A/en
Publication of JPS59228764A publication Critical patent/JPS59228764A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To enable to form a high withstand voltage MOS transistor by forming the shape of a low density diffused layer of an offset gate transistor in polygonal shape larger than pentagon. CONSTITUTION:A low density N-type diffused layer 17 of MOS transistor TR is formed in this example in octagon. Thus, an electric field is not concentrated at the corners 18 of the layer 17, and a high withstand voltage transistor as compared with the case that the layer 17 is square can be obtained. Since the channel width is partly wide, substantial channel width is formed by 20, and the channel length is determined by 19. Accordingly, it has such advantage that the properties of an MOSTR can be decided only by the size. Though the layer 17 is formed in the octagon, it may be in hexagon. In this manner, high withstand voltage MOS transistor can be formed by setting the angle of the corner of the layer 17 at 90 deg. or larger.

Description

【発明の詳細な説明】 (11発明の利用分野 本発明は高耐圧MO8)ヲンジスタに関するもので、特
にドレイン拡散層が高濃度拡散層と低濃度拡散層で形成
された高耐圧MO8O8型トランジスタするものである
DETAILED DESCRIPTION OF THE INVENTION (11) Field of Application of the Invention The present invention relates to a high voltage MO8O8 transistor, particularly a high voltage MO8O8 type transistor in which the drain diffusion layer is formed of a high concentration diffusion layer and a low concentration diffusion layer. It is.

(21従来技術 従来の高耐圧MO8O8型トランジスタ第1図のような
ものがC以下オフセットゲート型トヲンジスタとよぶ)
ある。第1−0図は平面図、第1−b図は断面図である
。以下の説明においては、説明の都合上、電子を担体と
したNチャンネルトランジスタにつ込て説明するが、正
孔を担体としたPチャンネルトランジスタについても同
様である。第1図におりてIllはP型基板、(2Iは
ソースとなるN型拡散層、ドレインは]31の高濃度N
型拡散層と〔4)の低濃度N型拡散層で形成されている
(21 Prior Art A conventional high-voltage MO8O8 type transistor as shown in Figure 1 is called a C or lower offset gate type transistor)
be. 1-0 is a plan view, and FIG. 1-b is a sectional view. In the following description, for convenience of explanation, an N-channel transistor using electrons as carriers will be explained, but the same applies to a P-channel transistor using holes as carriers. In Figure 1, Ill is a P-type substrate, (2I is an N-type diffusion layer that becomes a source, and the drain is] 31, a high concentration N
It is formed of a type diffusion layer and a low concentration N type diffusion layer [4].

5、lOは絶縁膜、6はゲート電極、7はソース電極、
8はドレイン電極である。
5, IO is an insulating film, 6 is a gate electrode, 7 is a source electrode,
8 is a drain electrode.

動作を簡単に説明すると、ドレイン電極8に電圧がかか
ると、4が低濃度であるため、空乏層が4の方に拡がる
ため高耐圧化が可能となるが、耐圧は9の低濃度拡散層
の角部で決まってしまb11の濃度で決まる平面接合の
耐圧よりも低い値となってしまう。このため、100v
程度までの耐圧は比較的容易に得ることができるが、さ
らに高耐圧の用途には用いられず、さらに高耐圧の場合
には第2図のようなリングゲート型のトランジスタが提
案されている。11はゲート電極であり11の内部にド
レインとして12の高濃度N型拡散層、13の低濃度N
型拡散層が形成され、11の外部にソースとして14の
高濃度N型拡散層が形成されている。
To briefly explain the operation, when a voltage is applied to the drain electrode 8, the depletion layer expands toward 4 because 4 has a low concentration, making it possible to achieve a high breakdown voltage. The breakdown voltage is determined by the corner of b11, which is lower than the breakdown voltage of a planar junction, which is determined by the concentration of b11. For this reason, 100v
Although it is relatively easy to obtain a breakdown voltage up to a certain level, it is not used for applications requiring even higher breakdown voltages.For even higher breakdown voltages, a ring gate type transistor as shown in FIG. 2 has been proposed. 11 is a gate electrode, and inside 11 there are 12 high-concentration N-type diffusion layers and 13 low-concentration N-type diffusion layers as a drain.
A type diffusion layer is formed, and 14 high-concentration N-type diffusion layers are formed outside of 11 as sources.

第2図のような八角形の場合には拡散層の角部15の角
度は135度となり第1図の90度に比較し大きくなる
ため拡散層の角部での電界集中がおさえられ第1図の場
合よフもさらに高耐圧化が可能となる。しかし、第2図
のようなリングゲート型の場合には、チャネルが放射状
となっているためにチャネル長、チャネル幅が一義に決
まらな因という本質的な欠点をもっている。さらに12
の大きさは16のドレイン電極をとる関係からあまシ小
さくできず、チャネル幅の小さいトランジスタが作れな
いという欠点もある。
In the case of an octagon as shown in Figure 2, the angle of the corner 15 of the diffusion layer is 135 degrees, which is larger than the 90 degree angle in Figure 1, so that electric field concentration at the corner of the diffusion layer is suppressed and In the case shown in the figure, even higher voltage resistance is possible. However, the ring gate type shown in FIG. 2 has an essential drawback in that the channel length and channel width cannot be determined uniquely because the channel is radial. 12 more
The size of the transistor cannot be made much smaller because it requires 16 drain electrodes, and there is also the drawback that a transistor with a small channel width cannot be manufactured.

以上説明してきたように、第1図のような構造のトラン
ジスタは100V程度の耐圧は簡単に得られるが、それ
以上の耐圧を得るのは難しいという問題点、第2図のよ
うな構造のトランジスタは高耐圧は比較的容易に得られ
るが、トランジスタの基本パラメータであるチャネル長
、チャネル幅が単純に寸法からは決まらないという問題
点があった。
As explained above, the transistor with the structure shown in Figure 1 can easily obtain a breakdown voltage of about 100V, but the problem is that it is difficult to obtain a breakdown voltage higher than that. Although a high breakdown voltage can be obtained relatively easily, there is a problem in that the channel length and channel width, which are the basic parameters of a transistor, cannot be determined simply from the dimensions.

(31本発明の目的 本発明はこのような問題点を解決するために、ドレイン
の低濃度拡散層の形状を五角形以上の多角形とすること
で、オフセットゲート形トヲンジスタとリングゲート形
トヲンジスタの利点であわせもつトランジスタを提供す
るものである。
(31 Purpose of the Present Invention) In order to solve these problems, the present invention provides advantages of offset gate type transistors and ring gate type transistors by making the shape of the low concentration diffusion layer of the drain into a polygon of pentagon or more. The present invention provides a transistor that has the following characteristics.

以下、図面に基づいて詳細に説明する。Hereinafter, a detailed description will be given based on the drawings.

(41本発明の実施例 第3図は本発明実施例である。17は低濃度N膨拡散層
であ〕、第3−0図のように八角形をしている。このた
め従来例の第1図に比較し拡散層の角部18で電界が集
中することなく、従来例よpも高耐圧のトランジスタが
得られる。またチャネル幅は一部分が広いだけであるた
め実効的なチャネル幅は20できマ少、チャネル長も通
常のトランジスタの様に19できまる。このため寸法だ
けでMOSトヲンジスタの特性が決まるという利点もあ
る。
(41 Embodiment of the Present Invention FIG. 3 shows an embodiment of the present invention. 17 is a low concentration N expansion diffusion layer) and has an octagonal shape as shown in FIG. 3-0. Compared to FIG. 1, the electric field does not concentrate at the corner 18 of the diffusion layer, and a transistor with a high breakdown voltage can be obtained compared to the conventional example.Also, since the channel width is only partially wide, the effective channel width is 20, and the channel length can be reduced to 19, just like a normal transistor.Therefore, there is also the advantage that the characteristics of the MOS transistor are determined by the dimensions alone.

製造方法としても、17の低沿度N型拡散層は、通常6
のゲート電極の端と5の絶縁膜の段差をマスクとして、
例えばイオン注入法によ多形成するため本発明の実施例
を得るためには5の絶縁膜の段差を21のような形状と
することにより従来の製造方法と同様の製造方法でよい
As for the manufacturing method, the 17 low creepage N-type diffusion layers are usually 6
Using the step between the edge of the gate electrode and the insulating film 5 as a mask,
For example, in order to obtain the embodiment of the present invention, since the multilayer structure is formed by ion implantation, a manufacturing method similar to the conventional manufacturing method may be used by making the step of the insulating film 5 into a shape like 21.

第3図においては、17は八角形となっているが、六角
形等でもよい。
In FIG. 3, 17 is an octagon, but it may be a hexagon or the like.

以上説明してきたようにオフセットゲート型トヲンジス
タの低濃度拡散層の形状を五角形以上の多角形とし、角
部の角度と90度以上とすることにより高耐圧MO8)
ヲンジスタを形成することができる。
As explained above, by making the shape of the low concentration diffusion layer of the offset gate type transistor into a polygon of pentagon or more, and making the angle of the corner part more than 90 degrees, high breakdown voltage MO8) can be achieved.
A single register can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(α1は従来の高耐圧オフセットゲート型トヲン
ジスタの平面図。第1図1b+はその断面図、第2図(
alは従来の高耐圧リングゲート型トヲンジスタの平面
図。第2図1b+はその断面図。第3図1cLlは本発
明の実施例の平面図。第3図(blはその断面図である
。 1・・P型s7基板 2 、3 、12 、14・・高
洩度N型拡散層 4 、13 、17・・低濃度N型拡
散層5、lO・・絶縁膜 6,11・・ゲート電極 7
・・ソース電極 8,16・・ドレイン電極 9,15
.18・・低濃度N型拡散層の角部 19@・チャネル
長 加・・チャネル幅 21・・絶縁膜の段差。 以   上 出願人 株式会社諏訪精工舎 代理人 弁理士最 上  務 第1図(り 第1図(り 第2図(α) 第2図(し)
Figure 1 (α1 is a plan view of a conventional high voltage offset gate type transistor. Figure 1 1b+ is its cross-sectional view, Figure 2 (
al is a plan view of a conventional high voltage ring gate type transistor. FIG. 2b+ is a sectional view thereof. FIG. 3 1cLl is a plan view of an embodiment of the present invention. FIG. 3 (bl is its cross-sectional view. 1. P-type S7 substrate 2 , 3 , 12 , 14 . . . High leakage N-type diffusion layer 4 , 13 , 17 . . . Low concentration N-type diffusion layer 5, lO... Insulating film 6, 11... Gate electrode 7
・・Source electrode 8, 16 ・・Drain electrode 9, 15
.. 18... Corner of low concentration N-type diffusion layer 19 @ Channel length addition... Channel width 21... Step in insulating film. Applicant Suwa Seikosha Co., Ltd. Agent Patent Attorney Mogami

Claims (1)

【特許請求の範囲】[Claims] 1導電型の半導体基板と、該半導体基板の主表面領域に
設けた第2導電形の低濃度不純物領域と、該低濃度不純
物領域内に設けた第2導電形の高濃度不純物領域からな
る、ドレイン領域と、該半導体基板の主表面領域に設け
られた第2導電型のソース領域と、該ドレイン領域と該
ソース領域の一部をおおうように絶縁膜を介して設けら
れたゲート電極からなるMIS型トヲンジスタにおいて
、該低濃度不純物領域の平面的形状が五角形以上の多角
形であることを特徴とする半導体装置。
consisting of a semiconductor substrate of one conductivity type, a low concentration impurity region of a second conductivity type provided in the main surface region of the semiconductor substrate, and a high concentration impurity region of a second conductivity type provided within the low concentration impurity region, Consisting of a drain region, a second conductivity type source region provided in the main surface region of the semiconductor substrate, and a gate electrode provided with an insulating film interposed so as to cover a portion of the drain region and the source region. 1. A semiconductor device in an MIS type transistor, wherein the planar shape of the low concentration impurity region is a polygon of pentagon or more.
JP58103800A 1983-06-10 1983-06-10 Semiconductor device Pending JPS59228764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58103800A JPS59228764A (en) 1983-06-10 1983-06-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58103800A JPS59228764A (en) 1983-06-10 1983-06-10 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59228764A true JPS59228764A (en) 1984-12-22

Family

ID=14363468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58103800A Pending JPS59228764A (en) 1983-06-10 1983-06-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59228764A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2617642A1 (en) * 1987-06-30 1989-01-06 Thomson Semiconducteurs Field-effect transistor
US6104064A (en) * 1996-10-01 2000-08-15 Advanced Micro Devices, Inc. Asymmetrical transistor structure
US6274442B1 (en) 1998-07-15 2001-08-14 Advanced Micro Devices, Inc. Transistor having a nitrogen incorporated epitaxially grown gate dielectric and method of making same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147787A (en) * 1978-05-09 1979-11-19 Rca Corp Insulated gate field effect transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54147787A (en) * 1978-05-09 1979-11-19 Rca Corp Insulated gate field effect transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2617642A1 (en) * 1987-06-30 1989-01-06 Thomson Semiconducteurs Field-effect transistor
US6104064A (en) * 1996-10-01 2000-08-15 Advanced Micro Devices, Inc. Asymmetrical transistor structure
US6274442B1 (en) 1998-07-15 2001-08-14 Advanced Micro Devices, Inc. Transistor having a nitrogen incorporated epitaxially grown gate dielectric and method of making same

Similar Documents

Publication Publication Date Title
JP2800702B2 (en) Semiconductor device
JPH0730107A (en) High voltage withstand transistor and its manufacture
KR100485290B1 (en) Semiconductor device provided with a plurality of semiconductor elements
JPS59228764A (en) Semiconductor device
US4951101A (en) Diamond shorting contact for semiconductors
JPH0220060A (en) Complementary type thin film field effect transistor
JP2605757B2 (en) Method for manufacturing semiconductor device
JPH01286367A (en) Vertical field effect transistor
JP2003060197A (en) Semiconductor device
JP4577948B2 (en) Offset gate field effect transistor
JPH02304949A (en) Semiconductor device
JPS6358973A (en) Semiconductor device
KR950003238B1 (en) Logic element structure using multi-electrode
JP2676769B2 (en) Semiconductor device
JPH02102578A (en) Insulated-gate field-effect transistor
JP2003224267A (en) Semiconductor device
JPS5858747A (en) Metal oxide semiconductor type semiconductor integrated circuit
JP2003258249A (en) Semiconductor integrated circuit
JPS62136068A (en) Semiconductor integrated circuit
JPS6254959A (en) Manufacture of mis semiconductor device
JPH0251278A (en) Manufacture of double diffusion type field effect semiconductor device
JPH0654799B2 (en) High breakdown voltage complementary insulation gate field effect semiconductor device
JPS61290752A (en) Semiconductor integrated circuit device
JPS62126676A (en) Semiconductor device
JPH06132526A (en) Field effect transistor