JPH06314641A - Manufacture of slid-state electrolytic capacitor - Google Patents

Manufacture of slid-state electrolytic capacitor

Info

Publication number
JPH06314641A
JPH06314641A JP5123266A JP12326693A JPH06314641A JP H06314641 A JPH06314641 A JP H06314641A JP 5123266 A JP5123266 A JP 5123266A JP 12326693 A JP12326693 A JP 12326693A JP H06314641 A JPH06314641 A JP H06314641A
Authority
JP
Japan
Prior art keywords
patterns
solid
film
electrolytic capacitor
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5123266A
Other languages
Japanese (ja)
Inventor
Minoru Fukuda
実 福田
Hideo Yamamoto
秀雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP5123266A priority Critical patent/JPH06314641A/en
Publication of JPH06314641A publication Critical patent/JPH06314641A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To omit the trouble of stacking elements one by one and to enhance the dimensional precision during stacking by a method wherein squared patterns with dielectric oxide films and solid-state electrolyte and cathode layers on the surface of a long valve action metal foil are formed at predetermined intervals, subjected to a required step, and separated off by every pattern. CONSTITUTION:After the surface of a large-area aluminum film 1 is etched and subjected to anodic formation in a water solution such as of adipinic ammonium to form a dielectric oxide film 2 over the surface, an insulating coat film 5 is formed with patterns each forming a pair of an anode lead-out part 3 and a solid-state electrolyte part 4 remaining over both faces of the aluminum foil 1. Intervals between patterns are constant in conformity with intervals between leads of a lead frame. Next, solid-state electrolytes 6 and cathode layers 7 are formed on patterns one after another. With squared patterns remaining, the top of the insulating coat film 5 is separated off one by one longitudinally.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解コンデンサの
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor.

【0002】[0002]

【従来の技術】弁作用金属表面に誘電体酸化皮膜を形成
させ、該誘電体酸化皮膜上に導電性高分子膜を形成させ
て固体電解質とする固体電解コンデンサが提案されてい
る。
2. Description of the Related Art A solid electrolytic capacitor has been proposed in which a dielectric oxide film is formed on the surface of a valve metal and a conductive polymer film is formed on the dielectric oxide film to form a solid electrolyte.

【0003】特開昭63−173313号公報には、電
解重合による導電性高分子膜を固体電解質として応用す
るため、誘電体酸化皮膜上に導電性プレコート層として
化学酸化重合による導電性高分子膜を形成させた後、該
導電性高分子膜上に電解重合による導電性高分子膜を形
成させて固体電解質とする固体電解コンデンサが開示さ
れている。また、特開昭63−158829号公報で
は、誘電体酸化皮膜上に導電性プレコート層として二酸
化マンガン等の導電性金属酸化物の薄膜を形成させた
後、該薄膜上に電解重合による導電性高分子膜を形成さ
せて固体電解質とする固体電解コンデンサが開示されて
いる。これらのコンデンサは従来のコンデンサに較べ、
周波数特性、電気的特性及び耐熱性が優れている。
In Japanese Patent Laid-Open No. 63-173313, a conductive polymer film formed by chemical polymerization is used as a conductive precoat layer on a dielectric oxide film in order to apply a conductive polymer film formed by electrolytic polymerization as a solid electrolyte. There is disclosed a solid electrolytic capacitor in which a conductive polymer film is formed by electrolytic polymerization on the conductive polymer film to form a solid electrolyte. Further, in Japanese Patent Laid-Open No. 63-158829, a thin film of a conductive metal oxide such as manganese dioxide is formed as a conductive precoat layer on a dielectric oxide film, and then a high conductivity by electrolytic polymerization is formed on the thin film. A solid electrolytic capacitor in which a molecular film is formed into a solid electrolyte is disclosed. These capacitors are
Excellent frequency characteristics, electrical characteristics and heat resistance.

【0004】固体電解コンデンサの製造方法において、
アルミニウム電解コンデンサが本来持つ小型大容量の特
徴を生かすために、アルミニウム箔を捲回または積層し
て大面積を得る方法が知られているが、製造工程が煩雑
であったり、また製造中に誘電体酸化皮膜を損傷してし
まう等の欠点があった。
In the method of manufacturing a solid electrolytic capacitor,
In order to take advantage of the small size and large capacity that aluminum electrolytic capacitors originally have, there is known a method of winding or laminating aluminum foil to obtain a large area, but the manufacturing process is complicated and the There were drawbacks such as damage to the body oxide film.

【0005】小型大容量の固体電解コンデンサ素子を量
産性良く製造する方法として、アルミニウム箔表面にマ
ス目状パターンを多数形成させ、このマス目内に固体電
解質を形成させた後、マス目毎に切断して一度に多数の
コンデンサ素子を作成させる方法が提案されている。し
かし、一般にアルミニウムまたはタンタル等の電解コン
デンサにおいては、耐熱性や耐湿性を向上させるため
に、コンデンサ素子を陽極リード及び陰極リードを備え
たリードフレームに接合した後、エポキシ樹脂等でモー
ルドし外装を施して、コンデンサを得ている。
As a method for manufacturing a small-sized and large-capacity solid electrolytic capacitor element with good mass productivity, a large number of grid-shaped patterns are formed on the surface of an aluminum foil, and a solid electrolyte is formed in the grids. A method has been proposed in which a large number of capacitor elements are formed at one time by cutting. However, in general, in an electrolytic capacitor made of aluminum or tantalum, in order to improve heat resistance and moisture resistance, a capacitor element is bonded to a lead frame having an anode lead and a cathode lead, and then molded with an epoxy resin or the like to form an exterior. It is applied and the capacitor is obtained.

【0006】アルミニウム箔表面にマス目状パターンを
多数形成させ、マス目毎に切断して一度に多数個作成さ
せたコンデンサ素子をモールドするには、一個ずつ切り
離した素子の陽極部及び陰極部を各々リードフレームの
陽極リード部及び陰極リード部に接合した後、エポキシ
樹脂でモールドする工程が必要となる。この操作は、素
子を一個ずつ取り扱うので煩雑であり、特に、素子を積
層してリードフレームに搭載するには、寸法精度の面で
も問題が生じる。
In order to mold a capacitor element in which a large number of grid-like patterns are formed on the surface of an aluminum foil and the grid is cut into a large number of pieces at a time, the anode part and the cathode part of the separated elements are molded. A step of molding with an epoxy resin is required after bonding to the anode lead portion and the cathode lead portion of the lead frame, respectively. This operation is complicated because each element is handled one by one, and in particular, when the elements are stacked and mounted on the lead frame, there is a problem in terms of dimensional accuracy.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、弁作
用金属表面に誘電体酸化皮膜を形成させ、この誘電体酸
化皮膜上に導電性高分子膜を形成させて固体電解質とす
る固体電解コンデンサの製造方法において、コンデンサ
特性を損なわない小型大容量の固体電解コンデンサを製
造する方法を提供し、また、簡便な工程で、量産性良く
積層型の固体電解コンデンサを製造する方法を提供する
ことである。
SUMMARY OF THE INVENTION An object of the present invention is to form a solid oxide by forming a dielectric oxide film on the surface of a valve metal and forming a conductive polymer film on the dielectric oxide film to form a solid electrolyte. To provide a method for manufacturing a small-sized and large-capacity solid electrolytic capacitor that does not impair the capacitor characteristics, and a method for manufacturing a laminated solid electrolytic capacitor with good productivity in a simple process. Is.

【0008】[0008]

【課題を解決するための手段】本発明者らは、鋭意検討
した結果、上記問題を解決し得る固体電解コンデンサの
製造方法を完成するに至った。
As a result of intensive studies, the present inventors have completed a method of manufacturing a solid electrolytic capacitor capable of solving the above problems.

【0009】すなわち、本発明は、誘電体酸化皮膜を形
成させた長尺状の弁作用金属箔表面に、順次、固体電解
質及び陰極層を形成させたマス目状のパターンが所定の
間隔で形成され、次いで、そのパターン同士が重なるよ
うに該長尺状の弁作用金属箔を複数枚積層し、所定の間
隔の陽極リード及び陰極リードを備えたリードフレーム
に接合した後、各パターン毎に切り離し、製品化するこ
とを特徴とする固体電解コンデンサの製造方法である。
That is, according to the present invention, a grid-like pattern in which a solid electrolyte and a cathode layer are sequentially formed at predetermined intervals is formed on the surface of a long valve action metal foil on which a dielectric oxide film is formed. Then, a plurality of the elongated valve action metal foils are laminated so that the patterns are overlapped with each other, and after bonding to a lead frame provided with an anode lead and a cathode lead at predetermined intervals, they are separated for each pattern. The method for producing a solid electrolytic capacitor is characterized by commercialization.

【0010】以下、本発明の固体電解コンデンサの製造
方法について、添付図面を参照しながら説明する。
The method of manufacturing the solid electrolytic capacitor of the present invention will be described below with reference to the accompanying drawings.

【0011】弁作用金属としては、アルミニウム、タン
タル、チタンまたはこれらの合金を用い、箔状または板
状で用いる。
Aluminum, tantalum, titanium, or an alloy thereof is used as the valve metal, and is used in the form of foil or plate.

【0012】次に、弁作用金属としてアルミニウム箔を
用いる場合について説明する。
Next, the case where aluminum foil is used as the valve metal will be described.

【0013】大面積のアルミニウム箔1の表面をエッチ
ングした後、アジピン酸アンモニウム等の水溶液中で陽
極化成を行い、表面に誘電体酸化皮膜を形成させた後、
図1に示すように、誘電体酸化皮膜2を形成させたアル
ミニウム箔1の両面に、陽極引出し部分3と固体電解質
を形成させる部分4を一対とするパターンを残して、絶
縁性塗膜5を形成させる。パターン同士の間隔はリード
フレームのリード間の間隔に合わせて一定である。
After etching the surface of the large area aluminum foil 1, anodization is performed in an aqueous solution of ammonium adipate or the like to form a dielectric oxide film on the surface.
As shown in FIG. 1, an insulating coating film 5 was formed on both surfaces of an aluminum foil 1 on which a dielectric oxide film 2 was formed, leaving a pattern of a pair of an anode extraction portion 3 and a solid electrolyte forming portion 4. Let it form. The space between the patterns is constant according to the space between the leads of the lead frame.

【0014】次に、該パターンに、順次、固体電解質及
び陰極層を形成させる。
Next, a solid electrolyte and a cathode layer are sequentially formed on the pattern.

【0015】固体電解質の形成は、まずパターン内に導
電性プレコート層を形成させた後、電解重合により導電
性ポリピロール膜を形成させる。
The solid electrolyte is formed by first forming a conductive precoat layer in the pattern and then forming a conductive polypyrrole film by electrolytic polymerization.

【0016】導電性プレコート層を形成させる法には、
導電性高分子モノマーの化学酸化重合により導電性高分
子膜を形成させる方法、マンガン塩の熱分解により導電
性二酸化マンガン等の導電性金属酸化物の薄膜を形成さ
せる方法、ポリアニリン等の溶媒可溶性導電性高分子や
テトラシアノキノジメタン錯体溶液を含浸して乾燥させ
る方法等がある。
The method of forming the conductive precoat layer includes:
Method of forming conductive polymer film by chemical oxidative polymerization of conductive polymer monomer, method of forming thin film of conductive metal oxide such as conductive manganese dioxide by thermal decomposition of manganese salt, solvent soluble conductivity such as polyaniline There is a method of impregnating with an organic polymer or a tetracyanoquinodimethane complex solution and drying.

【0017】特に、パターン内に露出した誘電体酸化皮
膜上に、ピロールモノマー溶液及び酸化剤溶液を各々一
定量滴下して、化学酸化重合による導電性ポリピロール
膜を形成させる方法が好ましい。
Particularly preferred is a method of forming a conductive polypyrrole film by chemical oxidative polymerization by dropping a predetermined amount of a pyrrole monomer solution and an oxidant solution onto the dielectric oxide film exposed in the pattern.

【0018】その後、導電性のプレコート層に外部から
電極を接触させるか、または近傍に印刷法で形成させた
導電性塗膜を電解重合の陽極に用い、支持電解質0.01〜
2mol/l及びピロールモノマー0.01〜5mol/lを含む電
解液中で電解重合を行い、電解重合によるポリピロール
膜を形成させる。
After that, an electrode is brought into contact with the conductive precoat layer from the outside or a conductive coating film formed in the vicinity by a printing method is used as an anode for electrolytic polymerization, and a supporting electrolyte of 0.01 to
Electropolymerization is performed in an electrolytic solution containing 2 mol / l and 0.01 to 5 mol / l of pyrrole monomer to form a polypyrrole film by electrolytic polymerization.

【0019】次いで、電解重合による導電性ポリピロー
ル膜表面にカーボンペースト及び銀ペーストにより陰極
層を形成させる。
Then, a cathode layer is formed on the surface of the conductive polypyrrole film by electrolytic polymerization with carbon paste and silver paste.

【0020】なお、以上は、アルミニウム箔の片面のみ
処理を説明したが、裏面にも同様の処理を行い、両面に
導電性ポリピロール膜を形成させる。
Although the treatment of only one side of the aluminum foil has been described above, the same treatment is performed on the back side to form the conductive polypyrrole film on both sides.

【0021】パターン形成時の絶縁性塗膜としては、エ
ポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエ
ステル樹脂、ポリフェニレンスルフィド樹脂、シリコン
樹脂、フッ素樹脂、またはこれらの混合物、共重合体等
の耐熱性高分子材料があげられる。
As the insulating coating film at the time of pattern formation, a heat-resistant polymer such as epoxy resin, phenol resin, polyimide resin, polyester resin, polyphenylene sulfide resin, silicon resin, fluororesin, or a mixture or copolymer thereof is used. Materials are given.

【0022】パターンの形成は、ロールコーター、リバ
ースコーター、スクリーン印刷等の印刷による方法が一
度に多数のマス目状パターンを形成でき量産性が良い。
The pattern can be formed by a printing method such as a roll coater, a reverse coater, or screen printing, which can form a large number of square-shaped patterns at a time, which is good for mass production.

【0023】なお、以上の工程の代りに、大面積のアル
ミニウム箔に予め絶縁性塗膜でパタ−ンを形成させた
後、エッチング、化成を行っても図1と同様の箔を得る
ことができる。
Instead of the above steps, a foil similar to that shown in FIG. 1 can be obtained even if a large-area aluminum foil is preliminarily patterned with an insulating coating film and then etched and formed. it can.

【0024】次に、マス目状パターンに沿って、長尺状
に切り離す。図1に示す位置で、陽極引出し部分3と固
体電解質を形成させる部分4を残して、絶縁性塗膜5上
をカッター等の機械的手段やYAGレーザー等の熱的手
段を用いて切断する。レーザーを用いた場合、物理的な
損傷を与えることが少ないので、漏れ電流が小さい等特
性が安定する。
Next, it is cut into a long shape along the grid pattern. At the position shown in FIG. 1, the insulating coating film 5 is cut using a mechanical means such as a cutter or a thermal means such as a YAG laser, leaving the anode extraction portion 3 and the portion 4 for forming a solid electrolyte. When a laser is used, physical damage is less likely to occur, so that characteristics such as a small leakage current are stable.

【0025】各パターンが重なるように、得られた長尺
状の素子を複数個積層し、陰極層同士は、陰極リード8
を介して銀ペースト等でリードフレームの陰極10に接
合する。陽極引出し部分3は、直接または陽極リード9
を介してリードフレームの陽極11に電気的もしくは熱
的手段を用いて溶接する。図2は、素子をリードフレー
ム上に積層して接合した模式図である。図3は、素子を
積層してリードフレームに接合した断面図である。
A plurality of the obtained long elements are laminated so that the respective patterns are overlapped, and the cathode layers are connected to each other by the cathode lead 8
It is bonded to the cathode 10 of the lead frame with silver paste or the like. The anode lead-out portion 3 is directly or connected to the anode lead 9
To the anode 11 of the lead frame by means of electrical or thermal means. FIG. 2 is a schematic diagram in which the elements are laminated on the lead frame and joined. FIG. 3 is a cross-sectional view in which elements are stacked and joined to a lead frame.

【0026】この工程は、長尺状の素子を予め積層して
からリードフレームに接合する代りに、リードフレーム
に積層させながら接合してもよい。
In this step, instead of laminating the long elements in advance and then joining them to the lead frame, they may be joined while being laminated to the lead frame.

【0027】次いで、各マス目状パターンを残して、図
2に示す位置で、一個ずつ絶縁性塗膜上を縦方向に切り
離す。切断は、カッター等の機械的手段やYAGレーザ
ー等の熱的手段を用いて行う。素子に対する機械的損傷
を与えないためには、ダイヤモンドカッターを備えたダ
イサーを用いるのが好ましい。
Next, leaving the respective grid-like patterns, the insulating coating films are separated one by one in the vertical direction at the positions shown in FIG. The cutting is performed using a mechanical means such as a cutter or a thermal means such as a YAG laser. In order to prevent mechanical damage to the device, it is preferable to use a dicer equipped with a diamond cutter.

【0028】その後、各素子毎に樹脂モールド等の外装
を施し、コンデンサを得る。
Thereafter, a resin mold or the like is applied to each element to obtain a capacitor.

【0029】[0029]

【実施例】以下、本発明の実施例を説明する。なお、本
発明は、実施例によりなんら限定されない。
EXAMPLES Examples of the present invention will be described below. The present invention is not limited to the examples.

【0030】表面をエッチングしたアルミニウム箔(50
mm×50mm)を、アジピン酸アンモニウム水溶液中40Vで
化成処理し、誘電体酸化皮膜を形成した。絶縁性塗膜と
してエポキシ樹脂を用いてスクリーン印刷して、図1に
示すように、陽極引出し部分3(3mm×1mm)と固体電
解質を形成させる部分4(3mm×5mm)との2つに分離
されたマス目状パターン(縦4列×横8列)を形成し
た。続いて、この上に、3mm×1mm及び3mm×6mmのマ
ス目状パターン(縦4列×横8列)を残して、シリコー
ン樹脂をスクリーン印刷して、絶縁性塗膜を形成した。
裏面にも同様の絶縁性塗膜を形成した。
Aluminum foil with an etched surface (50
mm × 50 mm) was subjected to chemical conversion treatment in an aqueous solution of ammonium adipate at 40 V to form a dielectric oxide film. Screen printing using epoxy resin as an insulating coating film, as shown in FIG. 1, separated into two parts, anode extraction part 3 (3 mm x 1 mm) and solid electrolyte forming part 4 (3 mm x 5 mm). Then, a square-shaped pattern (4 vertical rows × 8 horizontal rows) was formed. Subsequently, a silicone resin was screen-printed on this to leave a grid pattern of 3 mm × 1 mm and 3 mm × 6 mm (4 vertical rows × 8 horizontal rows) to form an insulating coating film.
A similar insulating coating film was formed on the back surface.

【0031】このパターン内に、8チャンネルのマルチ
チャンネルマイクロピペット(SOCOREX社製)を
用い、ピロールモノマー30wt%のエタノール溶液を5μ
l滴下し、1分放置後、8チャンネルのマルチチャンネ
ルマイクロピペットを用い、過硫酸アンモニウム0.1mol
/lの水溶液10μlを滴下した。その後、5分間放置した
後、水洗、乾燥し、化学重合によるポリピロール膜を形
成した。裏面も同様に処理した。
In this pattern, using an 8-channel multi-channel micropipette (manufactured by SOCOREX), 5 μl of an ethanol solution containing 30% by weight of a pyrrole monomer was used.
l Drop and let stand for 1 minute, then use 0.1 channel ammonium persulfate with an 8-channel multi-channel micropipette.
10 μl of a 1 / l aqueous solution was added dropwise. Then, after leaving for 5 minutes, it was washed with water and dried to form a polypyrrole film by chemical polymerization. The back side was treated similarly.

【0032】その後、この箔を、アジピン酸アンモニウ
ム水溶液中36Vで陽極酸化し、誘電体酸化皮膜を化成修
復した。
Thereafter, this foil was anodized in an aqueous solution of ammonium adipate at 36 V to chemically reform the dielectric oxide film.

【0033】次に、各マス目内の化学重合によるポリピ
ロール膜に、外部からステンレススチール製電極を接触
させ、ピロールモノマー0.4mol/l、1,7−ナフタレン
スルホン酸テトラエチルアンモニウム0.4mol/l及びア
セトニトリルの電解液を含むステンレス容器中に浸漬し
た。外部電極を陽極とし、ステンレス容器との間に定電
流電解重合(0.5mA/ピン、90分)を行い、電解重合に
よるポリピロール膜を形成した。外部電極を除いた後、
ポリピロール膜上にコロイダルカーボン及び銀ペースト
を塗布して、陰極層を形成した。
Next, a stainless steel electrode was brought into contact with the polypyrrole film formed by chemical polymerization in each square from the outside, and 0.4 mol / l of pyrrole monomer, 0.4 mol / l of 1,7-naphthalenesulfonic acid tetraethylammonium salt and acetonitrile were added. It was immersed in a stainless steel container containing the electrolytic solution. Constant current electrolytic polymerization (0.5 mA / pin, 90 minutes) was performed between the stainless steel container and the external electrode as an anode to form a polypyrrole film by electrolytic polymerization. After removing the external electrodes,
Colloidal carbon and silver paste were applied on the polypyrrole film to form a cathode layer.

【0034】続いて、図1に示す位置で、陽極引出し部
分3と固体電解質を形成させる部分4を残して、絶縁性
塗膜5上をカッターを用いて、マス目状パターンに沿っ
て長尺状に切り離し、4枚の長尺状箔を得た。この箔
を、2枚ずつ積層し、陰極層同士は、陰極リード8を介
して銀ペーストでリードフレームの陰極10に接合し、
陽極引出し部分は、陽極リード9を介してリードフレー
ムの陽極11にスポット溶接機で溶接した。
Subsequently, at the position shown in FIG. 1, leaving the anode lead-out portion 3 and the portion 4 for forming the solid electrolyte, the insulating coating film 5 is cut on the insulating coating film 5 with a cutter so as to be elongated along a grid pattern. It was cut into strips to obtain four long foils. Two pieces of this foil were laminated, and the cathode layers were bonded to the cathode 10 of the lead frame with the silver paste through the cathode leads 8.
The anode lead-out portion was welded to the anode 11 of the lead frame via the anode lead 9 with a spot welding machine.

【0035】次に、ダイヤモンドカッター(外径:54m
m)を備えたディスコ社製オートマチックカッティング
ソーDAC−2SPを用いて、リードフレームを切断し
ないように注意して、図2に示すように、素子部分のみ
を縦方向に切断した。
Next, a diamond cutter (outer diameter: 54 m
Using an automatic cutting saw DAC-2SP manufactured by Disco Co., which is provided with m), only the element portion was cut in the vertical direction while being careful not to cut the lead frame.

【0036】切断後、この素子をエポキシ樹脂でモール
ドして、定格電圧16V、定格静電容量22μFのコンデン
サを16個得た。
After cutting, this element was molded with epoxy resin to obtain 16 capacitors having a rated voltage of 16 V and a rated electrostatic capacity of 22 μF.

【0037】コンデンサの初期特性の平均値は、120Hz
での静電容量が22.7μF、120Hzでの損失角の正接(ta
nδ)が0.90%、100kHzでの等価直列抵抗(ESR)が
30mΩ、16Vでの漏れ電流が0.01μA以下であった。
The average value of the initial characteristics of the capacitor is 120 Hz
At a capacitance of 22.7 μF and a loss angle tangent at 120 Hz (ta
nδ) is 0.90% and the equivalent series resistance (ESR) at 100 kHz is
The leakage current at 30 mΩ and 16 V was 0.01 μA or less.

【0038】[0038]

【発明の効果】本発明の固体電解コンデンサの製造方法
によると、小型大容量の固体電解コンデンサを、簡便な
工程の組合せで作成でき、特に積層による大容量のコン
デンサを作成するにあたり、素子を一個ずつ積層する煩
雑さが省け、かつ積層時の寸法精度が良い。
According to the method for producing a solid electrolytic capacitor of the present invention, a small-sized and large-capacity solid electrolytic capacitor can be produced by a combination of simple steps. In particular, in producing a large-capacity capacitor by lamination, one element is used. The complexity of stacking them one by one is eliminated, and the dimensional accuracy during stacking is good.

【図面の簡単な説明】[Brief description of drawings]

【図1】アルミニウム箔上に絶縁性塗膜でパターンを形
成させた平面図である。
FIG. 1 is a plan view in which a pattern is formed on an aluminum foil with an insulating coating film.

【図2】素子をリードフレーム上に積層して接合した模
式図である。
FIG. 2 is a schematic view in which an element is laminated on a lead frame and joined.

【図3】素子を積層してリードフレームに接合した断面
図である。
FIG. 3 is a cross-sectional view in which elements are stacked and joined to a lead frame.

【符号の説明】[Explanation of symbols]

1 アルミニウム箔 2 誘電体酸化皮膜 3 陽極引出し部分 4 固体電解質を形成させる部分 5 絶縁性塗膜 6 固体電解質 7 陰極層 8 陰極リード 9 陽極リード 10 リードフレームの陰極 11 リードフレームの陽極 DESCRIPTION OF SYMBOLS 1 Aluminum foil 2 Dielectric oxide film 3 Anode extraction part 4 Part for forming a solid electrolyte 5 Insulating coating film 6 Solid electrolyte 7 Cathode layer 8 Cathode lead 9 Anode lead 10 Lead frame cathode 11 Lead frame anode

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01G 9/05 F 9174−5E Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01G 9/05 F 9174-5E

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 誘電体酸化皮膜を形成させた長尺状の弁
作用金属箔表面に、順次、固体電解質及び陰極層を形成
させたマス目状のパターンが所定の間隔で形成され、次
いで、そのパターン同士が重なるように該長尺状の弁作
用金属箔を複数枚積層し、所定の間隔の陽極リード及び
陰極リードを備えたリードフレームに接合した後、各パ
ターン毎に切り離し、製品化することを特徴とする固体
電解コンデンサの製造方法。
1. A grid-shaped pattern, in which a solid electrolyte and a cathode layer are sequentially formed, is formed at a predetermined interval on a surface of a long valve action metal foil having a dielectric oxide film formed thereon, and then, A plurality of the elongated valve action metal foils are laminated so that the patterns overlap with each other, and after joining to a lead frame provided with an anode lead and a cathode lead at predetermined intervals, they are separated for each pattern to be commercialized. A method of manufacturing a solid electrolytic capacitor, comprising:
【請求項2】 マス目状のパターンが、陽極引出し部分
と固体電解質を形成させる部分とに分離されていること
を特徴とする請求項1に記載の固体電解コンデンサの製
造方法。
2. The method for producing a solid electrolytic capacitor according to claim 1, wherein the grid-like pattern is separated into an anode lead-out portion and a portion for forming a solid electrolyte.
【請求項3】 固体電解質が、化学酸化重合による導電
性ポリピロール膜と電解重合による導電性ポリピロール
膜からなることを特徴とする請求項1に記載の固体電解
コンデンサの製造方法。
3. The method for producing a solid electrolytic capacitor according to claim 1, wherein the solid electrolyte comprises a conductive polypyrrole film formed by chemical oxidative polymerization and a conductive polypyrrole film formed by electrolytic polymerization.
JP5123266A 1993-04-28 1993-04-28 Manufacture of slid-state electrolytic capacitor Pending JPH06314641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5123266A JPH06314641A (en) 1993-04-28 1993-04-28 Manufacture of slid-state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5123266A JPH06314641A (en) 1993-04-28 1993-04-28 Manufacture of slid-state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH06314641A true JPH06314641A (en) 1994-11-08

Family

ID=14856314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5123266A Pending JPH06314641A (en) 1993-04-28 1993-04-28 Manufacture of slid-state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH06314641A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239361A (en) * 1998-07-06 2000-09-05 Showa Denko Kk Conductive polymer, solid electrolytic capacitor and production thereof
SG87822A1 (en) * 1998-08-26 2002-04-16 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and method of manufacturing the same
JP2009239296A (en) * 1998-07-06 2009-10-15 Showa Denko Kk Solid electrolytic capacitor and method of producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239361A (en) * 1998-07-06 2000-09-05 Showa Denko Kk Conductive polymer, solid electrolytic capacitor and production thereof
JP2009239296A (en) * 1998-07-06 2009-10-15 Showa Denko Kk Solid electrolytic capacitor and method of producing same
SG87822A1 (en) * 1998-08-26 2002-04-16 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4524873B2 (en) Multilayer solid electrolytic capacitor
JP4868054B2 (en) Multilayer solid electrolytic capacitor
JP4338179B2 (en) Manufacturing method of aluminum solid electrolytic capacitor
JPH06314641A (en) Manufacture of slid-state electrolytic capacitor
JP4026819B2 (en) Manufacturing method of multilayer aluminum solid electrolytic capacitor and capacitor by the method
JP2004158577A (en) Process for producing laminated large area aluminum solid electrolytic capacitor and capacitor produced by that process
JP3454436B2 (en) Method for manufacturing solid electrolytic capacitor
JP2924310B2 (en) Manufacturing method of capacitor
JPH0563009B2 (en)
KR100341148B1 (en) Method for fabricating chip type solid electrolytic capacitor
JP3135072B2 (en) Method for manufacturing solid electrolytic capacitor
JP3426648B2 (en) Method for manufacturing solid electrolytic capacitor
JP4513043B2 (en) Solid electrolytic capacitor having through-hole in cathode foil and method for producing the same
JPH05326343A (en) Monolithic solid electrolytic capacitor
JPH03231414A (en) Solid electrolytic capacitor
JP3055199B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0365007B2 (en)
JPH06204097A (en) Layered solid-state electrolytic capacitor and its manufacture
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JP4513042B2 (en) Cathode foil, anode foil, and laminated solid electrolytic capacitor having through holes in support plate, and method for manufacturing the same
JPH0821515B2 (en) Method for manufacturing laminated solid electrolytic capacitor
JP4124360B2 (en) Manufacturing method of solid electrolytic capacitor
JPH097892A (en) Manufacture of solid electrolytic capacitor
JP2814585B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH03139816A (en) Manufacture of solid electrolytic capacitor