JPH0521294A - Manufacture of capacitor - Google Patents

Manufacture of capacitor

Info

Publication number
JPH0521294A
JPH0521294A JP16985991A JP16985991A JPH0521294A JP H0521294 A JPH0521294 A JP H0521294A JP 16985991 A JP16985991 A JP 16985991A JP 16985991 A JP16985991 A JP 16985991A JP H0521294 A JPH0521294 A JP H0521294A
Authority
JP
Japan
Prior art keywords
electrode
capacitor
protrusion
polymerization
manganese oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16985991A
Other languages
Japanese (ja)
Other versions
JP2924310B2 (en
Inventor
Toshikuni Kojima
利邦 小島
Yasuo Kudo
康夫 工藤
Masao Fukuyama
正雄 福山
Satonari Nanai
識成 七井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16985991A priority Critical patent/JP2924310B2/en
Publication of JPH0521294A publication Critical patent/JPH0521294A/en
Application granted granted Critical
Publication of JP2924310B2 publication Critical patent/JP2924310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To reduce a short-circuit failure rate and improve the mass-productivity by a method wherein the part of a conducting part which is so provided as to by brought into contact with the protrusion of an electrode is used as a polymerization starting part to perform electrolytic polymerization and an electrolytically polymerized polymer film is built up on a manganese oxide layer to form a facing electrode and then, the protrusion including the polymerization starting part is removed. CONSTITUTION:A dielectric film 3 and a manganese oxide layer 4 are successively formed on an electrode which has at least one protrusion along its surface direction. Then the part of the dielectric film 3 on the protrusion of the electrode is removed and a conductive part which is so provided as to be brought into contact with the exposed electrode part is used as a polymerization starting part 7 to perform electrolytic polymerization and an electrolytically polymerized conductive polymer film 5 is built up on the manganese oxide layer 4. After that, the protrusion including the conductive part used as the polymerization starting part 7 is removed. With this constitution, the polymerization starting part can be located easily and removed easily. As the capacity of the protrusion of the electrode is not included in a rated capacity, the rated capacity of the capacitor is not affected by the removal of the protrusion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘電体皮膜を介して対
向している電極の少なくとも一方の電極に導電性高分子
膜を用い、高信頼特性を有し生産性に優れたコンデンサ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a conductive polymer film for at least one of electrodes facing each other with a dielectric film interposed therebetween, and produces a capacitor having high reliability and excellent productivity. It is about the method.

【0002】[0002]

【従来の技術】最近、電気機器のディジタル化にともな
って、そこに使用されるコンデンサも高周波領域におい
てインピーダンスが低く、小型大容量化への要求が高ま
っている。従来、高周波用のコンデンサとしてはプラス
チックフィルムコンデンサ、マイカコンデンサ、積層セ
ラミックコンデンサなどが用いられている。またその他
にアルミニウム乾式電解コンデンサやアルミニウム、ま
たはタンタル固体電解コンデンサなどがある。
2. Description of the Related Art Recently, with the digitalization of electric equipment, the capacitors used therein have low impedance in the high frequency region, and there is an increasing demand for miniaturization and large capacity. Conventionally, plastic film capacitors, mica capacitors, laminated ceramic capacitors, etc. have been used as high frequency capacitors. Other examples include aluminum dry electrolytic capacitors, aluminum or tantalum solid electrolytic capacitors.

【0003】アルミニウム乾式電解コンデンサでは、エ
ッチングを施した陽極及び陰極のアルミニウム箔を紙の
セパレータを介して巻取り、液状の電解質を用いてい
る。又、アルミニウムやタンタル固体電解コンデンサで
は、前記アルミニウム電解コンデンサの特性改良のため
電解質の固体化がなされている。このような固体電解質
形成には、硝酸マンガン液に陽極箔を浸漬した後、35
0℃前後の高温炉中にて熱分解し、二酸化マンガン層を
作る。このコンデンサの場合、電解質が固体のために高
温における電解液の揮散、低温域での凝固から生ずる機
能低下などの欠点がなく、液状電解質と比べて良好な周
波数特性、温度特性を示す。又、アルミニウム電解コン
デンサは、タンタル電解コンデンサと同様に誘電体とな
る酸化皮膜を非常に薄くできるために大容量を実現でき
る。
In an aluminum dry electrolytic capacitor, a liquid electrolyte is used by winding an etched aluminum foil for an anode and a cathode through a paper separator. In the case of aluminum or tantalum solid electrolytic capacitors, the electrolyte is solidified in order to improve the characteristics of the aluminum electrolytic capacitors. To form such a solid electrolyte, after immersing the anode foil in a manganese nitrate solution,
A manganese dioxide layer is formed by thermal decomposition in a high temperature furnace at around 0 ° C. In the case of this capacitor, since the electrolyte is a solid, there are no drawbacks such as volatilization of the electrolytic solution at high temperature and deterioration of the function caused by solidification at low temperature, and the frequency characteristics and temperature characteristics are better than those of the liquid electrolyte. In addition, the aluminum electrolytic capacitor can realize a large capacity because the oxide film serving as a dielectric can be made very thin like the tantalum electrolytic capacitor.

【0004】又、近年では7,7,8,8−テトラシア
ノキノジメタン(TCNQ)塩等の有機半導体を固体電
解質として用いた固体電解コンデンサ(特開昭58−1
7609号公報)が提案されている。さらに、ピロー
ル、チオフェン、フランなどの重合性モノマーを電解重
合させて導電性高分子とし、これをコンデンサの電極の
少なくとも一方に用いる方法もあり、また、電極表面に
誘電体となるポリイミド薄膜を電着法によって形成し、
化学重合導電性高分子膜を積層し、さらに電解重合導電
性高分子膜を積層してなるコンデンサが1991年春の
電気化学協会第58回大会で開示されている(講演要旨
集P251及びP252)。
In recent years, a solid electrolytic capacitor using an organic semiconductor such as 7,7,8,8-tetracyanoquinodimethane (TCNQ) salt as a solid electrolyte (Japanese Patent Laid-Open No. 58-1).
7609). Furthermore, there is a method in which a polymerizable monomer such as pyrrole, thiophene, or furan is electrolytically polymerized to form a conductive polymer, which is used for at least one of the electrodes of a capacitor, and a polyimide thin film serving as a dielectric is electrically charged on the electrode surface. Formed by the dressing method,
A capacitor formed by stacking a chemically polymerized conductive polymer film and further an electrolytically polymerized conductive polymer film is disclosed at the 58th Congress of the Electrochemical Society in the spring of 1991 (Abstracts P251 and P252).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うに種々のコンデンサが使用されているが、フィルムコ
ンデンサおよびマイカコンデンサでは形状が大きくなっ
てしまうため、大容量化が難しく、また積層セラミック
コンデンサは小型大容量の要望から生まれたものである
が、価格が非常に高くなるということや、温度特性が悪
いことなどの欠点を有している。また、アルミニウム電
解コンデンサは、酸化皮膜の損傷が起き易いために、酸
化皮膜と陰極の間に電解質を施し随時損傷を修復する必
要がある。このため電解質に液状のものを使用している
コンデンサは、電解質の液漏れやイオン伝導性などの理
由から経時的に静電容量の減少や損失の増大をもたらす
ことや、高周波特性、低温領域での損失が大きいなどの
欠点を有している。
However, although various capacitors are used in this way, it is difficult to increase the capacity because the shape of the film capacitor and the mica capacitor becomes large, and the monolithic ceramic capacitor is small. Although it was born from the demand for large capacity, it has drawbacks such as extremely high price and poor temperature characteristics. Further, in the aluminum electrolytic capacitor, since the oxide film is easily damaged, it is necessary to apply an electrolyte between the oxide film and the cathode to repair the damage at any time. For this reason, a capacitor that uses a liquid electrolyte may cause a decrease in capacitance and an increase in loss over time due to electrolyte leakage and ionic conductivity. It has the disadvantage of large loss.

【0006】次に、固体電解質そのものについて述べる
と、高温で数回熱分解することによる酸化皮膜の損傷及
び二酸化マンガンの比抵抗が高いことなどの理由から、
高周波域での損失は十分に小さいとは言えない。又、T
CNQ塩などの有機半導体を用いた固体電解コンデンサ
は、二酸化マンガンを用いたものに比して優れた高周波
特性を示すが、有機半導体を塗布する際に比抵抗の上昇
があることや、陽極箔への接着性に劣ることなどが原因
で理想的な特性を示すとは言えない。
[0006] Next, the solid electrolyte itself will be described. For reasons such as damage to the oxide film due to thermal decomposition at high temperature several times and high specific resistance of manganese dioxide,
It cannot be said that the loss in the high frequency range is sufficiently small. Also, T
Solid electrolytic capacitors using organic semiconductors such as CNQ salts show superior high frequency characteristics compared to those using manganese dioxide, but there is an increase in specific resistance when applying organic semiconductors, and anode foils. It cannot be said that it exhibits ideal characteristics due to poor adhesion to the like.

【0007】さらに、導電性高分子薄膜をコンデンサの
電極として用いると、周波数特性、温度特性、寿命特性
などは優れているが、誘電体皮膜を形成した電極の対極
としてこの導電性高分子薄膜を形成させるために、重合
開始導電部を誘電体皮膜を有する電極上に設け、この重
合開始導電部を陽極として電解重合を行い導電性高分子
膜を積層し、その後重合開始部となった導電部を少なく
とも含む部分を除去するため、4辺で囲まれた電極平面
内に重合開始部を設けた場合には、重合開始部を少なく
とも含む部分の除去が困難である。また、重合開始部を
電極の角に設けると除去は容易ではあるが、角を除去し
た面積分の容量が低下して定格容量を充たさないという
欠点を有している。
Further, when a conductive polymer thin film is used as an electrode of a capacitor, the conductive polymer thin film is excellent as a counter electrode of an electrode having a dielectric film formed thereon, although it has excellent frequency characteristics, temperature characteristics, and life characteristics. In order to form it, a polymerization initiation conductive part is provided on the electrode having a dielectric film, and the conductive polymer film is laminated by performing electrolytic polymerization using this polymerization initiation conductive part as an anode, and then the conductive part which became the polymerization initiation part. When a polymerization initiation portion is provided in the electrode plane surrounded by the four sides in order to remove the portion including at least, it is difficult to remove the portion including at least the polymerization initiation portion. Further, if the polymerization initiation portion is provided at the corner of the electrode, the removal is easy, but there is a drawback that the capacity corresponding to the area where the corner is removed decreases and the rated capacity is not satisfied.

【0008】本発明は上記課題に鑑み、周波数特性に優
れた小型、大容量のコンデンサで、重合開始部の形成と
除去が容易で、ショート不良、容量低下がなく、漏れ電
流の小さなコンデンサを効率よく提供することを目的と
する。
In view of the above-mentioned problems, the present invention is a small-sized, large-capacity capacitor having excellent frequency characteristics, in which it is easy to form and remove the polymerization initiation portion, there is no short-circuit failure and capacity reduction, and a capacitor with a small leakage current is used efficiently. The purpose is to provide well.

【0009】[0009]

【課題を解決するための手段】この目的を達成するた
め、本発明によるコンデンサの製造方法は、平面方向に
突出部を少なくとも1カ所以上設けた電極表面に、誘電
体皮膜、マンガン酸化物層を順次形成させた後、誘電体
皮膜、マンガン酸化物層を除去し電極部とした電極の突
出部分と、これに接触させて設けた導電部とを重合開始
部として電解重合を行い、マンガン酸化物層上に電解重
合導電性高分子膜を積層させて対極とし、後に重合開始
部を少なくとも含む突出部分を除去するように構成され
ている。
To achieve this object, a method of manufacturing a capacitor according to the present invention comprises a dielectric film and a manganese oxide layer on the surface of an electrode having at least one projecting portion in the plane direction. After sequentially forming, the dielectric film and the manganese oxide layer are removed, and the electrode protrusion is used as the electrode portion, and the conductive portion provided in contact therewith is used as a polymerization initiation portion for electrolytic polymerization to perform manganese oxide. An electrolytic polymerization conductive polymer film is laminated on the layer to form a counter electrode, and the protruding portion including at least the polymerization initiation portion is removed later.

【0010】[0010]

【作用】本発明は上記構成により、重合開始部の位置取
りと除去が容易であり、しかも電極の突出部分の容量は
定格容量には含まれないので、除去しても定格容量を充
たすコンデンサができる。
According to the present invention, the above structure makes it easy to position and remove the polymerization initiation portion, and since the capacity of the protruding portion of the electrode is not included in the rated capacity, a capacitor that satisfies the rated capacity even if removed is provided. it can.

【0011】[0011]

【実施例】以下、本発明の実施例について詳細に説明す
る。
EXAMPLES Examples of the present invention will be described in detail below.

【0012】(実施例1)以下第1の実施例として、本
発明によるコンデンサの製造方法をアルミ電解コンデン
サへ適用した場合を例として、図面を参照しながら説明
する。
(First Embodiment) A first embodiment will be described below with reference to the drawings, taking as an example the case where the method for manufacturing a capacitor according to the present invention is applied to an aluminum electrolytic capacitor.

【0013】図1、図2、図3、図4、図5は、本実施
例における製造工程図であり、図1乃至図4において
(a)は側面図(b)は正面図を示す。まず、弁作用金
属2の表面に耐熱絶縁テープ8を貼り、面積の小さい方
を陽極リード取り付け面とし、面積の大きい方(4mm×
5mm)を誘電体皮膜形成面とした。
1, FIG. 2, FIG. 3, FIG. 4, and FIG. 5 are manufacturing process diagrams in this embodiment. In FIGS. 1 to 4, (a) is a side view and (b) is a front view. First, a heat-resistant insulating tape 8 was attached to the surface of the valve metal 2, and the smaller area was used as the anode lead mounting surface, and the larger area (4 mm x
5 mm) was used as the dielectric film formation surface.

【0014】図1に示すごとく、平面方向に幅1mm長さ
3mmの突出部を設けた弁作用金属箔2(アルミニウムエ
ッチド箔)を、7%アジピン酸アンモニウム水溶液を用
い、約70℃、40分間、印加電圧42Vの条件で陽極
酸化し、誘電体皮膜3を形成した。つぎに、硝酸マンガ
ン水溶液をこれに塗布し、300℃、20分の条件で熱
分解し、マンガン酸化物膜4からなる導電層を形成し
た。ついで、直径1mm、厚さ50μmのニッケル箔片を
溶接によってマンガン酸化物膜4の上に設け、重合開始
導電部7を形成した。
As shown in FIG. 1, a valve action metal foil 2 (aluminum etched foil) provided with a protrusion having a width of 1 mm and a length of 3 mm in a plane direction was prepared at 70 ° C. and 40 ° C. using a 7% ammonium adipate aqueous solution. Anodizing was performed under a condition of an applied voltage of 42 V for a minute to form the dielectric film 3. Next, a manganese nitrate aqueous solution was applied to this, and thermally decomposed at 300 ° C. for 20 minutes to form a conductive layer made of the manganese oxide film 4. Then, a nickel foil piece having a diameter of 1 mm and a thickness of 50 μm was provided on the manganese oxide film 4 by welding to form a polymerization initiation conductive portion 7.

【0015】つぎに、ピロール(0.25M)、トリイ
ソプロピルナフタレンスルフォネート(0.1M)及び
水とからなる電解重合溶液に弁金属箔を浸し、上記のニ
ッケル箔片を重合開始部導電部7として、2.5Vの定
電圧を30分印加し、図3に示すように、マンガン酸化
物4上に対極用の導電性高分子膜5(ポリピロール膜)
を形成した。
Next, the valve metal foil was dipped in an electrolytic polymerization solution consisting of pyrrole (0.25M), triisopropylnaphthalene sulfonate (0.1M) and water, and the nickel foil piece was placed in the polymerization initiation portion conductive portion. 7, a constant voltage of 2.5 V was applied for 30 minutes, and as shown in FIG. 3, a conductive polymer film 5 (polypyrrole film) for counter electrode was formed on the manganese oxide 4.
Was formed.

【0016】続いて図4に示すように、重合開始導電部
7を少なくとも含む突出部分を、その上下の弁作用金属
箔2、誘電体皮膜3、マンガン酸化物膜4、導電性高分
子膜5と共に折り曲げて除去した。ついで図5に示すよ
うに陽極リード1と陰極リード6を設けてコンデンサを
得た。このようにして作製したコンデンサの特性を(表
1)に示した。
Subsequently, as shown in FIG. 4, the valve metal foil 2, the dielectric film 3, the manganese oxide film 4, and the conductive polymer film 5 above and below the protruding portion including at least the polymerization initiation conductive portion 7 are formed. It was bent and removed together. Then, as shown in FIG. 5, an anode lead 1 and a cathode lead 6 were provided to obtain a capacitor. The characteristics of the capacitor thus manufactured are shown in (Table 1).

【0017】[0017]

【表1】 [Table 1]

【0018】(比較例)実施例1における電極に設けた
幅1mm、長さ3mmの突出部に代えて、突出部の幅を4mm
にし長さを3mmとする以外は実施例1と同様にして、比
較用のコンデンサを作製し、作製したコンデンサの特性
を(表1)に示した。
(Comparative Example) Instead of the protrusion of 1 mm in width and 3 mm in length provided on the electrode in Example 1, the width of the protrusion is 4 mm.
Comparative capacitors were produced in the same manner as in Example 1 except that the length was set to 3 mm, and the characteristics of the produced capacitors are shown in (Table 1).

【0019】(表1)から明らかなように、本実施例に
よるコンデンサは、比較例1によるコンデンサに比しシ
ョート不良率が著しく低く、損失も小さく優れた効果が
得られる。
As is clear from (Table 1), the capacitor according to the present embodiment has a remarkably low short circuit defect rate, a small loss, and an excellent effect as compared with the capacitor according to Comparative Example 1.

【0020】以上のように本実施例によれば、重合開始
導電部7を電極に設けた幅1mm、長さ3mmの突出部に設
けて、導電性高分子膜を誘電体皮膜上に形成させた後、
前記重合開始導電部を少なくとも含む突出部を除去する
ので、ショート不良、損失不良がなく、低漏れ電流を実
現させることができる。
As described above, according to the present embodiment, the polymerization initiation conductive portion 7 is provided on the protruding portion of the electrode having a width of 1 mm and a length of 3 mm to form the conductive polymer film on the dielectric film. After
Since the protruding portion including at least the polymerization initiating conductive portion is removed, there is no short circuit defect and loss defect, and low leakage current can be realized.

【0021】なお、本実施例では弁金属を電極としその
陽極酸化皮膜を誘電体とする電解コンデンサについて述
べたが、他の形態のコンデンサでも、電解重合導電性高
分子が電極として使用されるものであれば含まれること
は言うまでもない。
In this embodiment, an electrolytic capacitor having a valve metal as an electrode and an anodic oxide film as a dielectric has been described, but other types of capacitors also use an electrolytically polymerized conductive polymer as an electrode. Needless to say, it is included.

【0022】また、実施例では硝酸マンガンを用いてマ
ンガン酸化物を形成した場合についてのみ述べたが、硝
酸マンガンに限らず、マンガン酸化物を形成できるもの
であれば他の物でも使用可能である。また実施例ではニ
ッケル箔を陽極に溶接して接触させ重合開始部に使用し
たと述べたが、ニッケルに限らず陽極酸化されない導電
物であれば他のものを用いることも可能である。さら
に、接触方法としては溶接に限らず、かしめ等他の方法
を用いることも可能である。また本実施例では、突出部
の形状が長方形のもののみを示したが、三角形、半円等
他の形でも差し支えない。また突出部を除去し易くする
ための切り込みを設けることも好ましい態様である。
Further, in the examples, only the case where manganese oxide is formed by using manganese nitrate is described, but not limited to manganese nitrate, other materials can be used as long as they can form manganese oxide. . Further, in the examples, it was described that the nickel foil was welded to the anode and brought into contact with it to be used for the polymerization initiation portion, but not limited to nickel, any other conductive material which is not anodized may be used. Further, the contacting method is not limited to welding, but other methods such as caulking can be used. Further, in the present embodiment, only the shape of the protruding portion is rectangular, but other shapes such as a triangle and a semicircle may be used. It is also a preferable aspect to provide a notch for facilitating removal of the protruding portion.

【0023】(実施例2)突出部の幅を3mmにしたこと
以外は実施例1と同様にして、コンデンサを作製し、実
施例によるコンデンサの特性を(表1)に示した。
Example 2 A capacitor was manufactured in the same manner as in Example 1 except that the width of the protruding portion was 3 mm, and the characteristics of the capacitor according to the example are shown in (Table 1).

【0024】(表1)から明らかなように、本実施例に
よる重合開始部を設ける突出部の幅を3mmにして作製し
たコンデンサは、幅を4mmとした比較例と比べて、ショ
ート不良率が低く、損失不良がなという点で優れた効果
が得られる。
As is clear from (Table 1), the capacitor manufactured according to the present embodiment with the protrusion having the polymerization initiation portion having a width of 3 mm has a short circuit defect rate in comparison with the comparative example having a width of 4 mm. An excellent effect is obtained in that the loss is low and there is no loss.

【0025】(実施例3)図6に示すように、電極1と
電極2の突出部(幅1mm、長さ5mm)を共通にして接続
する形状としたこと以外は実施例1と同様にして、コン
デンサを作製した。本実施例によるコンデンサの特性を
(表1)に示した。
(Embodiment 3) As shown in FIG. 6, the same as Embodiment 1 except that the projections (width 1 mm, length 5 mm) of the electrodes 1 and 2 are connected in common. , A capacitor was manufactured. The characteristics of the capacitor according to this example are shown in (Table 1).

【0026】(表1)から明らかなように、本実施例に
よる重合開始部を設ける突出部を共通にして、二つの電
極に同時に導電性高分子膜を作製したコンデンサは、実
施例1と同様に、ショート不良率が低く、損失不良がな
く、さらに、重合開始部1カ所で二つの陽極箔に電解重
合導電性高分子膜を形成することができるという点で優
れた効果が得られる。
As is clear from (Table 1), the capacitor according to the present embodiment, in which the conductive polymer film was simultaneously formed on the two electrodes with the common protruding portion provided with the polymerization initiation portion, was prepared in the same manner as in the first embodiment. In addition, the short-circuit defect rate is low, there is no loss defect, and the electrolytic polymerization conductive polymer film can be formed on the two anode foils at one polymerization initiation portion, which is an excellent effect.

【0027】(実施例4)図7に示すように、電極の突
出部(幅1mm、長さ3mm)を2カ所設ける形状にしたこ
と以外は実施例1と同様にして、コンデンサを作製し
た。本実施例によるコンデンサの特性を(表1)に示し
ている。
Example 4 As shown in FIG. 7, a capacitor was produced in the same manner as in Example 1 except that two protruding portions (width 1 mm, length 3 mm) of electrodes were provided. The characteristics of the capacitor according to this example are shown in (Table 1).

【0028】(表1)から明らかなように、本実施例に
よる重合開始部を設ける突出部を2カ所にして作製した
コンデンサは、実施例1と同様にショート不良率が低
く、損失不良がなく、さらに重合開始部が2カ所である
ため、電解重合導電性高分子膜を速く形成することがで
きるという点で優れた効果が得られる。
As is clear from (Table 1), the capacitor manufactured according to this embodiment with two protrusions provided with the polymerization initiation portion has a low short-circuit defect rate and no loss defect as in Example 1. Further, since there are two polymerization initiation portions, an excellent effect can be obtained in that the electrolytic polymerization conductive polymer film can be rapidly formed.

【0029】[0029]

【発明の効果】以上のように本発明は、平面方向に突出
部を設けた電極に、誘電体皮膜を形成し、その上にマン
ガン酸化物層を形成せしめた後に、電極の突出部分に重
合開始部を設け電解重合することでマンガン酸化物層上
に電解重合導電性高分子膜を積層し、その後重合開始部
を少なくとも含む突出部分を除去するようにしたので、
重合開始部の形成と除去が容易で、ショート不良、容量
低下が無く、漏れ電流の小さなコンデンサを効率よく作
製できる。
As described above, according to the present invention, a dielectric film is formed on an electrode having a protrusion in the planar direction, and a manganese oxide layer is formed on the dielectric film. Since the electropolymerized conductive polymer film was laminated on the manganese oxide layer by electrolytic polymerization provided with the initiation portion, and then the protruding portion including at least the polymerization initiation portion was removed.
The formation and removal of the polymerization initiation portion are easy, and there is no short circuit failure or capacity reduction, and a capacitor with a small leakage current can be efficiently manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるコンデンサの製造方
法の工程を示し、突出部分を設けた弁作用金属の側面図
及び正面図
FIG. 1 is a side view and a front view of a valve action metal having a protruding portion, showing the steps of a method for manufacturing a capacitor according to an embodiment of the present invention.

【図2】同実施例におけるコンデンサの製造方法の工程
を示し、弁作用金属に、誘電体皮膜、マンガン酸化膜、
重合開始導電部を形成した側面図及び正面図
FIG. 2 shows steps of a method of manufacturing a capacitor in the same example, in which a valve metal, a dielectric film, a manganese oxide film,
A side view and a front view in which a polymerization initiation conductive portion is formed.

【図3】同実施例におけるコンデンサの製造方法の工程
を示し、弁作用金属に、誘電体皮膜、マンガン酸化膜、
重合開始導電部、導電性高分子膜を形成した側面図及び
正面図
FIG. 3 shows steps of a method of manufacturing a capacitor in the same example, in which a valve metal, a dielectric film, a manganese oxide film,
Polymerization initiation conductive part, side view and front view with conductive polymer film formed

【図4】同実施例におけるコンデンサの製造方法の工程
を示し、重合開始導電部を除去した側面図及び正面図
FIG. 4 is a side view and a front view showing the steps of the method for producing the capacitor in the example, in which the polymerization initiation conductive portion is removed.

【図5】同実施例におけるコンデンサの製造方法による
コンデンサの平面図
FIG. 5 is a plan view of a capacitor manufactured by the method for manufacturing a capacitor according to the embodiment.

【図6】本発明の第3の実施例におけるコンデンサの製
造方法を示す正面図
FIG. 6 is a front view showing a method of manufacturing a capacitor according to a third embodiment of the present invention.

【図7】本発明の第3の実施例におけるコンデンサの製
造方法を示す正面図
FIG. 7 is a front view showing a method of manufacturing a capacitor according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 陽極リード 2 弁作用金属 3 誘電体皮膜 4 マンガン酸化物膜 5 電解重合導電性高分子膜 6 陰極リード 7 重合開始導電部 8 耐熱絶縁テープ 1 Anode lead 2 valve metal 3 Dielectric film 4 Manganese oxide film 5 Electropolymerized conductive polymer film 6 cathode lead 7 Polymerization initiation conductive part 8 Heat-resistant insulating tape

───────────────────────────────────────────────────── フロントページの続き (72)発明者 七井 識成 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shigenari Nanai             3-10-1 Higashisanda, Tama-ku, Kawasaki City, Kanagawa Prefecture             No. Matsushita Giken Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平面方向に突出部を少なくとも1カ所以
上設けた電極表面に、誘電体皮膜、マンガン酸化物層を
順次形成させた後、前記誘電体皮膜、前記マンガン酸化
物層を除去し電極部とした電極の突出部分と、これに接
触させて設けた導電部とを重合開始部として電解重合を
行い、前記マンガン酸化物層上に電解重合導電性高分子
膜を積層させて対極とし、後に前記重合開始部を少なく
とも含む突出部分を除去することを特徴とするコンデン
サの製造方法。
1. An electrode in which a dielectric film and a manganese oxide layer are sequentially formed on an electrode surface having at least one projecting portion in a plane direction, and then the dielectric film and the manganese oxide layer are removed. Electrode polymerization is performed by using a protruding portion of the electrode as a part and a conductive portion provided in contact with the electrode as a polymerization initiation portion, and laminating an electrolytically polymerized conductive polymer film on the manganese oxide layer to form a counter electrode, A method for manufacturing a capacitor, characterized in that a protruding portion including at least the polymerization initiation portion is removed later.
【請求項2】 平面方向に突出部を少なくとも1カ所以
上設けた電極が、弁作用金属である請求項1記載のコン
デンサの製造方法。
2. The method for producing a capacitor according to claim 1, wherein the electrode provided with at least one projecting portion in the planar direction is a valve metal.
【請求項3】 電極と平面方向に設ける突出部との接辺
の長さが3mm以下であることを特徴とする請求項1に記
載のコンデンサの製造方法。
3. The method of manufacturing a capacitor according to claim 1, wherein the length of the side of contact between the electrode and the protrusion provided in the plane direction is 3 mm or less.
【請求項4】 電解重合導電性高分子膜が、ピロール、
チオフェンあるいはそれらの誘導体の少なくとも一種と
支持電解質とを含む溶液中で形成される請求項1記載の
コンデンサの製造方法。
4. The electropolymerized conductive polymer film is pyrrole,
The method of manufacturing a capacitor according to claim 1, wherein the capacitor is formed in a solution containing at least one of thiophene or a derivative thereof and a supporting electrolyte.
【請求項5】 陽極弁金属がアルミニウムもしくはタン
タルから選ばれる一種である請求項1記載のコンデンサ
の製造方法。
5. The method for producing a capacitor according to claim 1, wherein the anode valve metal is one selected from aluminum and tantalum.
JP16985991A 1991-07-10 1991-07-10 Manufacturing method of capacitor Expired - Fee Related JP2924310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16985991A JP2924310B2 (en) 1991-07-10 1991-07-10 Manufacturing method of capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16985991A JP2924310B2 (en) 1991-07-10 1991-07-10 Manufacturing method of capacitor

Publications (2)

Publication Number Publication Date
JPH0521294A true JPH0521294A (en) 1993-01-29
JP2924310B2 JP2924310B2 (en) 1999-07-26

Family

ID=15894267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16985991A Expired - Fee Related JP2924310B2 (en) 1991-07-10 1991-07-10 Manufacturing method of capacitor

Country Status (1)

Country Link
JP (1) JP2924310B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250920A (en) * 2006-03-17 2007-09-27 Sanyo Electric Co Ltd Method for manufacturing solid electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250920A (en) * 2006-03-17 2007-09-27 Sanyo Electric Co Ltd Method for manufacturing solid electrolytic capacitor
JP4703444B2 (en) * 2006-03-17 2011-06-15 三洋電機株式会社 Manufacturing method of solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2924310B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
JP3755336B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2003086459A (en) Solid electrolytic capacitor
JP3314480B2 (en) Solid electrolytic capacitors
JP2924310B2 (en) Manufacturing method of capacitor
JPH08273983A (en) Aluminum solid capacitor
JPH05234823A (en) Manufacture of solid electrolytic capacitor
JP3055199B2 (en) Method for manufacturing solid electrolytic capacitor
JPH09312240A (en) Layered solid-state chip capacitor
JP2730345B2 (en) Manufacturing method of capacitor
JPH0521295A (en) Manufacture of laminated solid electrolytic capacitor
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JP2811915B2 (en) Method for manufacturing solid electrolytic capacitor
JP3542613B2 (en) Method for manufacturing solid electrolytic capacitor
JP2924252B2 (en) Method for manufacturing solid electrolytic capacitor
JP2969703B2 (en) Solid electrolytic capacitors
JPH03228305A (en) Manufacture of aluminum solid electrolytic capacitor
JPH06314641A (en) Manufacture of slid-state electrolytic capacitor
JP2814585B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3135072B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0821515B2 (en) Method for manufacturing laminated solid electrolytic capacitor
JPH0740539B2 (en) Array type solid electrolytic capacitor
JP2940017B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03139816A (en) Manufacture of solid electrolytic capacitor
JPH06349689A (en) Solid electrolytic capacitor
JPH06204097A (en) Layered solid-state electrolytic capacitor and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees