JP4338179B2 - Manufacturing method of aluminum solid electrolytic capacitor - Google Patents

Manufacturing method of aluminum solid electrolytic capacitor Download PDF

Info

Publication number
JP4338179B2
JP4338179B2 JP2003112085A JP2003112085A JP4338179B2 JP 4338179 B2 JP4338179 B2 JP 4338179B2 JP 2003112085 A JP2003112085 A JP 2003112085A JP 2003112085 A JP2003112085 A JP 2003112085A JP 4338179 B2 JP4338179 B2 JP 4338179B2
Authority
JP
Japan
Prior art keywords
layer
capacitor
foil
thickness
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003112085A
Other languages
Japanese (ja)
Other versions
JP2004319795A (en
Inventor
正 水越
利美夫 保坂
容史 山口
秀雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2003112085A priority Critical patent/JP4338179B2/en
Publication of JP2004319795A publication Critical patent/JP2004319795A/en
Application granted granted Critical
Publication of JP4338179B2 publication Critical patent/JP4338179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、チップ型構造のアルミニウム固体電解コンデンサ及びその製造方法に関し、より詳しくは、両面にエッチング層が形成された平板状アルミニウム箔の表面に、順次、誘電体酸化皮膜、導電性高分子層及び陰極導電層を形成させてなる固体電解コンデンサ及びその製造方法に関する。
【0002】
【従来の技術】
従来、導電性高分子を固体電解質として用いたアルミニウム固体電解コンデンサが提案されており、電気伝導度が高く、耐熱性に優れた導電性高分子を用いた該コンデンサは、コンデンサの電気抵抗が小さく、また表面実装可能な優れた特性のコンデンサである(例えば特許文献1参照。)。
【特許文献1】
特開平5−159983号公報
【0003】
以下に、一般的なチップ型構造のアルミニウム固体電解コンデンサについて、図面を参照して説明する。なお、図1は、アルミニウム固体電解コンデンサの構成を示す概略断面図であり、図中(a)は、該コンデンサ全体の概略断面図をまた図中(b)は、該コンデンサの平板状コンデンサ素子部の概略断面図を示す。また、図2は、積層型アルミニウム固体電解コンデンサの構成を示す概略断面図である。
【0004】
図1において、チップ型構造のアルミニウム固体電解コンデンサは、平板状アルミニウム箔1の表面に、エッチング層2が形成され、該エッチング層上に、順次、誘電体酸化皮膜、導電性高分子層3及び陰極導電層4を形成させてコンデンサ素子を得、ついで、該素子の陽極引き出し部5を、陽極用金属ワイヤ6を介してリードフレームの陽極端子7に接合し、陰極導電層4の下面を、銀ペースト8により、また該導電層の上面を、陰極用金属ワイヤ9を介してリードフレームの陰極端子10に接続し、ついで、外装樹脂11を施して得られる。
【0005】
図1(b)に示すように、上記一般的なコンデンサに用いられる平板状アルミニウム箔1は、板厚が90〜110μm程度であり、該箔の両面に30〜40μmのエッチング層2及び中心部に約30μmのアルミニウム芯部が形成される。
【0006】
上記アルミニウム箔の板厚が90〜110μmの範囲より厚い箔では、巻回型コンデンサの用途で巻回した場合に、割れが発生してしまい、また、該範囲より薄い箔では、アルミニウム芯部の厚さが約30μm未満となり、引っ張り強度が弱くなってしまい、巻回した場合に破断するなどの不都合が生じる。
【0007】
チップ型構造のアルミニウム固体電解コンデンサにおいても、コスト的に汎用のアルミニウム箔が安価なため、巻回型と同様に、板厚が90〜110μmのアルミニウム箔が用いられているが、該箔を用いたコンデンサは、静電容量が小さく、大容量のコンデンサを得るためには、図2に示すようにコンデンサ素子を2枚積層させるか、あるいはそれ以上を積層させて、製造されていた。
【0008】
しかしながら、上記積層型コンデンサは、組立加工が煩雑であり、また、コンデンサ素子同士を銀ペーストで接着して積層させるため、導電部である銀ペーストとコンデンサ素子との導電層の接触抵抗が増大し、等価直列抵抗(以下、「ESR」と略記する。)が高くなるという解決すべき課題が残されていた。
【0009】
静電容量を増大させる他の方法として、アルミニウム箔の板厚を厚くしかつエッチング層を厚く形成させて、箔の表面を拡面化させる方法が考えられるが、エッチング層を厚く形成させると、アルミニウム芯部と陰極導電層との距離が長くなり、該エッチング層上に形成させた固体電解質層の抵抗成分が上昇するため、得られたコンデンサのESRが高くなり、実用化は困難であった。
【0010】
【発明が解決しようとする課題】
本発明の目的は、静電容量が大きく、ESR等のコンデンサ特性に優れ、かつ組立工程が簡便なアルミニウム固体電解コンデンサ及びその製造方法を提供することである。
【0011】
【課題を解決するための手段】
本発明者らは、鋭意検討した結果、アルミニウム固体電解コンデンサに用いられる平板状アルミニウム箔の板厚及びエッチング層の厚さを特定の範囲に制御するとともに、固体電解質として導電性高分子を形成させることにより、上記課題を解決し得ることを見い出し、本発明を完成するに至った。
【0012】
すなわち、本発明は、両面にエッチング層が形成された平板状アルミニウム箔の表面に、順次、誘電体酸化皮膜、導電性高分子層及び陰極導電層を形成させてなるアルミニウム固体電解コンデンサにおいて、該箔の板厚が150〜500μmであり、また、該箔の片面あたりのエッチング層の厚さが70μm以上かつ該箔の板厚の1/2未満であることを特徴とするアルミニウム固体電解コンデンサである。
【0013】
また、本発明は、板厚が150〜500μmの平板状アルミニウム箔の両面に、複数のマス目を残して絶縁性樹脂でマスキングさせた後、該箔の片面あたりのエッチング層の厚さが70μm以上かつ該箔の板厚の1/2未満となるようにマス目内にエッチング層を形成させた後、該エッチング層の表面に、順次、誘電体酸化皮膜、導電性高分子層及び陰極導電性層を形成させ、ついで、各マス目ごとに切り離してコンデンサ素子を得る工程、該コンデンサ素子を、陽極端子及び陰極端子を備えたリードフレームに接合させる工程、外装樹脂で成形させる工程を包括することを特徴とするアルミニウム固体電解コンデンサの製造方法である。
【0014】
以下、本発明のアルミニウム固体電解コンデンサについて、図1及び図2を参照して詳細に説明する。なお、本発明は、図面によりなんら限定されない。
【0015】
本発明のアルミニウム固体電解コンデンサは、板厚が150〜500μmの平板状アルミニウム箔1の表面に、エッチング層2が、該箔の片面あたり70μm以上かつ該箔の板厚の1/2未満となるように形成され、該エッチング層上に、順次、誘電体酸化皮膜、導電性高分子層3及び陰極導電層4を形成させてコンデンサ素子を得、ついで、該素子の陽極引き出し部5を、陽極用金属ワイヤ6を介して陽極端子7に接合し、陰極導電層4の下面を、銀ペースト8により、また該導電層の上面を、陰極用金属ワイヤ9を介して陰極端子10に接続した後、外装樹脂11を施して得られる。
【0016】
本発明のアルミ固体電解コンデンサに用いられる平板状アルミニウム箔1の板厚は150〜500μmであり、また、該箔の片面あたりのエッチング層2の厚さは70μm以上かつ該箔の板厚の1/2未満である。
【0017】
一般に、平板状アルミニウム箔1のエッチング層2を厚く形成させることにより、箔の表面が拡面化され、静電容量の大きいのコンデンサが得られるが、該箔の板厚が150μmより未満の薄い箔に、片面あたり70μm以上のエッチング層を形成させると、該箔のアルミニウム芯部が薄くなり、機械的強度が低下し、量産工程での加工が困難なため、不都合である。
【0018】
また、平板状アルミニウム箔1の板厚が500μmを越えると、該箔の切断作業等の加工性、量産性が劣るとともに、切断時に受けた機械的ストレスにより、コンデンサの漏れ電流が増大し、不都合である。
【0019】
上記平板状アルミニウム箔1の表面に形成されるエッチング層2の厚さは、片面あたり70μm以上かつ該箔の板厚の1/2未満であり、エッチング層2の厚さが片面あたり70μmより未満の場合では、静電容量を向上させる効果が小さく、不都合であり、該箔の板厚の1/2以上の場合では、該エッチング層が平板状アルミニウム箔1を貫通してしまい、機械的強度が低下し不都合である。さらに、エッチング層2の厚さが片面あたり250μm以上では、アルミニウム箔の芯部と陰極導電層との距離が長くなり、ESRが増大し不都合である。
【0020】
本発明のアルミニウム固体電解コンデンサに用いられる固体電解質としては、電気伝導度が高く、耐熱性に優れた導電性高分子が好適である。
【0021】
前述したように、一般的な固体電解コンデンサにおいて、アルミニウム箔のエッチング層を厚く形成させると、コンデンサの静電容量は増大するものの、陽極のアルミニウム芯部から陰極導電層までの距離が長くなり、固体電解質層の抵抗成分が上昇し、コンデンサのESRが増大するが、固体電解質として電気伝導度の高い導電性高分子を用いることにより、250μm程度の厚いエッチング層においても、ESRは増大せず、低ESRのコンデンサが得られる。
【0022】
上記導電性高分子としては、例えば、ポリピロール、ポリアニリン、ポリフラン、ポリアセチレン、ポリチオフェンまたはポリ(アルキルチオフェン)などのチオフェン誘導体ポリマーなどがあげられ、化学重合法及び/または電解重合法など従来公知の方法により形成させる。
【0023】
以下、本発明のアルミニウム固体電解コンデンサの製造方法について、図1、図2及び図3を参照して詳細に説明する。なお、図3は、平板状アルミニウム箔表面に絶縁性樹脂により複数のマス目を形成させた模式図である。
【0024】
まず、図3に示すように、板厚が150〜500μmの平板状アルミニウム箔1の両面に、コンデンサ素子の形成部となる複数のマス目を残して絶縁性樹脂12によりマスキングを施し、ついで、アルミニウム金属部が露出した各マス目内をエッチングさせて、該箔1の表面を、片面あたりのエッチング層の厚さが70μm以上かつ該箔の板厚の1/2を越えない範囲でエッチングさせる。
【0025】
上記マスキングに用いられる絶縁性樹脂12としては、エポキシ樹脂、フェノール樹脂、ポリエステル樹脂またはシリコン樹脂などを用いることができ、塗布法やスクリーン印刷により被覆させる。
【0026】
また、各マス目内のアルミニウム金属表面へのエッチングは、従来公知の電気化学的な交流エッチング法と直流エッチング法が適用できるが、交流エッチング法は、コンデンサの静電容量を大きくでき、より好ましい。
【0027】
ついで、上記エッチング層が形成された各マス目内に、固体電解質として導電性高分子層3を形成させる。
【0028】
上記導電性高分子としては、電解重合で形成させたポリピロールが好ましく、該ポリピロールは、導電性が高いので、エッチング層が250μm程度の厚みに形成されても、ESRが増大することがない。該電解重合ポリピロールを形成させる方法としては、マス目内に導電性のプレコート層を形成させ、続いて、該プレコート層を電極とし、外部電極との間で電解重合させる。
【0029】
上記プレコート層は、化学重合によりポリピロールなどの導電性高分子層を形成させるか、または、溶媒可溶性の導電性高分子溶液をマス目内に滴下、洗浄、乾燥させて形成される。
【0030】
また、電解重合ポリピロール層は、プレコート層が形成された上記箔を、ピロールモノマーとドーパントとを含む電解液中に浸漬し、先に形成させたプレコート層にステンレスワイヤ等の導体を接触させ、外部電極との間で所定時間、定電流電解重合を行い、その後、洗浄、乾燥させて形成される。
【0031】
ついで、上記箔に、カーボンペースト及び銀ペーストを塗布し、加熱、乾燥させて、カーボン層及び銀層からなる陰極導電層4を形成させる。
【0032】
ついで、得られた箔を、図3に示すように、マス目の周囲に形成された絶縁性樹脂部を図中の点線に沿って切断して、複数の素子に切り離し、続いて各素子の絶縁性樹脂の一部を剥離し、アルミニウム金属を露出させてコンデンサ素子の陽極引き出し部5を形成し、図1(b)に示す平板状コンデンサ素子を得る。
【0033】
得られた平板状コンデンサ素子を、図1(a)に示すように、陽極端子7及び陰極端子10を備えた金属製のリードフレームに載置し、陽極引き出し部5を、陽極用金属ワイヤ6を介して陽極端子7に接合させ、また、陰極導電層4の下面を、銀ペースト8により、また該導電層の上面を、陰極用金属ワイヤ9を介して陰極端子10に接続させる。
【0034】
その後、エポキシ樹脂等の外装樹脂11で成形し、両極に電圧を印加してエージングさせて、本発明のアルミニウム固体電解コンデンサを完成する。
【0035】
本発明の固体電解コンデンサは、コンデンサ素子1枚でも高静電容量のコンデンサが得られるが、さらに高静電容量のコンデンサを得るには、図2に示すように、コンデンサ素子を2枚積層させるか、またはそれ以上積層させて作製してもよい。
【0036】
本発明のアルミニウム固体電解コンデンサは、平板状アルミニウム箔の板厚が150〜500μmであり、また、該箔の表面に、片面あたり70μm以上かつ該箔の板厚の1/2未満となるエッチング層が形成されており、該コンデンサは、静電容量が大きく、漏れ電流が小さい特性を有する。また、該エッチング層上に固体電解質層として導電性高分子を形成させることにより、ESRが低い優れた特性のコンデンサが得られる。
【0037】
また、本発明のアルミニウム固体電解コンデンサの製造方法によれば、コンデンサ素子の静電容量が大きいことから、従来に比べてコンデンサ素子の積層枚数を少なくでき、組立工程が簡便で、材料費、組立加工費の低減が可能である。
【0038】
【発明の実施の形態】
以下、発明の実施の形態を、実施例に基づき説明する。実施例中、「%」は「質量%」を表す。なお、本発明は、実施例により、なんら限定されない。
【0039】
実施例1
平板状アルミニウム箔1(横32mm×縦28mm×板厚200μm)の両面に、図3に示すように、横3mm×縦5mmのマス目を残して、絶縁性樹脂12であるエポキシ樹脂を塗布してマスキングを施した。該箔に形成させたマス目は、横10行、縦5列、合計50個である。
【0040】
上記箔をエッチング液中に浸漬し、交流エッチングさせて、マス目内にエッチング層を形成させた。該エッチング層の厚さは、片面あたり70μmであった。
【0041】
上記エッチング操作は、エッチング液として、2%塩化アルミニウム及び8%塩酸溶液を用い、液温度30℃、周波数50Hz、電流0.15Aの条件で、所望の厚みのエッチング層が形成されるまで、通電させて処理した。
【0042】
ついで、アジピン酸アンモニウム水溶液中、電圧10Vで化成処理して、マス目内のエッチング層表面に誘電体酸化皮膜を形成させた。
【0043】
ついで、各マス目内に、10%ピロールモノマーのエタノール溶液を滴下した後、5%過硫酸アンモニウム及び5%2−ナフタレンスルホン酸ナトリウム水溶液を滴下し、5分間放置して化学重合させ、その後、洗浄、乾燥して、マス目内に化学重合ポリピロールからなるプレコート層を形成させた。
【0044】
ついで、該箔を、ピロールモノマー0.5mol/l及び2−ナフタレンスルホン酸ナトリウム0.3mol/l含有アセトニトリル電解液中に浸漬し、先に形成させた化学重合ポリピロール層の一部にステンレスワイヤを接触させて陽極とし、ステンレス板を陰極として、マス目1個あたり電流0.5mA、電解時間60分の条件で定電流電解重合を行い、その後、洗浄、乾燥して、マス目内に電解重合ポリピロール層を形成させた。
【0045】
該操作により、各マス目内に化学重合ポリピロール層及び電解重合ポリピロール層からなる導電性高分子層3が形成される。
【0046】
ついで、上記導電性高分子層3上に、カーボンペースト及び銀ペーストを塗布し、加熱乾燥させて、陰極導電層4を形成させた。
【0047】
ついで、ダイヤモンドカッター刃を装備したダイサーを用いて、アルミニウム箔を、図3に示すように、マス目の周囲に形成させた絶縁性樹脂部を点線に沿って切断し、横3.2mm×縦5.6mmの平板状コンデンサ素子を計50個得た。
【0048】
得られた素子の縦方向の端部に形成されたエポキシ樹脂を裏表剥離して、アルミニウム金属部を露出させ、コンデンサ素子の陽極引き出し部5を形成させ図1(b)に示すコンデンサ素子を得た。
【0049】
得られたコンデンサ素子を、図1(a)に示すように、陽極端子及び陰極端子を備えた金属製リードフレームに載置し、該素子の陽極引き出し部5を、陽極用金属ワイヤ6(100μmφの金ワイヤ)を介して陽極端子7に抵抗溶接により接続させ、ついで、陰極導電層4の下面を、銀ペースト8により、また該導電層の上面を、陰極用金属ワイヤ9を介して陰極端子10に接続させた。
【0050】
その後、エポキシ樹脂製の外装樹脂11で成形し、両極に電圧を印加してエージングさせ、定格電圧6.3Vのアルミニウム固体電解コンデンサを完成した。
【0051】
得られたコンデンサの周波数120Hzにおける静電容量(以下、「C」と略記する。)、周波数100kHzにおけるESR及び電圧6.3Vを印加させて1分後の漏れ電流(以下、「LC」と略記する。)を測定し、試験に供したコンデンサ50個の各測定値から、平均値を算出した結果を表1に示す。
【0052】
実施例2
実施例1において、平板状アルミニウム箔の表面に形成させたエッチング層の厚さが片面あたり90μmである以外は、実施例1に準じてアルミニウム固体電解コンデンサを得た。
【0053】
得られたアルミニウム固体電解コンデンサのC、ESR及びLCを実施例1に準じて測定し、結果を表1に示す。
【0054】
実施例3
実施例1において、平板状アルミニウム箔の板厚が350μmであり、該箔の表面に形成させたエッチング層の厚さが片面あたり100μmである以外は、実施例1に準じてアルミニウム固体電解コンデンサを得た。
【0055】
得られたアルミニウム固体電解コンデンサのC、ESR及びLCを実施例1に準じて測定し、結果を表1に示す。
【0056】
実施例4
実施例1において、平板状アルミニウム箔の板厚が350μmであり、該箔の表面に形成させたエッチング層の厚さが片面あたり170μmである以外は、実施例1に準じてアルミニウム固体電解コンデンサを得た。
【0057】
得られたアルミニウム固体電解コンデンサのC、ESR及びLCを実施例1に準じて測定し、結果を表1に示す。
【0058】
実施例5
実施例1において、平板状アルミニウム箔の板厚が450μmであり、該箔の表面に形成させたエッチング層の厚さが片面あたり220μmである以外は、実施例1に準じてアルミニウム固体電解コンデンサを得た。
【0059】
得られたアルミニウム固体電解コンデンサのC、ESR及びLCを実施例1に準じて測定し、結果を表1に示す。
【0060】
比較例1
実施例1において、平板状アルミニウム箔の板厚が140μmであり、該箔の表面に形成させたエッチング層の厚さが片面あたり65μmである以外は、実施例1に準じてアルミニウム固体電解コンデンサを得た。
【0061】
得られたアルミニウム固体電解コンデンサのC、ESR及びLCを実施例1に準じて測定し、結果を表1に示す。
【0062】
比較例2
実施例1において、平板状アルミニウム箔の板厚が200μmであり、該箔の表面に形成させたエッチング層の厚さが片面あたり60μmである以外は、実施例1に準じてアルミニウム固体電解コンデンサを得た。
【0063】
得られたアルミニウム固体電解コンデンサのC、ESR及びLCを実施例1に準じて測定し、結果を表1に示す。
【0064】
比較例3
実施例1において、平板状アルミニウム箔の板厚が550μmであり、該箔の表面に形成させたエッチング層の厚さが片面あたり100μmである以外は、実施例1に準じてアルミニウム固体電解コンデンサを得た。
【0065】
得られたアルミニウム固体電解コンデンサのC、ESR及びLCを実施例1に準じて測定し、結果を表1に示す。
【0066】
比較例4
実施例1において、平板状アルミニウム箔の板厚が550μmであり、該箔の表面に形成させたエッチング層の厚さが片面あたり270μmである以外は、実施例1に準じてアルミニウム固体電解コンデンサを得た。
【0067】
得られたアルミニウム固体電解コンデンサのC、ESR及びLCを実施例1に準じて測定し、結果を表1に示す。
【0068】
比較例5
実施例1において、平板状アルミニウム箔の板厚が110μmであり、該箔の表面に形成させたエッチング層の厚さが片面あたり35μmである以外は、実施例1に準じて平板状コンデンサ素子を得、該コンデンサ素子を2枚積層させた積層型コンデンサを、次に記載の方法により作製した。
【0069】
まず、上記コンデンサ素子の陽極引き出し部5を、陽極用金属ワイヤ6(100μmφの金ワイヤ)を介して、陽極端子7に抵抗溶接により接続させ、ついで、陰極導電層4の下面を、銀ペースト8により、また該導電層の上面を、陰極用金属ワイヤ9を介して陰極端子10に接続させて、第1のコンデンサ素子を接合させた。
【0070】
ついで、図2に示すように、上記第1のコンデンサ素子の陰極導電層4の上面に、銀ペースト8を塗布し、第2のコンデンサ素子の陰極導電層4の下面と接着し、また上面を陰極用金属ワイヤ9を介して陰極端子10に接続させ、続いて、該素子の陽極引き出し部5を、陽極用金属ワイヤ6(100μmの金ワイヤ)を介して陽極端子7に抵抗溶接して接続させて、コンデンサ素子を2枚積層させた。
【0071】
その後、エポキシ樹脂製の外装樹脂11で成形し、電圧を印加してエージングさせ、定格電圧6.3Vの積層型アルミニウム固体電解コンデンサを完成させた。
【0072】
得られたアルミニウム固体電解コンデンサのC、ESR及びLCを実施例1に準じて測定し、結果を表1に示す。
【0073】
【表1】

Figure 0004338179
【0074】
表1に示すように、従来の固体電解コンデンサに用いられていたアルミニウム箔で作製した比較例5のコンデンサは、コンデンサ素子を2枚積層させたため、ESRが高く、また、アルミニウム箔に形成させたエッチング層が片面あたり70μm未満の比較例1及び比較例2では、静電容量が低く、ESRが高く、また、アルミニウム箔の板厚が150μm未満あるいは500μm超の比較例1、比較例3及び比較例4では、加工時の機械的なストレスによりLCが高くなってしまった。
【0075】
これに対して、本発明の実施例1〜5のコンデンサは、コンデンサ素子1枚でも高い静電容量が得られ、ESR及びLCが低いことがわかる。
【0076】
【発明の効果】
本発明のアルミニウム固体電解コンデンサは、平板状アルミニウム箔の板厚が150〜500μmであり、また、該箔の表面に、片面あたり70μm以上かつ該箔の板厚の1/2未満となるエッチング層が形成されており、該コンデンサは、静電容量が大きく、漏れ電流が小さい特性を有する。また、該エッチング層上に固体電解質層として導電性高分子を形成させることにより、ESRが低い優れた特性のコンデンサが得られる。
【0077】
また、本発明のコンデンサの製造方法によれば、コンデンサ素子の静電容量が大きいことから、従来に比べて素子の積層枚数を少なくでき、組立工程が簡便で、材料費、組立加工費の低減が可能である。
【図面の簡単な説明】
【図1】アルミニウム固体電解コンデンサの構成を示す概略断面図であって、(a)は、該コンデンサの概略断面図であり、また(b)は、該コンデンサの平板状コンデンサ素子部の概略断面図である。
【図2】積層型アルミニウム固体電解コンデンサの構成を示す概略断面図である。
【図3】平板状アルミニウム箔表面に、絶縁性樹脂により複数のマス目を形成させた模式図である。
【符号の説明】
1 平板状アルミニウム箔
2 エッチング層
3 導電性高分子層
4 陰極導電層
5 陽極引き出し部
6 陽極用金属ワイヤ
7 陽極端子
8 銀ペースト
9 陰極用金属ワイヤ
10 陰極端子
11 外装樹脂
12 絶縁性樹脂[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chip-type aluminum solid electrolytic capacitor and a method for manufacturing the same, and more specifically, a dielectric oxide film and a conductive polymer layer are sequentially formed on the surface of a flat aluminum foil having an etching layer formed on both sides. The present invention also relates to a solid electrolytic capacitor formed with a cathode conductive layer and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, an aluminum solid electrolytic capacitor using a conductive polymer as a solid electrolyte has been proposed, and the capacitor using a conductive polymer having high electrical conductivity and excellent heat resistance has a low electrical resistance. In addition, it is a capacitor with excellent characteristics that can be surface-mounted (for example, see Patent Document 1).
[Patent Document 1]
Japanese Patent Laid-Open No. 5-159983
A general chip-type aluminum solid electrolytic capacitor will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the configuration of an aluminum solid electrolytic capacitor. FIG. 1A is a schematic cross-sectional view of the entire capacitor, and FIG. 1B is a flat capacitor element of the capacitor. The schematic sectional drawing of a part is shown. FIG. 2 is a schematic cross-sectional view showing the configuration of the multilayer aluminum solid electrolytic capacitor.
[0004]
In FIG. 1, an aluminum solid electrolytic capacitor having a chip-type structure has an etching layer 2 formed on the surface of a flat aluminum foil 1, and a dielectric oxide film, a conductive polymer layer 3 and The cathode conductive layer 4 is formed to obtain a capacitor element, and then the anode lead portion 5 of the element is joined to the anode terminal 7 of the lead frame via the anode metal wire 6, and the lower surface of the cathode conductive layer 4 is The upper surface of the conductive layer is connected to the cathode terminal 10 of the lead frame by the silver paste 8 and the cathode metal wire 9, and then the exterior resin 11 is applied.
[0005]
As shown in FIG.1 (b), the flat aluminum foil 1 used for the said general capacitor | condenser is about 90-110 micrometers in plate | board thickness, and the etching layer 2 and center part of 30-40 micrometers on both surfaces of this foil are used. An aluminum core having a thickness of about 30 μm is formed.
[0006]
When the thickness of the aluminum foil is larger than the range of 90 to 110 μm, cracking occurs when wound in the use of a winding capacitor, and when the foil is thinner than the range, The thickness becomes less than about 30 μm, the tensile strength becomes weak, and inconveniences such as breakage occur when wound.
[0007]
Even in a chip-type aluminum solid electrolytic capacitor, since a general-purpose aluminum foil is inexpensive, an aluminum foil having a plate thickness of 90 to 110 μm is used as in the case of a wound type. The capacitor had a small electrostatic capacity, and in order to obtain a large-capacitance capacitor, it was manufactured by laminating two capacitor elements as shown in FIG.
[0008]
However, the multilayer capacitor is complicated to assemble, and the capacitor elements are bonded and laminated with silver paste, so that the contact resistance of the conductive layer between the silver paste as the conductive portion and the capacitor element increases. The problem to be solved remains that the equivalent series resistance (hereinafter abbreviated as “ESR”) becomes high.
[0009]
As another method for increasing the electrostatic capacity, a method of increasing the surface of the foil by increasing the thickness of the aluminum foil and increasing the thickness of the etching layer can be considered, but if the etching layer is formed thicker, Since the distance between the aluminum core portion and the cathode conductive layer is increased and the resistance component of the solid electrolyte layer formed on the etching layer is increased, the ESR of the obtained capacitor is increased and practical application is difficult. .
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide an aluminum solid electrolytic capacitor having a large capacitance, excellent capacitor characteristics such as ESR, and a simple assembly process, and a method for manufacturing the same.
[0011]
[Means for Solving the Problems]
As a result of intensive studies, the inventors have controlled the thickness of the flat aluminum foil used for the aluminum solid electrolytic capacitor and the thickness of the etching layer to a specific range, and formed a conductive polymer as the solid electrolyte. As a result, it has been found that the above problems can be solved, and the present invention has been completed.
[0012]
That is, the present invention provides an aluminum solid electrolytic capacitor in which a dielectric oxide film, a conductive polymer layer, and a cathode conductive layer are sequentially formed on the surface of a flat aluminum foil having an etching layer formed on both sides. An aluminum solid electrolytic capacitor characterized in that the thickness of the foil is 150 to 500 μm, and the thickness of the etching layer per one side of the foil is 70 μm or more and less than ½ of the thickness of the foil. is there.
[0013]
In the present invention, the thickness of the etching layer per one side of the foil is 70 μm after masking with an insulating resin leaving a plurality of squares on both sides of a flat aluminum foil having a thickness of 150 to 500 μm. After the etching layer is formed in the grid so as to be less than 1/2 the thickness of the foil, a dielectric oxide film, a conductive polymer layer, and a cathode conductive layer are sequentially formed on the surface of the etching layer. Forming a conductive layer and then separating each cell to obtain a capacitor element; joining the capacitor element to a lead frame having an anode terminal and a cathode terminal; and molding the exterior resin. This is a method for producing an aluminum solid electrolytic capacitor.
[0014]
Hereinafter, the aluminum solid electrolytic capacitor of the present invention will be described in detail with reference to FIG. 1 and FIG. In addition, this invention is not limited at all by drawing.
[0015]
In the aluminum solid electrolytic capacitor of the present invention, the etching layer 2 is 70 μm or more per side of the foil and less than ½ of the thickness of the foil on the surface of the flat aluminum foil 1 having a thickness of 150 to 500 μm. A dielectric oxide film, a conductive polymer layer 3 and a cathode conductive layer 4 are sequentially formed on the etching layer to obtain a capacitor element, and then the anode lead portion 5 of the element is connected to the anode After joining to the anode terminal 7 via the metal wire 6 for connecting, the lower surface of the cathode conductive layer 4 is connected with the silver paste 8 and the upper surface of the conductive layer is connected to the cathode terminal 10 via the metal wire 9 for cathode It is obtained by applying the exterior resin 11.
[0016]
The plate thickness of the flat aluminum foil 1 used for the aluminum solid electrolytic capacitor of the present invention is 150 to 500 μm, and the thickness of the etching layer 2 per one side of the foil is 70 μm or more and 1 of the plate thickness of the foil. Less than / 2.
[0017]
In general, by forming the etching layer 2 of the flat aluminum foil 1 thickly, the surface of the foil is enlarged and a capacitor having a large capacitance can be obtained. However, the thickness of the foil is less than 150 μm. Forming an etching layer of 70 μm or more on one side of the foil is disadvantageous because the aluminum core of the foil becomes thin, the mechanical strength is lowered, and it is difficult to process in the mass production process.
[0018]
On the other hand, if the plate thickness of the flat aluminum foil 1 exceeds 500 μm, the processability and mass productivity of the foil cutting work and the like are inferior, and the leakage current of the capacitor increases due to the mechanical stress received at the time of cutting. It is.
[0019]
The thickness of the etching layer 2 formed on the surface of the flat aluminum foil 1 is 70 μm or more per side and less than ½ of the plate thickness of the foil, and the thickness of the etching layer 2 is less than 70 μm per side. In this case, the effect of improving the electrostatic capacity is small and inconvenient, and in the case of 1/2 or more of the thickness of the foil, the etching layer penetrates the flat aluminum foil 1 and mechanical strength is increased. Is inconvenient. Furthermore, if the thickness of the etching layer 2 is 250 μm or more per side, the distance between the core of the aluminum foil and the cathode conductive layer becomes long, which is disadvantageous in that ESR increases.
[0020]
As the solid electrolyte used in the aluminum solid electrolytic capacitor of the present invention, a conductive polymer having high electrical conductivity and excellent heat resistance is suitable.
[0021]
As described above, in a general solid electrolytic capacitor, when the etching layer of the aluminum foil is formed thick, the capacitance of the capacitor increases, but the distance from the aluminum core part of the anode to the cathode conductive layer becomes long, The resistance component of the solid electrolyte layer increases and the ESR of the capacitor increases. However, by using a conductive polymer with high electrical conductivity as the solid electrolyte, the ESR does not increase even in a thick etching layer of about 250 μm, A low ESR capacitor is obtained.
[0022]
Examples of the conductive polymer include thiophene derivative polymers such as polypyrrole, polyaniline, polyfuran, polyacetylene, polythiophene, or poly (alkylthiophene), and the like, and by a conventionally known method such as a chemical polymerization method and / or an electrolytic polymerization method. Let it form.
[0023]
Hereafter, the manufacturing method of the aluminum solid electrolytic capacitor of this invention is demonstrated in detail with reference to FIG.1, FIG.2 and FIG.3. FIG. 3 is a schematic view in which a plurality of cells are formed of an insulating resin on the surface of the flat aluminum foil.
[0024]
First, as shown in FIG. 3, masking is performed on both surfaces of a flat aluminum foil 1 having a plate thickness of 150 to 500 μm with an insulating resin 12 leaving a plurality of cells to be capacitor element forming portions, Each square where the aluminum metal part is exposed is etched, and the surface of the foil 1 is etched so that the thickness of the etching layer per side is 70 μm or more and does not exceed 1/2 of the thickness of the foil. .
[0025]
As the insulating resin 12 used for the masking, an epoxy resin, a phenol resin, a polyester resin, a silicon resin, or the like can be used, which is coated by a coating method or screen printing.
[0026]
In addition, the etching to the aluminum metal surface in each square can be performed by a conventionally known electrochemical alternating current etching method and direct current etching method, but the alternating current etching method is more preferable because it can increase the capacitance of the capacitor. .
[0027]
Next, the conductive polymer layer 3 is formed as a solid electrolyte in each square where the etching layer is formed.
[0028]
As the conductive polymer, polypyrrole formed by electrolytic polymerization is preferable. Since the polypyrrole has high conductivity, ESR does not increase even when the etching layer is formed to a thickness of about 250 μm. As a method for forming the electropolymerized polypyrrole, a conductive precoat layer is formed in the grid, and subsequently, the precoat layer is used as an electrode and electrolytic polymerization is performed between the external electrode.
[0029]
The precoat layer is formed by forming a conductive polymer layer such as polypyrrole by chemical polymerization or by dropping, washing, and drying a solvent-soluble conductive polymer solution into the cells.
[0030]
In addition, the electrolytic polymerization polypyrrole layer is obtained by immersing the foil on which the precoat layer has been formed in an electrolyte solution containing a pyrrole monomer and a dopant, bringing a conductor such as a stainless wire into contact with the precoat layer previously formed, It is formed by performing constant current electrolytic polymerization with an electrode for a predetermined time, and then washing and drying.
[0031]
Next, a carbon paste and a silver paste are applied to the foil, and heated and dried to form a cathode conductive layer 4 composed of a carbon layer and a silver layer.
[0032]
Next, as shown in FIG. 3, the obtained foil is cut along the dotted line in the figure, and the insulating resin portion formed around the grid is separated into a plurality of elements, and then each element is separated. A part of the insulating resin is peeled off to expose the aluminum metal to form the anode lead portion 5 of the capacitor element, thereby obtaining the flat capacitor element shown in FIG.
[0033]
As shown in FIG. 1A, the obtained flat capacitor element is placed on a metal lead frame having an anode terminal 7 and a cathode terminal 10, and the anode lead portion 5 is connected to the anode metal wire 6. The lower surface of the cathode conductive layer 4 is connected to the cathode terminal 10 by the silver paste 8 and the upper surface of the conductive layer is connected to the cathode terminal 10 via the cathode metal wire 9.
[0034]
Then, it shape | molds with exterior resin 11, such as an epoxy resin, a voltage is applied to both poles and it is made to age, and the aluminum solid electrolytic capacitor of this invention is completed.
[0035]
With the solid electrolytic capacitor of the present invention, a capacitor having a high capacitance can be obtained even with a single capacitor element. To obtain a capacitor with a higher capacitance, two capacitor elements are laminated as shown in FIG. Alternatively, or more layers may be laminated.
[0036]
In the aluminum solid electrolytic capacitor of the present invention, the plate thickness of the flat aluminum foil is 150 to 500 μm, and the etching layer on the surface of the foil is 70 μm or more per side and less than ½ of the plate thickness of the foil. The capacitor has a characteristic that the capacitance is large and the leakage current is small. Further, by forming a conductive polymer as a solid electrolyte layer on the etching layer, a capacitor having excellent characteristics with low ESR can be obtained.
[0037]
Further, according to the method for producing an aluminum solid electrolytic capacitor of the present invention, since the capacitance of the capacitor element is large, the number of stacked capacitor elements can be reduced as compared with the prior art, the assembly process is simple, the material cost, the assembly Processing costs can be reduced.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the invention will be described based on examples. In the examples, “%” represents “% by mass”. In addition, this invention is not limited at all by the Example.
[0039]
Example 1
As shown in FIG. 3, an epoxy resin, which is an insulating resin 12, is applied to both sides of the flat aluminum foil 1 (width 32 mm × length 28 mm × plate thickness 200 μm), leaving a grid of width 3 mm × length 5 mm. And masked. The squares formed on the foil have a total of 50 rows in 10 rows and 5 columns.
[0040]
The foil was immersed in an etching solution and subjected to alternating current etching to form an etching layer in the grid. The thickness of the etching layer was 70 μm per side.
[0041]
In the above etching operation, 2% aluminum chloride and 8% hydrochloric acid solution are used as an etching solution, and energization is performed until an etching layer having a desired thickness is formed under conditions of a liquid temperature of 30 ° C., a frequency of 50 Hz, and a current of 0.15 A. Let it be processed.
[0042]
Subsequently, a chemical conversion treatment was carried out in an aqueous solution of ammonium adipate at a voltage of 10 V to form a dielectric oxide film on the surface of the etching layer in the grid.
[0043]
Next, an ethanol solution of 10% pyrrole monomer was dropped into each cell, 5% ammonium persulfate and 5% sodium 2-naphthalenesulfonate aqueous solution were dropped, and allowed to stand for 5 minutes for chemical polymerization, followed by washing. Then, a precoat layer made of chemically polymerized polypyrrole was formed in the grid.
[0044]
Next, the foil is immersed in an acetonitrile electrolyte containing 0.5 mol / l of pyrrole monomer and 0.3 mol / l of sodium 2-naphthalenesulfonate, and a stainless steel wire is formed on a part of the previously formed chemically polymerized polypyrrole layer. Contact is used as an anode, stainless steel plate is used as a cathode, constant current electropolymerization is performed under the conditions of a current of 0.5 mA per cell and electrolysis time of 60 minutes, then washed and dried, and then electropolymerized in the cells. A polypyrrole layer was formed.
[0045]
By this operation, the conductive polymer layer 3 composed of the chemically polymerized polypyrrole layer and the electrolytic polymerized polypyrrole layer is formed in each cell.
[0046]
Next, a carbon paste and a silver paste were applied on the conductive polymer layer 3 and dried by heating to form the cathode conductive layer 4.
[0047]
Next, using a dicer equipped with a diamond cutter blade, as shown in FIG. 3, the insulating resin portion formed around the square of the aluminum foil was cut along the dotted line, and the width was 3.2 mm × vertical A total of 50 5.6 mm flat capacitor elements were obtained.
[0048]
The epoxy resin formed on the longitudinal ends of the obtained element is peeled back and forth to expose the aluminum metal part and form the anode lead part 5 of the capacitor element to obtain the capacitor element shown in FIG. It was.
[0049]
As shown in FIG. 1A, the obtained capacitor element is placed on a metal lead frame having an anode terminal and a cathode terminal, and the anode lead portion 5 of the element is connected to a metal wire 6 for anode (100 μmφ). The gold terminal is connected to the anode terminal 7 by resistance welding, and then the lower surface of the cathode conductive layer 4 is coated with silver paste 8 and the upper surface of the conductive layer is bonded to the cathode terminal via the cathode metal wire 9. 10 connected.
[0050]
Then, it molded with the exterior resin 11 made from an epoxy resin, applied the voltage to both poles, and aged, and completed the aluminum solid electrolytic capacitor of rated voltage 6.3V.
[0051]
The obtained capacitor had a capacitance at 120 Hz (hereinafter abbreviated as “C”), an ESR at a frequency of 100 kHz, and a leakage current (hereinafter abbreviated as “LC”) after 1 minute after applying a voltage of 6.3 V. Table 1 shows the result of calculating the average value from the measured values of 50 capacitors subjected to the test.
[0052]
Example 2
In Example 1, an aluminum solid electrolytic capacitor was obtained according to Example 1 except that the thickness of the etching layer formed on the surface of the flat aluminum foil was 90 μm per side.
[0053]
C, ESR and LC of the obtained aluminum solid electrolytic capacitor were measured according to Example 1, and the results are shown in Table 1.
[0054]
Example 3
In Example 1, an aluminum solid electrolytic capacitor was fabricated according to Example 1 except that the thickness of the flat aluminum foil was 350 μm and the thickness of the etching layer formed on the surface of the foil was 100 μm per side. Obtained.
[0055]
C, ESR and LC of the obtained aluminum solid electrolytic capacitor were measured according to Example 1, and the results are shown in Table 1.
[0056]
Example 4
In Example 1, an aluminum solid electrolytic capacitor was fabricated according to Example 1 except that the thickness of the flat aluminum foil was 350 μm and the thickness of the etching layer formed on the surface of the foil was 170 μm per side. Obtained.
[0057]
C, ESR and LC of the obtained aluminum solid electrolytic capacitor were measured according to Example 1, and the results are shown in Table 1.
[0058]
Example 5
In Example 1, an aluminum solid electrolytic capacitor was fabricated according to Example 1, except that the thickness of the flat aluminum foil was 450 μm and the thickness of the etching layer formed on the surface of the foil was 220 μm per side. Obtained.
[0059]
C, ESR and LC of the obtained aluminum solid electrolytic capacitor were measured according to Example 1, and the results are shown in Table 1.
[0060]
Comparative Example 1
In Example 1, an aluminum solid electrolytic capacitor was fabricated according to Example 1 except that the thickness of the flat aluminum foil was 140 μm and the thickness of the etching layer formed on the surface of the foil was 65 μm per side. Obtained.
[0061]
C, ESR and LC of the obtained aluminum solid electrolytic capacitor were measured according to Example 1, and the results are shown in Table 1.
[0062]
Comparative Example 2
In Example 1, an aluminum solid electrolytic capacitor was fabricated according to Example 1 except that the thickness of the flat aluminum foil was 200 μm and the thickness of the etching layer formed on the surface of the foil was 60 μm per side. Obtained.
[0063]
C, ESR and LC of the obtained aluminum solid electrolytic capacitor were measured according to Example 1, and the results are shown in Table 1.
[0064]
Comparative Example 3
In Example 1, an aluminum solid electrolytic capacitor was fabricated according to Example 1 except that the thickness of the flat aluminum foil was 550 μm and the thickness of the etching layer formed on the surface of the foil was 100 μm per side. Obtained.
[0065]
C, ESR and LC of the obtained aluminum solid electrolytic capacitor were measured according to Example 1, and the results are shown in Table 1.
[0066]
Comparative Example 4
In Example 1, an aluminum solid electrolytic capacitor was fabricated according to Example 1 except that the thickness of the flat aluminum foil was 550 μm and the thickness of the etching layer formed on the surface of the foil was 270 μm per side. Obtained.
[0067]
C, ESR and LC of the obtained aluminum solid electrolytic capacitor were measured according to Example 1, and the results are shown in Table 1.
[0068]
Comparative Example 5
In Example 1, a plate-like capacitor element was prepared according to Example 1 except that the plate-like aluminum foil had a plate thickness of 110 μm and the thickness of the etching layer formed on the surface of the foil was 35 μm per side. Then, a multilayer capacitor in which two capacitor elements were laminated was produced by the method described below.
[0069]
First, the anode lead portion 5 of the capacitor element is connected to the anode terminal 7 by resistance welding via the anode metal wire 6 (100 μmφ gold wire), and then the lower surface of the cathode conductive layer 4 is bonded to the silver paste 8. Then, the upper surface of the conductive layer was connected to the cathode terminal 10 via the cathode metal wire 9 to join the first capacitor element.
[0070]
Next, as shown in FIG. 2, a silver paste 8 is applied to the upper surface of the cathode conductive layer 4 of the first capacitor element, and adhered to the lower surface of the cathode conductive layer 4 of the second capacitor element. Connected to the cathode terminal 10 via the cathode metal wire 9, and then connected to the anode terminal 7 by resistance welding to the anode terminal 7 via the anode metal wire 6 (100 μm gold wire). Two capacitor elements were laminated.
[0071]
Then, it molded with the exterior resin 11 made from an epoxy resin, applied voltage, and aged, and completed the laminated aluminum solid electrolytic capacitor of rated voltage 6.3V.
[0072]
C, ESR and LC of the obtained aluminum solid electrolytic capacitor were measured according to Example 1, and the results are shown in Table 1.
[0073]
[Table 1]
Figure 0004338179
[0074]
As shown in Table 1, the capacitor of Comparative Example 5 made of an aluminum foil used for a conventional solid electrolytic capacitor had a high ESR because two capacitor elements were laminated, and was formed on an aluminum foil. In Comparative Example 1 and Comparative Example 2 in which the etching layer is less than 70 μm per side, Comparative Example 1, Comparative Example 3 and Comparative Example in which the electrostatic capacity is low, the ESR is high, and the thickness of the aluminum foil is less than 150 μm or more than 500 μm. In Example 4, LC became high due to mechanical stress during processing.
[0075]
On the other hand, it can be seen that the capacitors of Examples 1 to 5 of the present invention have a high capacitance even with one capacitor element, and have low ESR and LC.
[0076]
【The invention's effect】
In the aluminum solid electrolytic capacitor of the present invention, the plate thickness of the flat aluminum foil is 150 to 500 μm, and the etching layer on the surface of the foil is 70 μm or more per side and less than ½ of the plate thickness of the foil. The capacitor has a characteristic that the capacitance is large and the leakage current is small. Further, by forming a conductive polymer as a solid electrolyte layer on the etching layer, a capacitor having excellent characteristics with low ESR can be obtained.
[0077]
Further, according to the capacitor manufacturing method of the present invention, since the capacitance of the capacitor element is large, the number of stacked elements can be reduced compared to the conventional one, the assembly process is simple, and the material cost and assembly processing cost are reduced. Is possible.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a configuration of an aluminum solid electrolytic capacitor, in which (a) is a schematic cross-sectional view of the capacitor, and (b) is a schematic cross-sectional view of a flat plate capacitor element portion of the capacitor. FIG.
FIG. 2 is a schematic cross-sectional view showing a configuration of a multilayer aluminum solid electrolytic capacitor.
FIG. 3 is a schematic view in which a plurality of grids are formed on the surface of a flat aluminum foil with an insulating resin.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flat aluminum foil 2 Etching layer 3 Conductive polymer layer 4 Cathode conductive layer 5 Anode lead-out part 6 Anode metal wire 7 Anode terminal 8 Silver paste 9 Cathode metal wire 10 Cathode terminal 11 Exterior resin 12 Insulating resin

Claims (2)

板厚が150〜500μmの平板状アルミニウム箔の両面に、複数のマス目を残して絶縁性樹脂でマスキングさせた後、該箔の片面あたりのエッチング層の厚さが70μm以上かつ該箔の板厚の1/2未満となるようにマス目内にエッチング層を形成させた後、該エッチング層の表面に、順次、誘電体酸化皮膜、導電性高分子層及び陰極導電性層を形成させ、ついで各マス目ごとに切り離してコンデンサ素子を得る工程、該コンデンサ素子を、陽極端子及び陰極端子を備えたリードフレームに接合させる工程、外装樹脂で成形させる工程を包括することを特徴とするアルミニウム固体電解コンデンサの製造方法。  After a plurality of squares are masked with an insulating resin on both sides of a flat aluminum foil having a thickness of 150 to 500 μm, the thickness of the etching layer per side of the foil is 70 μm or more and the foil plate After forming an etching layer in the grid so as to be less than 1/2 of the thickness, a dielectric oxide film, a conductive polymer layer, and a cathode conductive layer are sequentially formed on the surface of the etching layer, Next, an aluminum solid comprising a step of obtaining a capacitor element by separating each cell, a step of bonding the capacitor element to a lead frame having an anode terminal and a cathode terminal, and a step of molding with an exterior resin Manufacturing method of electrolytic capacitor. 導電性高分子層が、誘電体酸化皮膜上に導電性プレコート層を形成させた後、該プレコート層を電極として電解重合ポリピロール層を形成させることを特徴とする請求項に記載のアルミニウム固体電解コンデンサの製造方法。The conductive polymer layer is, after forming a conductive precoat layer on the dielectric oxide film, an aluminum solid electrolytic according to claim 1, characterized in that to form the electrolytic polymerization polypyrrole layer the precoat layer as an electrode Capacitor manufacturing method.
JP2003112085A 2003-04-16 2003-04-16 Manufacturing method of aluminum solid electrolytic capacitor Expired - Fee Related JP4338179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003112085A JP4338179B2 (en) 2003-04-16 2003-04-16 Manufacturing method of aluminum solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112085A JP4338179B2 (en) 2003-04-16 2003-04-16 Manufacturing method of aluminum solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2004319795A JP2004319795A (en) 2004-11-11
JP4338179B2 true JP4338179B2 (en) 2009-10-07

Family

ID=33472448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112085A Expired - Fee Related JP4338179B2 (en) 2003-04-16 2003-04-16 Manufacturing method of aluminum solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4338179B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370562C (en) * 2005-02-05 2008-02-20 西安交通大学 Method for producing solid sheet type electrolytic capacitor
JP4816640B2 (en) * 2005-03-23 2011-11-16 日本軽金属株式会社 Aluminum electrolytic capacitor and method for manufacturing aluminum electrolytic capacitor
JP4893183B2 (en) 2006-09-20 2012-03-07 日本軽金属株式会社 Aluminum electrode plate for electrolytic capacitors
JP4999083B2 (en) * 2007-06-05 2012-08-15 Necトーキン株式会社 Solid electrolytic capacitor
JP5333582B2 (en) * 2009-05-12 2013-11-06 日本軽金属株式会社 Method for producing aluminum electrode plate for electrolytic capacitor
JP2014030063A (en) * 2013-11-13 2014-02-13 Rubycon Corp Device for surface mounting
JP2014030064A (en) * 2013-11-13 2014-02-13 Rubycon Corp Device for mounting
CN108701547B (en) 2016-03-10 2020-10-30 松下知识产权经营株式会社 Solid electrolytic capacitor and method for manufacturing the same

Also Published As

Publication number Publication date
JP2004319795A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP3228155B2 (en) Method for manufacturing solid electrolytic capacitor
JP4338179B2 (en) Manufacturing method of aluminum solid electrolytic capacitor
JP2003086459A (en) Solid electrolytic capacitor
JP2004158577A (en) Process for producing laminated large area aluminum solid electrolytic capacitor and capacitor produced by that process
JP4026819B2 (en) Manufacturing method of multilayer aluminum solid electrolytic capacitor and capacitor by the method
JPH10321471A (en) Solid electrolytic capacitor and its manufacture
JP3399515B2 (en) Method for manufacturing solid electrolytic capacitor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
WO2004088689A1 (en) Conductive separator and electrolytic capacitor including the same
JP2004088073A (en) Solid electrolytic capacitor
JPH06168855A (en) Multilayer solid electrolytic capacitor and fabrication thereof
JP4124360B2 (en) Manufacturing method of solid electrolytic capacitor
KR100753612B1 (en) Solid Electrolyte Capacitor and Method for Producing the Same
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JP6475417B2 (en) Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor
JP3800829B2 (en) Capacitor manufacturing method
JPH0645197A (en) Manufacture of solid-state electrolytic capacitor
JPH0365007B2 (en)
JP2924310B2 (en) Manufacturing method of capacitor
JP2005268681A (en) Manufacturing method of solid electrolytic capacitor
JP4084862B2 (en) Manufacturing method of solid electrolytic capacitor
JPH06314641A (en) Manufacture of slid-state electrolytic capacitor
JPH0645198A (en) Manufacture of solid-state electrolytic capacitor
JP2022167434A (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JPH03139816A (en) Manufacture of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

R150 Certificate of patent or registration of utility model

Ref document number: 4338179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150710

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees