JPH05203272A - Cryogenic cold accumulation material and cryogenic cold accumulator using same - Google Patents

Cryogenic cold accumulation material and cryogenic cold accumulator using same

Info

Publication number
JPH05203272A
JPH05203272A JP4011614A JP1161492A JPH05203272A JP H05203272 A JPH05203272 A JP H05203272A JP 4011614 A JP4011614 A JP 4011614A JP 1161492 A JP1161492 A JP 1161492A JP H05203272 A JPH05203272 A JP H05203272A
Authority
JP
Japan
Prior art keywords
regenerator
particles
cryogenic
regenerator material
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4011614A
Other languages
Japanese (ja)
Other versions
JP3015571B2 (en
Inventor
Naoyuki Sori
尚行 蘓理
Hideki Yamamiya
秀樹 山宮
Nobuo Hayashi
信男 林
Tomohisa Arai
智久 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4011614A priority Critical patent/JP3015571B2/en
Publication of JPH05203272A publication Critical patent/JPH05203272A/en
Application granted granted Critical
Publication of JP3015571B2 publication Critical patent/JP3015571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PURPOSE:To provide a cryogenic cold accumulation material and a cold accumulator using the same in which gaps among cold accumulation substance particles can be stably held even if a stress, a thermal impact, etc., is applied to gas flow during operation and performance of the accumulator can be maintained for a long period. CONSTITUTION:A cryogenic cold accumulation material has particles of cold accumulation substance having a specific heat of 0.1j/cm<3>K or more at 30K or lower such as magnetic intermetallic compound containing Pb, Pb alloy and rare earth element. The particles of the substance are fixed thereamong by sintering the substance at a temperature lower than its melting point. A cryogenic cold accumulator uses the sintered material at least as part of the material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍機等に使用される
極低温用蓄冷材およびそれを用いた極低温蓄冷器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryogenic regenerator material used in refrigerators and the like, and a cryogenic regenerator using the same.

【0002】[0002]

【従来の技術】近年、超電導技術の発展は著しく、その
応用分野が拡大するに伴って、小型で高性能の冷凍機の
開発が不可欠になってきている。このような冷凍機に
は、軽量・小型で熱効率の高いことが要求されている。
このようなことから、気体冷凍に代わる磁気熱量効果を
用いた熱サイクル等の新たな冷凍方式(磁気冷凍)によ
る冷凍機の研究が盛んに行われている。
2. Description of the Related Art In recent years, the development of superconducting technology has been remarkable, and with the expansion of its application fields, it has become essential to develop a small-sized and high-performance refrigerator. Such refrigerators are required to be lightweight, compact and have high thermal efficiency.
For these reasons, research on refrigerators using a new refrigeration system (magnetic refrigeration) such as a heat cycle using a magnetocaloric effect instead of gas refrigeration has been actively conducted.

【0003】例えば、超電導MRI装置等においては、
例えばギフォード・マクマホン型の小型ヘリウム冷凍機
(GM冷凍機)が用いられている。このGM冷凍機は、
Heガス等の作動媒質を圧縮するコンプレッサと、圧縮し
た作動媒質を膨脹させる膨脹部と、膨脹部で冷却された
作動媒質の冷却状態を維持するための極低温蓄冷器とに
より主として構成されている。そして、 1分間に約60回
のサイクルでコンプレッサで圧縮された作動媒質を冷凍
機で膨脹させて冷却し、冷凍機の膨脹部の先端部を通じ
て、被冷却系を冷却するものである。
For example, in a superconducting MRI apparatus or the like,
For example, a Gifford McMahon type small helium refrigerator (GM refrigerator) is used. This GM refrigerator
It is mainly composed of a compressor for compressing the working medium such as He gas, an expansion section for expanding the compressed working medium, and a cryogenic regenerator for maintaining the cooling state of the working medium cooled by the expansion section. .. Then, the working medium compressed by the compressor is expanded and cooled by the refrigerator at a cycle of about 60 times per minute, and the system to be cooled is cooled through the tip of the expansion part of the refrigerator.

【0004】上述したような冷凍機に組み込まれる極低
温蓄冷器は、蓄冷筒に極低温用蓄冷材を充填することに
より構成されている。ここで、極低温用蓄冷材の構成物
質としては、従来、Cu、Pb等が主に用いられてきた。ま
た、最近では、より絶対零度に近い温度を実現するため
に、極低温域において大きな体積比熱を示す、Er3 Niを
はじめとする希土類元素系磁性蓄冷材等も用いられてい
る。
The cryogenic regenerator incorporated in the refrigerator as described above is constructed by filling the regenerator cylinder with the cryogenic regenerator material. Here, Cu, Pb, etc. have been mainly used conventionally as a constituent material of the cryogenic regenerator material. Further, recently, in order to realize a temperature closer to absolute zero, rare earth element-based magnetic regenerator materials such as Er 3 Ni, which show a large volume specific heat in an extremely low temperature range, have been used.

【0005】これらのうち、CuやCu合金は延伸性に優れ
ることから、極細線を作製することが可能で、その細線
をメッシュ状に編むことにより、安定した耐久性を有す
る蓄冷材を構成することが一般的である。
Of these, Cu and Cu alloys are excellent in drawability, and therefore, extra fine wires can be produced, and by knitting the fine wires into a mesh shape, a cool storage material having stable durability is constructed. Is common.

【0006】一方、PbやPb合金、あるいはEr3 Niをはじ
めとする希土類元素系磁性蓄冷材を用いる場合には、充
填率を高めるために球状に近い粒子状とし(例えば特開
平3-174486号公報等参照)、このような粒体を蓄冷筒に
充填した後、粒子が動かぬように適当な蓋をすることに
よって、蓄冷器を構成することが行われている。このよ
うな蓄冷器は、その構成した粒子の間に残る空隙を通し
てHe等のガスを流し、蓄冷材とガスとの間の温度差によ
って熱交換を行うことが役目である。
On the other hand, when a rare earth element magnetic regenerator material such as Pb or Pb alloy or Er 3 Ni is used, it is made into a particle shape close to a sphere in order to increase the filling rate (for example, JP-A-3-174486). (See, for example, the gazette), a regenerator is constructed by filling such a regenerator with a regenerator and then covering the regenerator with an appropriate lid so that the grains do not move. The function of such a regenerator is to cause a gas such as He to flow through the voids remaining between the constituent particles and to perform heat exchange by the temperature difference between the regenerator material and the gas.

【0007】[0007]

【発明が解決しようとする課題】ところで、上述したよ
うな球体状の蓄冷物質を用いた蓄冷器の使用状態におい
ては、He等のガスが高圧かつ高速で、その流れの向きが
頻繁に変わるように、その蓄冷物質粒子間の空隙を通過
するため、蓄冷物質粒子には振動をはじめとする複雑な
応力が与えられる。
By the way, in the use state of the regenerator using the spherical regenerator material as described above, the gas such as He is high in pressure and at a high speed, and its flow direction is frequently changed. In addition, since the cold storage substance particles pass through the voids, a complicated stress such as vibration is applied to the cool storage substance particles.

【0008】例えば、Cuをメッシュ状に編んだ蓄冷材を
用いる場合には、その構成するワイヤの中心からみて応
力はほとんど対称的に発生するため、ワイヤ同志の相対
位置が変わるようなことはないが、Pbや希土類磁性蓄冷
材のように、球状体から構成されている蓄冷器において
は、 1つの粒子からみて不平等な応力をうける場合があ
る。このため、充填当初においては、最密状態で充填さ
れていた蓄冷物質粒子が動作時間の経過と共に、その粒
子間にすきまが発生し、作動媒質のガス流に変化を生じ
させたり、また粒子間の摩擦により微粉が生じること等
により、蓄冷器の性能に悪影響を及ぼすという問題があ
った。
[0008] For example, when a cold storage material in which Cu is woven into a mesh shape is used, the stress is generated almost symmetrically from the center of the wire, so that the relative positions of the wires do not change. However, in a regenerator composed of a spherical body such as Pb or a rare earth magnetic regenerator material, an unequal stress may be seen from one particle. For this reason, at the beginning of filling, the cold storage material particles that were packed in the closest packed state generated a gap between the particles with the passage of operating time, causing a change in the gas flow of the working medium, and There is a problem that the performance of the regenerator is adversely affected by the generation of fine powder due to the friction of.

【0009】ここで、蓄冷物質粒子の形状を真球状とす
ると共に、粒子径寸法のバラツキをなくすことは、上述
したような不具合を回避することに有効であるが、工業
的見地からは不可能または非常に高価となるため、現実
的な対応策とはいえない。このようなことから、従来の
蓄冷器においては、一定の動作時間が経過する毎に、分
解修理や蓄冷筒の交換を行ったり、またその間の動作途
中においても、温度の時間変化に応じて運転条件を調整
しなければならない等、繁雑な運転操作が強いられてい
た。
Here, it is effective to avoid the above-mentioned inconveniences by making the shape of the particles of the cold storage material spherical and eliminating the variation in the particle diameter size, but it is impossible from an industrial point of view. Or it is very expensive and not a realistic solution. For this reason, in the conventional regenerator, disassembly repair and replacement of the regenerator are performed every time a certain operating time elapses, and even during operation during that period, operation is performed according to the time change of temperature. Complex driving operations were forced, such as having to adjust the conditions.

【0010】本発明は、このような課題に対処するため
になされたもので、運転中にガス流による応力や熱衝撃
等が付加されても、蓄冷物質粒子間の空隙を安定して保
つことができ、蓄冷器の性能を長期間にわたって維持す
ることが可能な極低温用蓄冷材およびそれを用いた蓄冷
器を提供することを目的としている。
The present invention has been made in order to solve such a problem, and keeps the voids between the cold-storing substance particles stable even if stress or thermal shock due to the gas flow is added during operation. It is an object of the present invention to provide a regenerator material for cryogenic temperature and a regenerator using the same, which is capable of maintaining the performance of the regenerator.

【0011】[0011]

【課題を解決するための手段】すなわち、本発明の極低
温用蓄冷材は、 30K以下の温度で 0.1J/cm3 K 以上の比
熱を有する蓄冷物質の粒体を用いた極低温用蓄冷材にお
いて、前記蓄冷物質の粒子間は、該蓄冷物質の融点未満
の温度による焼結により固着されていることを特徴とし
ている。
Means for Solving the Problem That is, the cryogenic regenerator material of the present invention is a cryogenic regenerator material using granules of a regenerator material having a specific heat of 0.1 J / cm 3 K or more at a temperature of 30 K or less. In the above, the particles of the regenerator material are fixed by sintering at a temperature lower than the melting point of the regenerator material.

【0012】また、本発明の極低温蓄冷器は、極低温用
蓄冷材が充填された極低温蓄冷器において、前記極低温
用蓄冷材の少なくとも一部として、上記焼結した蓄冷材
を用いたことを特徴としている。
The cryogenic regenerator of the present invention is a cryogenic regenerator filled with a cryogenic regenerator material, wherein the sintered cold accumulator is used as at least a part of the cryogenic regenerator material. It is characterized by

【0013】本発明に用いられる蓄冷物質としては、 3
0K以下の温度において 0.1J/cm3 K以上の比熱を有する
物質であれば各種のものを用いることが可能であり、例
えば鉛、鉛合金、希土類元素を含有する磁性金属間化合
物等が例示される。
The cold storage material used in the present invention includes 3
Various substances can be used as long as they have a specific heat of 0.1 J / cm 3 K or more at a temperature of 0 K or less, and examples thereof include lead, lead alloys, and magnetic intermetallic compounds containing rare earth elements. It

【0014】上記希土類元素系磁性金属間化合物として
は、RMz (Rは Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、T
b、Dy、Ho、Er、TmおよびYbから選ばれた少なくとも 1
種の希土類元素を、 MはNi、CoおよびCuから選ばれた少
なくとも 1種の金属元素を示し、 zは 0.001〜 9.0の範
囲の数を示す)で表される金属間化合物や、 R・Rh金属
間化合物等が例示される。これらの希土類元素系磁性金
属間化合物は、 20K以下に比熱の最大値を有し、かつそ
の値が単位体積当りの比熱(体積比熱)として十分に大
きいため、より極低温への到達を可能とするものであ
る。
As the rare earth element-based magnetic intermetallic compound, RM z (R is Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, T
At least 1 selected from b, Dy, Ho, Er, Tm and Yb
R is a rare earth element, M is at least one metal element selected from Ni, Co and Cu, and z is a number in the range of 0.001 to 9.0). An intermetallic compound etc. are illustrated. These rare earth element-based magnetic intermetallic compounds have the maximum value of specific heat below 20K, and the value is sufficiently large as the specific heat per unit volume (volume specific heat), so that it is possible to reach a very low temperature. To do.

【0015】本発明の極低温用蓄冷材は、上述した蓄冷
物質の粒体を用いて、これらの粒子間を焼結により固着
させたものである。ここで、上記蓄冷物質の粒体は、そ
の形状が球状に近く、かつその粒径が揃っているほど、
ガスの流れを円滑にすることができるため、全粒体の70
重量%以上を短径に対する長径の比(アスペクト比)が
5以下である蓄冷物質粒子で構成し、かつ全粒体の70重
量%以上を粒径が0.01〜 3.0mmの範囲の蓄冷物質粒子で
構成することが好ましい。
The cryogenic regenerator material of the present invention comprises the particles of the regenerator material described above, and these particles are fixed by sintering. Here, the particles of the cold storage material, the shape is close to spherical, and the more uniform the particle size,
Since the flow of gas can be smoothed, 70
The ratio of the major axis to the minor axis (aspect ratio) is more than weight%
It is preferable that the regenerator material particles are 5 or less, and that 70% by weight or more of all the particles are regenerator material particles having a particle diameter of 0.01 to 3.0 mm.

【0016】蓄冷物質粒子のアスペクト比は、粒体の強
度や充填密度に大きな影響を及ぼすものであり、アスペ
クト比が 5を超えると、変形破壊を起こしやすくなると
共に、均質な空隙をもつように充填することが困難とな
る。よって、このような粒子が全粒体の30重量%を超え
ると、蓄冷性能の低下等を招くこととなる。より好まし
いアスペスクト比は 3以下、さらに好ましくは 2以下で
あり、できるだけ真球に近づけることが望ましい。アス
ペクト比が 5以下の粒子の全粒体中における比率は、80
重量%以上とすることがより好ましく、さらに好ましく
は90重量%以上である。
The aspect ratio of the particles of the regenerator material has a great influence on the strength and packing density of the granules. If the aspect ratio exceeds 5, deformation fracture tends to occur and uniform voids should be formed. Difficult to fill. Therefore, if such particles exceed 30% by weight of the whole particles, the cold storage performance is deteriorated. A more preferable aspect ratio is 3 or less, and more preferably 2 or less, and it is desirable that the aspect ratio be as close to a true sphere as possible. The ratio of particles with an aspect ratio of 5 or less in the whole particle is 80
It is more preferably at least wt%, and even more preferably at least 90 wt%.

【0017】また、蓄冷物質粒子の粒径は、粒体の強度
や伝熱特性等に大きな影響を及ぼすものであり、粒径が
0.01mm未満であると、充填密度が高くなりすぎることか
ら、圧力損失の増大等を招き、また粒径が 3.0mmを超え
ると、伝熱面積が小さくなることから、熱伝達効率の低
下を招くこととなる。よって、このような粒子が全粒体
の30重量%を超えると、蓄冷性能の低下を招くこととな
る。より好ましい粒径は、 0.1〜 2mmの範囲である。粒
径が0.01〜 3.0mmの範囲の粒子の全粒体中における比率
は、80重量%以上とすることがより好ましく、さらに好
ましくは90重量%以上である。
Further, the particle size of the cold storage material particles has a great influence on the strength and heat transfer characteristics of the particles, and the particle size is
If it is less than 0.01 mm, the packing density becomes too high, which leads to an increase in pressure loss, and if the particle size exceeds 3.0 mm, the heat transfer area becomes small, resulting in a decrease in heat transfer efficiency. It will be. Therefore, if such particles exceed 30% by weight of the whole particles, the cold storage performance is deteriorated. A more preferable particle size is in the range of 0.1 to 2 mm. The ratio of particles having a particle size of 0.01 to 3.0 mm in the whole particle is more preferably 80% by weight or more, and further preferably 90% by weight or more.

【0018】上述したような蓄冷物質の粒体は、種々の
方法で作製することが可能であるが、本質的に脆い希土
類元素系磁性金属間化合物の粒体を製造する際には、希
土類元素を含む溶湯を回転円板法、単ロール法、双ロー
ル法、イナートガスアトマイズ法、回転ノズル法等によ
り急冷凝固させて、球体化する方法を適用することが好
ましい。この後、篩分けや形状分級等によって粒径や形
状を揃える。
The particles of the cold-storing substance as described above can be produced by various methods. However, when the particles of the rare earth element-based magnetic intermetallic compound which are essentially brittle are manufactured, the rare earth element is used. It is preferable to apply a method of spheroidizing by rapidly quenching and solidifying the molten metal containing s by a rotating disk method, a single roll method, a twin roll method, an inert gas atomizing method, a rotating nozzle method, or the like. After that, the particle size and shape are made uniform by sieving, shape classification and the like.

【0019】そして、本発明における蓄冷材は、上述し
たような蓄冷物質の粒体をその融点未満の温度で焼結す
ることにより、粒子間を固着させたものである。焼結の
度合は、あくまでも粒子間が固定される程度でよく、空
隙率が15〜 80%程度となるように焼結条件を設定するこ
とが好ましい。焼結後の空隙率が 15%未満ではガスの流
れが阻害され、蓄冷性能の低下を招くこととなり、また
80%を超えると構造的に現実に製作することは不可能と
なる。
The cold accumulating material in the present invention is obtained by sintering the particles of the cold accumulating substance as described above at a temperature lower than the melting point thereof to fix the particles. The degree of sintering may be such that particles are fixed to each other, and the sintering conditions are preferably set so that the porosity is about 15 to 80%. If the porosity after sintering is less than 15%, the gas flow is obstructed, and the cold storage performance deteriorates.
If it exceeds 80%, it becomes impossible to actually manufacture it structurally.

【0020】また、蓄冷物質粒体の焼結による固着は、
蓄冷物質粒子間で直接行ってもよく、また蓄冷物質粒子
の表面を予め蓄冷物質の融点より低温で液化、軟化また
は自己融着する物質で覆った後、このような物質を介し
て液相焼結させることにより行ってもよい。このような
介在物質としては、例えば鉛、銀、スズ、インジウム、
亜鉛等からなる低融点合金類等が例示される。上述した
ような物質を介して液相焼結させることによって、より
低温で蓄冷物質粒子間を固着させることができると共
に、固着強度の向上を図ることができる。
Further, the fixation due to the sintering of the cold storage material granules is
It may be performed directly between the particles of the cold storage material, or the surface of the particles of the cold storage material may be previously covered with a material that liquefies, softens or self-bonds at a temperature lower than the melting point of the cold storage material, and then liquid phase baking is performed through such a material. You may carry out by binding. Examples of such intervening substances include lead, silver, tin, indium,
Examples are low melting point alloys made of zinc or the like. By performing liquid phase sintering through the substance as described above, the cold storage substance particles can be fixed at a lower temperature and the fixing strength can be improved.

【0021】本発明の極低温用蓄冷材は、例えば以下の
ようにして製造される。すなわち、まず上述したような
蓄冷物質粒体を、この蓄冷物質と反応しにくい材料で構
成された焼結容器内に収容し、蓄冷物質粒子間が適度に
接触する程度の圧力で、蓋等によって上記粒体を押え、
この状態で熱処理を施すことにより焼結させる。上記焼
結容器としては、この容器と蓄冷物質粒子とが融着しな
いように、酸化物の微粒子を吹き付けたり、またNi、Co
等でメッキを施したり、あるいは酸化物の容器を用いる
ことも有効な方法である。焼成雰囲気は、蓄冷物質が酸
化しないように、真空中または不活性ガス中で行うこと
が好ましい。焼結温度および時間は、使用した蓄冷物質
および介在物の有無に応じて、上述したような空隙率が
得られるように適宜設定する。また、この焼結工程は、
蓄冷物質特に希土類金属間化合物の安定化処理としても
機能する。
The cryogenic regenerator material of the present invention is manufactured, for example, as follows. That is, first, the cold storage substance granules as described above are housed in a sintering container made of a material that does not easily react with the cold storage substance, and pressure is applied to the cold storage substance particles so that the cold storage substance particles appropriately contact with each other. Hold down the above granules,
In this state, heat treatment is performed to sinter. As the above-mentioned sintering container, in order not to fuse the container and the cool storage material particles, spray fine particles of oxide, Ni, Co
It is also an effective method to carry out plating with a metal or the like, or to use an oxide container. The firing atmosphere is preferably performed in vacuum or in an inert gas so that the cold storage material is not oxidized. The sintering temperature and time are appropriately set so that the porosity as described above can be obtained depending on the presence or absence of the cool storage material and inclusions used. In addition, this sintering process,
It also functions as a stabilizing treatment for cold storage materials, especially rare earth intermetallic compounds.

【0022】また、本発明の極低温蓄冷器は、上述した
焼結により粒子間を固着した蓄冷材(以下、焼結蓄冷材
と記す)を蓄冷筒に充填したものであるが、充填する蓄
冷材の全てを上記焼結蓄冷材で構成しなければならない
ものではなく、焼結蓄冷材と粒体との混合物として充填
することも可能である。また、複数の焼結蓄冷材を充填
することにより、極低温用蓄冷器を構成することも可能
である等、種々の形態を採用することができる。
Further, the cryogenic regenerator of the present invention is one in which a regenerator material in which particles are fixed by the above-mentioned sintering (hereinafter referred to as a sintered regenerator material) is filled in a regenerator cylinder. Not all of the materials have to be composed of the above-mentioned sintered regenerator material, but it is also possible to fill them as a mixture of the sintered regenerator material and granules. Further, various forms can be adopted, such as a cold regenerator for cryogenic temperature can be configured by filling a plurality of sintered regenerator materials.

【0023】[0023]

【作用】本発明の極低温用蓄冷材においては、蓄冷物質
の粒体を焼結させ、その粒子間を固着している。よっ
て、ガス流による応力や熱衝撃が加わっても、蓄冷物質
粒子の振動や移動を防止することが可能となるため、蓄
冷物質粒子間の空隙が安定に保たれ、ガス流の変化や微
粉の発生を効果的に抑制することができる。また、伝熱
面積は、基本的には蓄冷物質の粒子を用いていることか
ら、十分に確保することができる。そして、このような
極低温用蓄冷材を用いた蓄冷器は、安定性の大幅な向上
を図ることができる。すなわち、温度の時間変化が安定
し、運転条件を最適に調整したあとは、無調整で常に安
定条件、最大出力条件を満足して運転することが可能と
なる。特に、希土類系の蓄冷物質の場合、比較的その融
点が高く、球状粉を作った場合、その粒径の分布はかな
り広いものとなるが、本発明の蓄冷材によれば、その粒
径分布の悪影響を完全になくすことができ、長寿命の蓄
冷器を構成することができる。
In the cryogenic regenerator material of the present invention, the particles of the regenerator material are sintered and the particles are fixed. Therefore, even if stress or thermal shock due to the gas flow is applied, it is possible to prevent the vibration and movement of the cool storage material particles, so that the voids between the cool storage material particles are kept stable, and the change in the gas flow and the generation of fine powder. The generation can be effectively suppressed. In addition, the heat transfer area can be sufficiently ensured because particles of the cold storage substance are basically used. A regenerator using such a cryogenic regenerator material can greatly improve stability. That is, after the temperature change is stable and the operating conditions are optimally adjusted, it is possible to always operate without adjusting the stable conditions and the maximum output conditions. In particular, in the case of a rare earth-based cool storage material, its melting point is relatively high, and when spherical powder is made, its particle size distribution becomes quite wide. However, according to the cool storage material of the present invention, its particle size distribution The adverse effect of can be completely eliminated, and a long-life regenerator can be constructed.

【0024】[0024]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0025】実施例1 まず、高周波溶解によりEr3 Ni母合金(融点 850℃)を
作製した。このEr3 Ni母合金をおおよそ1150℃にて溶融
し、この溶湯をAr雰囲気中で回転円板上に滴下して急冷
凝固させた。得られた粒体を適宜形状分級ならびに篩分
し、粒径 200〜300μm のEr3 Ni粒体を得た。このEr3 N
i粒体のアスペクト比を測定したところ、アスペクト比
が 5以下の粒子が全粒体の95重量%以上の割合で存在し
ていた。このようなEr3 Ni粒体を、グラファイト製のル
ツボの中に振動を加えながら充填し、その上にグラファ
イト製の蓋を軽く押える力が働くように載せ、この状態
で焼成炉内に配置した。なお、粒体充填時の充填率は約
62%とした。次いで、炉内を十分に真空排気した後にAr
ガスを導入し、このAr雰囲気中にて 750〜 800℃の温度
で30〜60分間焼成し、常温まで冷却した後にルツボより
取り出して、目的とする焼結Er3 Ni蓄冷材を得た。
Example 1 First, an Er 3 Ni mother alloy (melting point: 850 ° C.) was produced by high frequency melting. This Er 3 Ni mother alloy was melted at approximately 1150 ° C., and this molten metal was dropped onto a rotating disk in an Ar atmosphere and rapidly solidified. The obtained granules were appropriately classified and sieved to obtain Er 3 Ni granules having a particle size of 200 to 300 μm. This Er 3 N
When the aspect ratio of the i grain was measured, particles having an aspect ratio of 5 or less were present in a proportion of 95% by weight or more of the whole grain. Such Er 3 Ni granules were filled in a graphite crucible while applying vibration, and placed so that the force of lightly pressing the graphite lid was exerted, and placed in the firing furnace in this state. .. The filling rate when filling granules is approx.
It was set to 62%. Then, evacuate the furnace sufficiently and then
A gas was introduced, the mixture was baked in this Ar atmosphere at a temperature of 750 to 800 ° C. for 30 to 60 minutes, cooled to room temperature, and then taken out from the crucible to obtain the target sintered Er 3 Ni regenerator material.

【0026】このようにして得た焼結Er3 Ni蓄冷材は、
約 30%の空隙率を有していた。また、外形は用いたルツ
ボの内径に比べて、寸法比でおおよそ5%程度縮んでい
た。この焼結Er3 Ni蓄冷材の強度を調べるため、おおよ
そ30cmの高さからベークライト板の上に落下させたとこ
ろ、角の部分が壊れることもなく、十分な強度を有して
いることが判明した。このことは、ガス流に対して十分
な耐久性を有していることを意味する。
The sintered Er 3 Ni regenerator material thus obtained is
It had a porosity of about 30%. Further, the outer shape was contracted by about 5% in terms of the size ratio compared to the inner diameter of the crucible used. To investigate the strength of this sintered Er 3 Ni regenerator material, it was dropped onto a bakelite plate from a height of about 30 cm, and it was found that the corners did not break and had sufficient strength. did. This means that it has sufficient resistance to gas flow.

【0027】次に、上記焼結Er3 Ni蓄冷材を用いて極低
温蓄冷器を構成し、その安定性および冷凍能力を以下の
ようにして評価した。まず、上記焼結Er3 Ni蓄冷材の外
径を蓄冷筒の内径に合せて研摩し、超音波により微粉を
完全に落とした後、おおよそ1kg/cm2 の圧力をかけて蓄
冷筒内に圧入した。これをGM冷凍機に組込み、冷凍試
験を行った。その結果、4.2Kにおける冷凍能力はおおよ
そ 200〜 400mWが得られ、連続3000時間運転している
間、安定した出力を得ることができ、良好な結果が得ら
れた。
Next, a cryogenic regenerator was constructed using the sintered Er 3 Ni regenerator material, and its stability and refrigerating capacity were evaluated as follows. First, it polished together the outer diameter of the sintered Er 3 Ni cold accumulating material to the inner diameter of the cold accumulating cylinder, after full dropped pulverized by ultrasonic, pressed into cold storage cylinder roughly a pressure of 1 kg / cm 2 did. This was incorporated into a GM refrigerator and a freezing test was conducted. As a result, the refrigerating capacity at 4.2K was about 200-400mW, and stable output could be obtained during continuous 3000 hours operation, and good results were obtained.

【0028】また、本発明との比較として、上記実施例
1で作製したEr3 Ni粒体を焼結させることなく、そのま
ま蓄冷材として用いて極低温用蓄冷器を構成した。な
お、Er3 Ni粒体の蓄冷筒への充填率は 65%とした。この
極低温蓄冷器をGM冷凍機に組込み、上記実施例と同様
にして冷凍試験を行った。その結果、4.2Kにおける冷凍
能力はおおよそ 150〜 300mWが得られた。
Further, as a comparison with the present invention, a cryogenic regenerator was constructed by directly using the Er 3 Ni particles produced in Example 1 as a regenerator material without sintering. The filling rate of Er 3 Ni particles in the cold storage cylinder was set to 65%. This cryogenic regenerator was incorporated into a GM refrigerator, and a freezing test was conducted in the same manner as in the above-mentioned examples. As a result, the refrigeration capacity at 4.2K was about 150-300mW.

【0029】実施例2 実施例1と同様にして作製したEr3 Ni粒体を、アルミナ
製のルツボを用いる以外は、実施例1と同一条件で焼結
させた。得られた焼結Er3 Ni蓄冷材は、実施例1と同様
な強度を有し、また冷凍試験においても実施例1と同様
な良好な結果が得られた。
Example 2 The Er 3 Ni particles produced in the same manner as in Example 1 were sintered under the same conditions as in Example 1 except that an alumina crucible was used. The obtained sintered Er 3 Ni regenerator material had the same strength as that of Example 1, and the same good result as that of Example 1 was obtained in the freezing test.

【0030】実施例3 実施例1と同様にして作製したEr3 Ni粒体を、予め内部
にNiメッキを施したルツボを用いる以外は、実施例1と
同一条件で焼結させた。得られた焼結Er3 Ni蓄冷材は、
実施例1と同様な強度を有し、また冷凍試験においても
実施例1と同様な良好な結果が得られた。
Example 3 The Er 3 Ni particles produced in the same manner as in Example 1 were sintered under the same conditions as in Example 1 except that a crucible having Ni plated therein beforehand was used. The obtained sintered Er 3 Ni regenerator material is
It has the same strength as that of Example 1, and the same good result as that of Example 1 was obtained in the freezing test.

【0031】実施例4 まず、実施例1と同様にして作製したEr3 Ni粒体の表面
に、予めSnを 5〜10μm の厚さでメッキを施した。そし
て、このSnメッキ膜を有するEr3 Ni粒体を、グラファイ
ト製のルツボの中に振動を加えながら充填し、その上に
グラファイト製の蓋を軽く押える力が働くように載せ、
この状態で焼成炉内に配置した。なお、粒体充填時の充
填率は約 65%とした。次いで、炉内を 5×10-3Torrまで
真空排気した後、約 300℃の温度で30分間焼成し、常温
まで冷却した後にルツボより取り出して、目的とするSn
メッキ層を有する焼結Er3 Ni蓄冷材を得た。
Example 4 First, the surface of an Er 3 Ni grain produced in the same manner as in Example 1 was preliminarily plated with Sn to a thickness of 5 to 10 μm. Then, the Er 3 Ni particles having this Sn plating film were filled into the crucible made of graphite while applying vibration, and the crucible made of graphite was placed thereon so that the force of gently pressing the lid made of graphite would work.
It was placed in the firing furnace in this state. The filling rate when filling the granules was about 65%. Then, the furnace was evacuated to 5 × 10 -3 Torr, fired at a temperature of about 300 ° C for 30 minutes, cooled to room temperature, and then taken out of the crucible.
A sintered Er 3 Ni cold storage material having a plated layer was obtained.

【0032】このようにして得たSnメッキ層を有する焼
結Er3 Ni蓄冷材は、約 33%の空隙率を有していた。ま
た、この焼結Er3 Ni蓄冷材の強度は、実施例1による焼
結Er3 Ni蓄冷材と同等で、50cmの高さからベークライト
板上に落下させても、何等問題は生じなかった。
The sintered Er 3 Ni regenerator material having the Sn plating layer thus obtained had a porosity of about 33%. Further, the strength of the sintered Er 3 Ni cold accumulating material is equivalent to the sintering Er 3 Ni cold accumulating material according to Example 1, even when dropped onto a Bakelite plate from a height of 50 cm, any problem did not occur.

【0033】また、上記Snメッキ層を有する焼結Er3 Ni
蓄冷材を、実施例1と同様にして蓄冷筒に圧入して極低
温蓄冷器を構成し、この極低温蓄冷器をGM冷凍機に組
込んで、実施例1と同様にして冷凍試験を行った。その
結果、4.2Kにおける冷凍能力はおおよそ 150〜 200mWと
良好であった。
Sintered Er 3 Ni having the above Sn plating layer
The cold storage material is press-fitted into the cold storage cylinder in the same manner as in Example 1 to form a cryogenic regenerator, and the cryogenic regenerator is incorporated into a GM refrigerator, and a freezing test is performed in the same manner as in Example 1. It was As a result, the refrigeration capacity at 4.2K was good at about 150-200mW.

【0034】実施例5 まず、粒径 250〜 300μm の鉛球を用意し、この鉛球を
グラファイト製のルツボの中に振動を加えながら充填
し、その上にグラファイト製の蓋を軽く押える力が働く
ように載せ、この状態で焼成炉内に配置した。なお、鉛
球充填時の充填率は約 68%とした。次いで、炉内を 5×
10-3Torrまで真空排気した後、 1気圧のアルゴン下で 2
70℃の温度で10〜30分焼成し、常温まで冷却した後にル
ツボより取り出して、目的とする焼結Pb蓄冷材を得た。
Example 5 First, lead spheres having a particle size of 250 to 300 μm were prepared, and the lead spheres were filled in a graphite crucible while applying vibration, and a force for gently pressing the graphite lid was exerted on it. And placed in a firing furnace in this state. The filling rate when filling the lead balls was about 68%. Then, in the furnace 5 ×
After evacuating to 10 -3 Torr, 2
After firing at a temperature of 70 ° C for 10 to 30 minutes and cooling to room temperature, it was taken out from the crucible to obtain the desired sintered Pb cold storage material.

【0035】このようにして得た焼結Pb蓄冷材は約 28%
の空隙率を有していた。また、外形は用いたルツボの内
径に比べて、寸法比でおおよそ4%程度縮んでいた。ま
た、この焼結Pb蓄冷材の強度試験を実施例1と同様にし
て行い、強度的に問題がないことを確認した。
The sintered Pb regenerator material thus obtained has a content of about 28%.
Had a porosity of. In addition, the outer shape was contracted by about 4% in terms of the size ratio compared to the inner diameter of the crucible used. Further, the strength test of this sintered Pb cold storage material was conducted in the same manner as in Example 1, and it was confirmed that there was no problem in strength.

【0036】また、上記焼結Pb蓄冷材を、実施例1と同
様にして蓄冷筒に圧入して極低温蓄冷器を構成し、この
極低温蓄冷器をGM冷凍機に組込んで、実施例1と同様
にして冷凍試験を行った。その結果、 10Kにおける冷凍
能力はおおよそ3Wと良好であった。
Further, the sintered Pb regenerator material was press-fitted into the regenerator cylinder in the same manner as in Example 1 to form a cryogenic regenerator, and this cryogenic regenerator was incorporated into the GM refrigerator. A freezing test was conducted in the same manner as in 1. As a result, the refrigeration capacity at 10K was good at about 3W.

【0037】このように、本発明の蓄冷材を用いた蓄冷
器は、長期間安定して運転することが可能であることが
分かる。このことは、蓄冷器のメンテナンスに要する工
数を大幅に削減することが可能であることを意味し、冷
凍機の運転コストを低減することが可能となる。
As described above, it is understood that the regenerator using the regenerator material of the present invention can be stably operated for a long period of time. This means that the number of man-hours required for maintenance of the regenerator can be significantly reduced, and the operating cost of the refrigerator can be reduced.

【0038】[0038]

【発明の効果】以上説明したように本発明によれば、ガ
ス流による応力や熱衝撃に対する耐久性に優れ、蓄冷物
質粒子の振動や移動が防止でき、蓄冷物質粒子間の空隙
を安定に保つことが可能な極低温用蓄冷材を提供するこ
とが可能となる。よって、ガス流の変化や微粉の発生を
効果的に抑制することが可能となるため、長期間にわた
ってその性能を安定して維持することが可能な蓄冷器を
提供することができる。
As described above, according to the present invention, the durability against stress and thermal shock due to gas flow is excellent, the vibration and movement of the particles of the cold storage material can be prevented, and the voids between the particles of the cold storage material are kept stable. It is possible to provide an extremely low temperature regenerator material. Therefore, it is possible to effectively suppress the change of the gas flow and the generation of fine powder, and thus it is possible to provide a regenerator that can stably maintain its performance for a long period of time.

【0039】[0039]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 智久 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomohisa Arai 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Incorporated Toshiba Toshiba Office

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 30K以下の温度で 0.1J/cm3 K 以上の比
熱を有する蓄冷物質の粒体を用いた極低温用蓄冷材にお
いて、 前記蓄冷物質の粒子間は、該蓄冷物質の融点未満の温度
による焼結により固着されていることを特徴とする極低
温用蓄冷材。
1. A regenerator material for cryogenic use, comprising particles of a regenerator material having a specific heat of 0.1 J / cm 3 K or more at a temperature of 30 K or less, wherein the space between the regenerator material particles is less than the melting point of the regenerator material. An extremely low temperature regenerator material characterized by being fixed by sintering at the temperature.
【請求項2】 請求項1記載の極低温用蓄冷材におい
て、 前記蓄冷物質の粒子間は、該蓄冷物質の融点より低温に
て液化、軟化もしくは自己融着する物質を介して、液相
焼結により固着されていることを特徴とする極低温用蓄
冷体。
2. The cryogenic regenerator material according to claim 1, wherein the particles of the regenerator material are liquid phase fired through a substance that liquefies, softens or self-bonds at a temperature lower than the melting point of the regenerator material. A cryogenic regenerator characterized by being fixed by binding.
【請求項3】 極低温用蓄冷材が充填された蓄冷器にお
いて、 前記極低温用蓄冷材の少なくとも一部として、 30K以下
の温度で 0.1J/cm3 K以上の比熱を有する蓄冷物質の粒
体を、該蓄冷物質の融点未満の温度による焼結により固
着させた蓄冷材を用いたことを特徴とする極低温蓄冷
器。
3. A regenerator filled with a cryogenic regenerator material, wherein at least a part of the cryogenic regenerator material is a grain of a regenerator material having a specific heat of 0.1 J / cm 3 K or more at a temperature of 30 K or less. A cryogenic regenerator characterized by using a regenerator material having a body fixed by sintering at a temperature lower than the melting point of the regenerator material.
JP4011614A 1992-01-27 1992-01-27 Cryogenic regenerator material and cryogenic regenerator and refrigerator using the same Expired - Lifetime JP3015571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4011614A JP3015571B2 (en) 1992-01-27 1992-01-27 Cryogenic regenerator material and cryogenic regenerator and refrigerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4011614A JP3015571B2 (en) 1992-01-27 1992-01-27 Cryogenic regenerator material and cryogenic regenerator and refrigerator using the same

Publications (2)

Publication Number Publication Date
JPH05203272A true JPH05203272A (en) 1993-08-10
JP3015571B2 JP3015571B2 (en) 2000-03-06

Family

ID=11782797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4011614A Expired - Lifetime JP3015571B2 (en) 1992-01-27 1992-01-27 Cryogenic regenerator material and cryogenic regenerator and refrigerator using the same

Country Status (1)

Country Link
JP (1) JP3015571B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018880A1 (en) * 1996-10-30 1998-05-07 Kabushiki Kaisha Toshiba Cold accumulation material for ultra-low temperature, refrigerating machine using the material, and heat shield material
JP2005120391A (en) * 2003-10-14 2005-05-12 Hitachi Metals Ltd Method for manufacturing magnetic material
JP2008096040A (en) * 2006-10-13 2008-04-24 Iwatani Industrial Gases Corp Cold storage for cryogenic refrigerating machine
JP2009103412A (en) * 2007-10-25 2009-05-14 Toshiba Corp Regeneration type refrigerator
JP2009133620A (en) * 1994-08-23 2009-06-18 Toshiba Corp Superconductive mri system and cryopump
JP2011137632A (en) * 2011-04-11 2011-07-14 Sumitomo Heavy Ind Ltd Cold storage medium, cold accumulator, and cryogenic cold storage type refrigerating machine
WO2018117258A1 (en) * 2016-12-22 2018-06-28 株式会社三徳 Cooling storage material and method for producing same, cooling storage device, and refrigerating machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107916437B (en) * 2017-11-09 2020-06-26 宁波复能新材料股份有限公司 Cerium-praseodymium-neodymium alloy and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133620A (en) * 1994-08-23 2009-06-18 Toshiba Corp Superconductive mri system and cryopump
JP2010001498A (en) * 1994-08-23 2010-01-07 Toshiba Corp Refrigerator using cold heat accumulating material for extremely low temperature, and method for manufacturing the same
WO1998018880A1 (en) * 1996-10-30 1998-05-07 Kabushiki Kaisha Toshiba Cold accumulation material for ultra-low temperature, refrigerating machine using the material, and heat shield material
US6003320A (en) * 1996-10-30 1999-12-21 Kabushiki Kaisha Toshiba Cold accumulating material for extremely low temperature cold, refrigerator using the same and heat shielding member
JP2005120391A (en) * 2003-10-14 2005-05-12 Hitachi Metals Ltd Method for manufacturing magnetic material
JP2008096040A (en) * 2006-10-13 2008-04-24 Iwatani Industrial Gases Corp Cold storage for cryogenic refrigerating machine
JP2009103412A (en) * 2007-10-25 2009-05-14 Toshiba Corp Regeneration type refrigerator
JP2011137632A (en) * 2011-04-11 2011-07-14 Sumitomo Heavy Ind Ltd Cold storage medium, cold accumulator, and cryogenic cold storage type refrigerating machine
WO2018117258A1 (en) * 2016-12-22 2018-06-28 株式会社三徳 Cooling storage material and method for producing same, cooling storage device, and refrigerating machine
JP6382470B1 (en) * 2016-12-22 2018-08-29 株式会社三徳 Cold storage material and manufacturing method thereof, cold storage and refrigerator

Also Published As

Publication number Publication date
JP3015571B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
US5593517A (en) Regenerating material and refrigerator using the same
JP4551509B2 (en) Cold storage material and cold storage type refrigerator
EP0411591B1 (en) Cold accumulating material and method of manufacturing the same
JPH07101134B2 (en) Heat storage material and low temperature heat storage
JP3015571B2 (en) Cryogenic regenerator material and cryogenic regenerator and refrigerator using the same
JP4237791B2 (en) Manufacturing method of regenerator material
JP3769024B2 (en) Cryogenic regenerator material, cryogenic regenerator using the same, and refrigerator
JP4322321B2 (en) Cold storage material for cryogenic temperature, refrigerator and heat shield material using it
JP5468380B2 (en) Cold storage material and manufacturing method thereof
JP3561023B2 (en) Cryogenic cool storage material and cryogenic cool storage device using the same
WO1999020956A1 (en) Cold-accumulating material and cold-accumulating refrigerator
JP3980158B2 (en) Cold storage material and cold storage type refrigerator
JP2828978B2 (en) Cold storage material and method for producing the same
JPH06240241A (en) Cold-reserving agent for cryogenic temperature and cold-reserving apparatus for cryogenic temperature using the same
JP3751646B2 (en) Cold storage material and refrigerator using the same
JP2836813B2 (en) Cool storage material and cool storage device
JP3055674B2 (en) Heat storage materials and low-temperature heat storage
JP2585240B2 (en) Manufacturing method of cold storage material
JP4564161B2 (en) refrigerator
JP2941865B2 (en) Low temperature storage
JP2004099822A (en) Cold storage material and regenerative refrigerator using the same
JP2004075884A (en) Rare earth oxysulfide ceramic cold storage material, its manufacturing process, and cryogenic cold accumulator using the cold storage material
JP2957294B2 (en) Cryogenic heat storage material and cryogenic heat storage
JP2004143341A (en) Cold storage material and cold storage type refrigerator using the same
JPH07234028A (en) Cold accumulating material for cryogenic temperature and cold accumulator for cryogenic temperature

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 13