JP4237791B2 - Manufacturing method of regenerator material - Google Patents

Manufacturing method of regenerator material Download PDF

Info

Publication number
JP4237791B2
JP4237791B2 JP2006327268A JP2006327268A JP4237791B2 JP 4237791 B2 JP4237791 B2 JP 4237791B2 JP 2006327268 A JP2006327268 A JP 2006327268A JP 2006327268 A JP2006327268 A JP 2006327268A JP 4237791 B2 JP4237791 B2 JP 4237791B2
Authority
JP
Japan
Prior art keywords
regenerator
regenerator material
particles
magnetic
cylindrical metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006327268A
Other languages
Japanese (ja)
Other versions
JP2007132655A (en
JP2007132655A5 (en
Inventor
正巳 岡村
智久 新井
啓介 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006327268A priority Critical patent/JP4237791B2/en
Publication of JP2007132655A publication Critical patent/JP2007132655A/en
Publication of JP2007132655A5 publication Critical patent/JP2007132655A5/ja
Application granted granted Critical
Publication of JP4237791B2 publication Critical patent/JP4237791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Hard Magnetic Materials (AREA)

Description

本発明は蓄冷材の製造方法に係り、特に10K以下の極低温域において長期に亘って顕著な冷凍能力を発揮できる蓄冷材の製造方法に関する。   The present invention relates to a method for manufacturing a regenerator material, and more particularly to a method for manufacturing a regenerator material capable of exhibiting a significant refrigerating capacity over a long period in a cryogenic temperature region of 10K or less.

近年、超電導技術の発展は著しく、その応用分野が拡大するに伴って小型で高性能の冷凍機の開発が不可欠になってきている。かかる小型冷凍機は、軽量・小型で熱効率の高いことが要求されており、種々の応用分野において実用化が進められている。   In recent years, the development of superconducting technology has been remarkable, and the development of compact and high-performance refrigerators has become indispensable as the field of application expands. Such small refrigerators are required to be lightweight, small and have high thermal efficiency, and are being put to practical use in various application fields.

例えば、超電導MRI装置やクライオポンプなどにおいては、ギフォード・マクマホン(GM)方式やスターリング方式などの冷凍サイクルによる冷凍機が用いられている。また、磁気浮上列車にも高性能な冷凍機が必須とされている。さらに、最近では、超電導電力貯蔵装置(SMES)、および高品質のシリコンウェハーなどを製造する磁場中単結晶引き上げ装置などにおいても高性能な冷凍機が用いられている。   For example, in superconducting MRI apparatuses, cryopumps, and the like, refrigerators using a refrigeration cycle such as the Gifford-McMahon (GM) method or the Stirling method are used. High-performance refrigerators are also essential for magnetic levitation trains. Furthermore, recently, high-performance refrigerators are also used in superconducting power storage devices (SMES) and single-crystal pulling devices in a magnetic field for producing high-quality silicon wafers.

このような冷凍機においては、蓄冷材が充填された蓄冷器内を、圧縮されたHeガスなどの作動媒質が一方向に流れて、その熱エネルギーを蓄冷材に供給し、ここで膨張した作動媒質が反対方向に流れ、蓄冷材から熱エネルギーを受け取る。こうした過程での復熱効果が良好になるに伴い、作動媒質サイクルでの熱効率が向上し、より低い温度を実現することが可能となる。   In such a refrigerator, a working medium such as compressed He gas flows in one direction in the regenerator filled with the regenerator material, supplies the heat energy to the regenerator material, and the operation expanded here. The medium flows in the opposite direction and receives heat energy from the cold storage material. As the recuperation effect in such a process becomes better, the thermal efficiency in the working medium cycle is improved, and a lower temperature can be realized.

上述したような冷凍機に使われる蓄冷材としては、従来、CuやPbなどが主に用いられてきた。しかし、このような蓄冷材は、20K以下の極低温で比熱が著しく小さくなるため、上述した復熱効果が十分に機能せず、冷凍機での作動に際して極低温下で1サイクル毎に蓄冷材に充分な熱エネルギーを貯蔵することができず、かつ作動媒質が蓄冷材から充分な熱エネルギーを受け取ることができなくなる。その結果、前記蓄冷材を充填した蓄冷器を組み込んだ冷凍機では極低温に到達させることができない問題があった。   Conventionally, Cu, Pb, etc. have been mainly used as the regenerator material used in the refrigerator as described above. However, such a regenerator material has a remarkably small specific heat at an extremely low temperature of 20K or less, so that the above-described recuperation effect does not function sufficiently, and the regenerator material is operated every cycle at a very low temperature when operating in a refrigerator. Sufficient heat energy cannot be stored, and the working medium cannot receive sufficient heat energy from the cold storage material. As a result, there has been a problem that a refrigerator incorporating a regenerator filled with the regenerator material cannot reach an extremely low temperature.

そこで、最近では前記蓄冷器の極低温での復熱特性を向上し、より絶対零度に近い冷凍温度を実現するために、特に20K以下の極低温域において体積比熱の極大値を有し、かつその値が大きなErNi,ErNi,HoCuなどのように希土類元素と遷移金属元素とから成る金属間化合物を主体とした磁性蓄冷材が使用されている。このような磁性蓄冷材をGM冷凍機に用いることにより、4Kでの冷凍が実現されている。
特開平6−159828号公報 特開平5−203274号公報
Therefore, recently, in order to improve the recuperative characteristics at the cryogenic temperature of the regenerator and realize a refrigeration temperature closer to absolute zero, it has a maximum value of volume specific heat particularly in an extremely low temperature region of 20K or less, and Magnetic regenerators mainly composed of intermetallic compounds composed of rare earth elements and transition metal elements such as Er 3 Ni, ErNi, and HoCu 2 having large values are used. By using such a magnetic regenerator material for a GM refrigerator, refrigeration at 4K is realized.
JP-A-6-159828 JP-A-5-203274

しかしながら、上記のような冷凍機を各種システムに応用することが、より具体的に検討されるに至り、より規模が大きな冷却対象物を長期間安定した状態で冷却する技術的要請が高まり、より一層の冷凍能力の向上が求められている。   However, the application of the refrigerator as described above to various systems has been studied more specifically, and technical demands for cooling a large-scale cooling object in a stable state for a long period of time have increased. There is a need for further improvements in refrigeration capacity.

前記の磁性蓄冷材は、Heガスなどの作動媒質との熱交換を効率よく進めるために、一般に直径0.1〜0.5mm程度の球状粒子に加工され、図12に示すように冷凍機の蓄冷器1の内部に高密度に充填されて使用される。しかし、冷凍機が動作する間に、蓄冷器1の往復運動による振動や衝撃が粒子状の磁性蓄冷材2に繰り返して作用する。また、蓄冷器1の内部を通過する高圧Heガスによる複雑な流体力学的な応力も磁性蓄冷材粒子に作用する。   The magnetic regenerator material is generally processed into spherical particles having a diameter of about 0.1 to 0.5 mm in order to efficiently promote heat exchange with a working medium such as He gas. As shown in FIG. The inside of the regenerator 1 is filled with high density and used. However, during the operation of the refrigerator, vibrations and impacts due to the reciprocating motion of the regenerator 1 repeatedly act on the particulate magnetic regenerator material 2. Further, complicated hydrodynamic stress due to the high-pressure He gas passing through the inside of the regenerator 1 also acts on the magnetic regenerator material particles.

このため、冷凍機の運転当初には高密度に充填されていた粒子状の磁性蓄冷材2が、運転時間の経過とともに、その粒子間に隙間3が発生し易くなり、Heガスの流路に変化を生じたり、Heガスの流れが不均一になったりして冷凍能力が低下する問題点があった。また、蓄冷材粒子の相互間の摩擦により発生した微粉が冷凍機のシール部に混入してシール部を早期に損傷するなどにより、冷凍機の性能に悪影響を及ぼすという問題もあった。   For this reason, the particulate magnetic regenerator material 2 filled at a high density at the beginning of the operation of the refrigerator is likely to generate a gap 3 between the particles as the operation time elapses, and the He gas flow path is formed. There has been a problem that the refrigerating capacity is lowered due to a change or a non-uniform flow of He gas. In addition, there is a problem in that the performance of the refrigerator is adversely affected by the fact that fine powder generated by friction between the regenerator particles is mixed into the seal portion of the refrigerator and damages the seal portion at an early stage.

上記問題点を解決するために、例えば、使用する磁性蓄冷材粒子の粒径範囲を狭く限定するとともに、真球度を高めることも試行されたが、工業的見地からは大幅なコスト高を招来する結果しか得られず、現実的な解決策になり得ない。そこで、例えば、特開平5−203274号公報に示すように、磁性蓄冷材粒子を焼結し、粒子間の隙間を安定に固定化する方法も提案されている。   In order to solve the above problems, for example, while trying to limit the particle size range of magnetic regenerator particles to be used narrowly and to increase the sphericity, an attempt was made to increase the sphericity, but this led to a significant increase in cost from an industrial standpoint. Can only be achieved, and cannot be a realistic solution. Therefore, for example, as shown in JP-A-5-203274, a method of sintering magnetic regenerator particles and stably fixing gaps between the particles has been proposed.

しかしながら、この方法によれば、焼結した磁性蓄冷材の外周と蓄冷器の内周との間に隙間が発生し易く、その隙間を通ってHeガスがリークし易くなり、長期に亘って安定した冷凍性能を確保することは困難であった。また焼結した磁性蓄冷材は脆いため、機械仕上げ加工によって崩れ易く高い寸法精度に仕上げることは困難であり、また加工によって微細欠陥が発生し易く、いずれにしても安定した冷凍性能を長期間維持できない難点があった。   However, according to this method, a gap is easily generated between the outer periphery of the sintered magnetic regenerator material and the inner periphery of the regenerator, and the He gas easily leaks through the gap, and is stable for a long time. It was difficult to ensure the refrigerating performance. In addition, the sintered magnetic regenerator material is brittle, so it is difficult to finish with high dimensional accuracy due to mechanical finishing, and fine defects are likely to occur due to the processing. In any case, stable refrigeration performance is maintained for a long time. There was a difficult point.

また、上記の隙間を埋めるために接着剤等でシールすることも試行されたが、シール工程が複雑で製造コストの上昇を招来する難点もあった。   In addition, an attempt has been made to seal with an adhesive or the like in order to fill the gap, but there is a difficulty in that the sealing process is complicated and the manufacturing cost increases.

本発明は上記問題点を解決するためになされたものであり、特に極低温域において顕著な冷凍能力を長期間に亘って安定して発揮することが可能な蓄冷材の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a method for producing a regenerator material capable of stably exhibiting a remarkable refrigerating capacity over a long period of time, particularly in a cryogenic region. With the goal.

本発明者らは上記目的を達成するために、種々の固定構造を有する蓄冷材を調製して冷凍機の蓄冷器に充填して、上記固定構造が冷凍機の冷凍能力,蓄冷材の寿命,耐久性に及ぼす影響を実験により比較検討した。   In order to achieve the above-mentioned object, the present inventors prepare cold storage materials having various fixed structures and fill them in the regenerator of the refrigerator, and the fixed structure has the refrigerating capacity of the refrigerator, the life of the regenerator material, The effect on durability was compared by experiments.

その結果、特に磁性蓄冷材粒子を筒状金属の内部に充填した状態で焼結し、粒子相互および粒子と筒状金属とを一体化した固定構造としたときに、蓄冷材粒子間の隙間が安定化し、さらに磁性蓄冷材と蓄冷器との間に隙間がなくなり、Heガスのリークを効果的に防止できる蓄冷器が実現し、長期に亘って安定した冷凍性能を示す冷凍機が得られることが判明した。本発明は上記知見に基づいて完成されたものである。   As a result, especially when the magnetic regenerator particles are sintered in a state where the inside of the cylindrical metal is filled and the fixed structure is formed by integrating the particles and the particles with the cylindrical metal, the gaps between the regenerator particles are reduced. A regenerator that is stabilized and has no gap between the magnetic regenerator material and the regenerator, and that can effectively prevent He gas leakage is realized, and a refrigerator that exhibits stable refrigerating performance over a long period of time can be obtained. There was found. The present invention has been completed based on the above findings.

すなわち本発明に係る蓄冷材の製造方法は、筒状金属の内部に充填された粒子状の磁性蓄冷材を焼結し、相互に結合させるとともに、筒状金属と一体化させる蓄冷材の製造方法において、上記磁性蓄冷材粒子が接触する筒状金属の内壁の少なくとも一部の表面粗さを最大高さ(Ry)基準で30μm以上とし、上記筒状金属をステンレス鋼により構成する一方、上記粒子状の磁性蓄冷材における粒径が10μm以上5mm以下である磁性蓄冷材粒子の割合が70%重量以上となるように調整し、上記筒状金属に充填された粒子状磁性蓄冷材の焼結を真空中,不活性ガス雰囲気,または還元ガス雰囲気中で実施することを特徴とする。 That is, the method for producing a regenerator material according to the present invention is a method for producing a regenerator material that sinters particulate magnetic regenerator materials filled inside a cylindrical metal, bonds them together, and integrates them with the cylindrical metal. In the above, the surface roughness of at least a part of the inner wall of the cylindrical metal with which the magnetic regenerator particles come into contact is 30 μm or more on the basis of the maximum height (Ry), and the cylindrical metal is made of stainless steel, Sintering of the particulate magnetic regenerator material filled in the cylindrical metal by adjusting the ratio of the magnetic regenerator particles having a particle size of 10 μm or more and 5 mm or less in the particulate magnetic regenerator material to be 70% weight or more. Is carried out in a vacuum, in an inert gas atmosphere, or in a reducing gas atmosphere .

また、上記蓄冷材の製造方法において、前記粒子状の磁性蓄冷材を被覆する接着剤がエポキシ樹脂であることが好ましい。 Moreover, in the manufacturing method of the said cool storage material, it is preferable that the adhesive agent which coat | covers the said particulate magnetic cool storage material is an epoxy resin.

さらに、本発明に係る蓄冷材の製造方法は、筒状金属の内部に充填した粒子状の磁性蓄冷材を相互に結合させるとともに、筒状金属と一体化させる蓄冷材の製造方法において、上記粒子状の磁性蓄冷材の表面に蓄冷材よりも低い融点を有する低融点金属またはその合金を1〜50μmの厚さで被覆し、液相焼結させることを特徴とする。   Furthermore, the method for producing a regenerator material according to the present invention is the method for producing a regenerator material in which the particulate magnetic regenerator material filled in the cylindrical metal is mutually coupled and integrated with the cylindrical metal. The surface of the magnetic regenerator material is coated with a low melting point metal having a melting point lower than that of the regenerator material or an alloy thereof in a thickness of 1 to 50 μm and liquid phase sintered.

上記蓄冷材の製造方法において、前記粒子状の磁性蓄冷材を被覆する低融点金属としてPb,In,Sn,GaおよびZnから選択される少なくとも1種の金属使用することが好ましい。   In the method for producing a regenerator material, it is preferable to use at least one metal selected from Pb, In, Sn, Ga, and Zn as a low melting point metal that covers the particulate magnetic regenerator material.

また、本発明に係る蓄冷材の製造方法は、筒状金属の内部に充填された粒子状の磁性蓄冷材を焼結し、相互に結合させるとともに、筒状金属と一体化させる蓄冷材の製造方法において、上記磁性蓄冷材粒子が接触する筒状金属の内壁の少なくとも一部の表面粗さを最大高さ(Ry)基準で30μm以上とすることを特徴とする。   Moreover, the manufacturing method of the cool storage material which concerns on this invention sinters the particulate magnetic cool storage material with which the inside of the cylindrical metal was filled, it was mutually connected, and manufacture of the cool storage material integrated with a cylindrical metal The method is characterized in that the surface roughness of at least a part of the inner wall of the cylindrical metal with which the magnetic regenerator material particles come into contact is 30 μm or more on the basis of the maximum height (Ry).

さらに、本発明に係る蓄冷材の製造方法は、筒状金属の内部に充填された粒子状の磁性蓄冷材を焼結し、相互に結合させるとともに、筒状金属と一体化させる蓄冷材の製造方法において、上記筒状金属の内壁に環状溝または環状突起を形成することを特徴とする。   Furthermore, the manufacturing method of the regenerator material according to the present invention is a method for manufacturing a regenerator material that sinters and combines the particulate magnetic regenerator material filled in the cylindrical metal and integrates it with the cylindrical metal. In the method, an annular groove or an annular projection is formed on the inner wall of the cylindrical metal.

また、本発明に係る蓄冷材の製造方法は、筒状金属の内部に充填された粒子状の磁性蓄冷材を焼結し、相互に結合させるとともに、筒状金属と一体化させる蓄冷材の製造方法において、上記筒状金属の内壁に凹凸を形成したことを特徴とする。   Moreover, the manufacturing method of the cool storage material which concerns on this invention sinters the particulate magnetic cool storage material with which the inside of the cylindrical metal was filled, it was mutually connected, and manufacture of the cool storage material integrated with a cylindrical metal In the method, unevenness is formed on the inner wall of the cylindrical metal.

さらに、本発明に係る蓄冷材の製造方法は、筒状金属の内部に充填された粒子状の磁性蓄冷材を焼結し、相互に結合させるとともに、筒状金属と一体化させる蓄冷材の製造方法において、上記筒状金属の断面積が軸方向に拡大または縮小するように内壁をテーパ状に形成することを特徴とする。   Furthermore, the manufacturing method of the regenerator material according to the present invention is a method for manufacturing a regenerator material that sinters and combines the particulate magnetic regenerator material filled in the cylindrical metal and integrates it with the cylindrical metal. In the method, the inner wall is tapered so that the cross-sectional area of the cylindrical metal is enlarged or reduced in the axial direction.

また、本発明に係る蓄冷材の製造方法は、筒状金属の内部に充填された粒子状の磁性蓄冷材を焼結し、相互に結合させるとともに、筒状金属と一体化させる蓄冷材の製造方法において、上記筒状金属の内壁に箔状またはペースト状のろう材を配置または塗布した後に、上記筒状金属の内部に粒子状の磁性蓄冷材を充填し、焼結することを特徴とする。   Moreover, the manufacturing method of the cool storage material which concerns on this invention sinters the particulate magnetic cool storage material with which the inside of the cylindrical metal was filled, it was mutually connected, and manufacture of the cool storage material integrated with a cylindrical metal In the method, after placing or applying a brazing material in the form of a foil or a paste on the inner wall of the cylindrical metal, the cylindrical metal is filled with a particulate magnetic regenerator material and sintered. .

本発明で得られる蓄冷材は、粒子状の磁性蓄冷材を筒状金属の内部に充填した状態で焼結し、磁性蓄冷材粒子を相互に結合するとともに、筒状金属と磁性蓄冷材とを一体化したことを特徴とする。   The regenerator material obtained in the present invention is sintered in a state in which the particulate magnetic regenerator material is filled in the inside of the cylindrical metal, bonds the magnetic regenerator material particles to each other, and combines the cylindrical metal and the magnetic regenerator material. It is characterized by being integrated.

また、粒子状の磁性蓄冷材の表面を、磁性蓄冷材よりも低い融点を有する低融点金属またはその合金で被覆して構成することもできる。低融点金属としてはPb,In,Sn,GaおよびZnから選択される少なくとも1種の金属を使用するとよい。また、粒子状の磁性蓄冷材の表面を接着剤で被覆するとよい。   Further, the surface of the particulate magnetic regenerator material may be covered with a low melting point metal having an melting point lower than that of the magnetic regenerator material or an alloy thereof. As the low melting point metal, at least one metal selected from Pb, In, Sn, Ga and Zn may be used. The surface of the particulate magnetic cold storage material may be covered with an adhesive.

さらに、磁性蓄冷材粒子が接触する筒状金属の内壁の少なくとも一部の表面粗さを最大高さ(Ry)基準で30μm以上にするとよい。また筒状金属の内壁に環状溝または環状突起を形成してもよい。さらに筒状金属の内壁に凹凸を形成しても同様な効果が得られる。また、筒状金属の断面積が軸方向に拡大または縮小するように内壁をテーパ状に形成してもよい。さらに、焼結された磁性蓄冷材と、その外周部を覆う筒状金属とをろう付けにより接合するとよい。また、筒状金属がステンレス鋼で形成するとよい。   Furthermore, the surface roughness of at least a part of the inner wall of the cylindrical metal with which the magnetic regenerator particles come into contact is preferably 30 μm or more on the basis of the maximum height (Ry). An annular groove or an annular protrusion may be formed on the inner wall of the cylindrical metal. Furthermore, the same effect can be obtained by forming irregularities on the inner wall of the cylindrical metal. Further, the inner wall may be tapered so that the cross-sectional area of the cylindrical metal expands or contracts in the axial direction. Furthermore, it is good to join the sintered magnetic regenerator material and the cylindrical metal which covers the outer peripheral part by brazing. The cylindrical metal may be formed of stainless steel.

また、磁性蓄冷材は、反強磁性体であることが望ましい。   The magnetic regenerator material is preferably an antiferromagnetic material.

本発明で使用する蓄冷材を構成する粒子状磁性蓄冷材は、例えば、一般式RMz(但し、R成分は、Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Er,TmおよびYbから選択される少なくとも1種の希土類元素であり、M成分はAg,Cu,Au,Al,Ga,In,Ge,Sn,Sb,Bi,Ni,Pd,Pt,Zn,Co,Rh,Ir,Mn,Fe,Ru,Cr,Mo,W,V,Nb,Ta,Ti,ZrおよびHfから選択される少なくとも1種の金属元素であり、zは0.001〜9.0の範囲である。)で表わされる、希土類元素を含む金属間化合物やNdなどの希土類元素単体が例示できる。特に、HoCu,ErNi,ErNi,ErN0.9Co0.1が極低温領域で比熱が大きいため、好ましい。 The particulate magnetic regenerator material constituting the regenerator material used in the present invention is, for example, a general formula RMz (where R component is Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy). , Er, Tm, and Yb, and the M component is Ag, Cu, Au, Al, Ga, In, Ge, Sn, Sb, Bi, Ni, Pd, Pt, Zn, It is at least one metal element selected from Co, Rh, Ir, Mn, Fe, Ru, Cr, Mo, W, V, Nb, Ta, Ti, Zr and Hf, and z is 0.001 to 9. And a rare earth element simple substance such as an intermetallic compound containing a rare earth element or Nd. In particular, HoCu 2 , Er 3 Ni, ErNi, and ErN 0.9 Co 0.1 are preferable because they have a large specific heat in a very low temperature region.

上記組成の磁性体は、機械的粉砕法やアトマイズ法により粒子形状に加工された上で磁性蓄冷材粒子として使用される。この磁性蓄冷材粒子の形状は、不定形,球形など任意の形状で構わない。   The magnetic material having the above composition is used as magnetic regenerator particles after being processed into a particle shape by a mechanical pulverization method or an atomization method. The shape of the magnetic regenerator material particles may be any shape such as an indefinite shape or a spherical shape.

しかしながら、磁性蓄冷材粒子を充填し焼結した蓄冷器内を流れるヘリウムガスなどの作動媒質の流れを円滑にするとともに、上記作動媒質と蓄冷材との熱交換効率を高め、かつ熱交換機能を安定に維持するために、上記の磁性蓄冷材粒子は、粒径が揃った球状磁性粒子から構成するとよい。具体的には、上記磁性蓄冷材粒子を構成する全磁性粒子に対して、長径の短径に対する比(アスペクト比)が5以下であり、かつ10μm以上5mm以下の粒径を有する磁性蓄冷材粒子の割合が70%重量以上となるように調整することが好ましい。   However, the flow of the working medium such as helium gas flowing in the regenerator filled and sintered with the magnetic regenerator material particles is made smooth, the heat exchange efficiency between the working medium and the regenerator material is increased, and the heat exchange function is provided. In order to maintain it stably, the magnetic regenerator material particles may be composed of spherical magnetic particles having a uniform particle size. Specifically, the magnetic regenerator material particles having a ratio of the major axis to the minor axis (aspect ratio) of 5 or less and a particle size of 10 μm or more and 5 mm or less with respect to all the magnetic particles constituting the magnetic regenerator material particles. It is preferable to adjust the ratio so that the ratio becomes 70% by weight or more.

磁性蓄冷材粒子の粒径は粒子の強度、冷凍機の冷却機能および伝熱特性に大きな影響を及ぼすファクターであり、その粒径が10μm未満となると、蓄冷器に充填する際の密度が高くなり過ぎて、冷却媒体であるHeガスの通過抵抗(圧力損失)が急激に増大する上に、流通するHeガスに同伴されてコンプレッサ内に侵入して構成部品等を早期に摩耗させてしまう。   The particle size of the magnetic regenerator particles is a factor that greatly affects the strength of the particles, the cooling function of the refrigerator, and the heat transfer characteristics. If the particle size is less than 10 μm, the density when filling the regenerator increases. Thus, the passage resistance (pressure loss) of He gas, which is a cooling medium, rapidly increases, and is entrained by the circulating He gas and enters the compressor to quickly wear components and the like.

一方、粒径が5mmを超える場合には、粒体の結晶組織に偏析を生じて脆くなるとともに磁性粒子と冷却媒体であるHeガスとの間の伝熱面積が小さくなり、熱伝達効率が著しく低下してしまうおそれがある。また、このような粗大な粒子が30重量%を超えると、蓄冷性能の低下を招くおそれがある。したがって平均粒径は10μm以上5mm以下に設定されるが、より好ましくは30μm〜1.0mmの範囲であり、さらに50μm以上0.3mm以下が好ましい。また冷却機能および強度を実用上充分に発揮させるためには、磁性蓄冷材粒子全体に対して、上記粒径の粒子が少なくとも70重量%以上、好ましくは80重量%以上、さらに好ましくは90%以上占めることが好ましい。   On the other hand, when the particle size exceeds 5 mm, the crystal structure of the granule is segregated and becomes brittle, and the heat transfer area between the magnetic particles and the He gas as the cooling medium is reduced, so that the heat transfer efficiency is remarkably increased. May decrease. Moreover, when such coarse particle | grains exceed 30 weight%, there exists a possibility of causing the fall of cold storage performance. Therefore, the average particle diameter is set to 10 μm or more and 5 mm or less, more preferably in the range of 30 μm to 1.0 mm, and further preferably 50 μm or more and 0.3 mm or less. Further, in order to sufficiently exhibit the cooling function and strength practically, the particle size of the particles is at least 70% by weight, preferably 80% by weight or more, more preferably 90% or more, based on the whole magnetic regenerator material particles. It is preferable to occupy.

また磁性蓄冷材粒子の短径に対する長径の比(アスペクト比)は5以下好ましくは3以下、さらに好ましくは2以下、なお一層好ましくは1.3以下に設定される。磁性蓄冷材粒子のアスペクト比は、粒子の強度および蓄冷器に充填する際の充填密度および均一性に大きな影響を及ぼすものであり、アスペクト比が5を超える場合には、機械的作用によって磁性蓄冷材粒子が変形破壊を起こし易くなるとともに、空隙が均質となるように蓄冷器に均一かつ高密度で充填することが困難となり、このような粒子が磁性蓄冷材全粒子の30重量%を超えると、蓄冷効率の低下を招くおそれがある。   The ratio of the major axis to the minor axis (aspect ratio) of the magnetic regenerator material particles is set to 5 or less, preferably 3 or less, more preferably 2 or less, and still more preferably 1.3 or less. The aspect ratio of the magnetic regenerator material particles greatly affects the strength of the particles and the packing density and uniformity when filling the regenerator. When the aspect ratio exceeds 5, the magnetic regenerator material has a mechanical effect. It becomes difficult for the material particles to easily deform and break, and it becomes difficult to uniformly and densely fill the regenerator so that the voids are uniform. When such particles exceed 30% by weight of the total magnetic regenerator material particles, There is a risk of lowering the cold storage efficiency.

ここで溶湯急冷法によって調製した磁性蓄冷材粒子の粒径のばらつきおよび短径に対する長径の比のばらつきは、従来のプラズマスプレー法で調製した場合と比較して大きく減少するため、上記粒径範囲外の磁性蓄冷材粒子の割合が少ない。また、ばらつきが生じた場合においても、それらを適宜分級して使用することも容易である。この場合、蓄冷部に充填する全磁性蓄冷材粒子のうち、アスペクト比が上記範囲内の磁性粒子の割合を70%以上、好ましくは80%以上、さらに好ましくは90%以上とすることにより、充分に実用に耐える蓄冷材とすることができる。   Here, the particle size variation of the magnetic regenerator material particles prepared by the molten metal quenching method and the variation of the ratio of the major axis to the minor axis are greatly reduced as compared with the case of preparing by the conventional plasma spray method. The ratio of outside magnetic regenerator particles is small. Also, even when variations occur, they can be classified and used as appropriate. In this case, among all the magnetic regenerator particles filled in the regenerator, the ratio of the magnetic particles having an aspect ratio within the above range is 70% or more, preferably 80% or more, and more preferably 90% or more. It can be a cold storage material that can withstand practical use.

また溶湯急冷法によって調製した磁性蓄冷材粒子の平均結晶粒径を0.5mm以下に設定することにより、または少なくとも一部の金属組織を非晶質とすることにより極めて高強度で寿命の長い磁性粒子を形成することができる。   In addition, by setting the average crystal grain size of magnetic regenerator material particles prepared by the molten metal quenching method to 0.5 mm or less, or by making at least a part of the metal structure amorphous, magnetism with extremely high strength and long life Particles can be formed.

また磁性蓄冷材粒子の表面粗さは、機械的強度、冷却特性、冷却媒体の通過抵抗、蓄冷効率等に大きな影響を及ぼす要因であり、一般にJIS B0601で規定する凹凸の最大高さRyで10μm以下、好ましくは5μm以下、さらに好ましくは2μm以下に設定することが望ましい。なお、これらの表面粗さは走査トンネル顕微鏡(STM粗さ計)によって測定することができる。   The surface roughness of the magnetic regenerator material particles is a factor that greatly affects the mechanical strength, the cooling characteristics, the passage resistance of the cooling medium, the regenerator efficiency, and the like. Generally, the maximum height Ry of the irregularities defined by JIS B0601 is 10 μm. In the following, it is desirable to set it to 5 μm or less, more preferably 2 μm or less. These surface roughnesses can be measured with a scanning tunneling microscope (STM roughness meter).

表面粗さが10μmRyを超えると、粒子に破壊の出発点となるマイクロクラックが発生し易くなるとともに、冷却媒体の通過抵抗が上昇しコンプレッサの負荷が増大したり、特に充填された磁性粒子同士の接触面積が増大し、磁性粒子間における冷熱の移動が大きくなり蓄冷効率が低下してしまう。   When the surface roughness exceeds 10 μm Ry, microcracks that are the starting point of destruction are likely to occur in the particles, the passage resistance of the cooling medium increases, the load on the compressor increases, and particularly between the filled magnetic particles A contact area increases, the movement of the cold heat between magnetic particles becomes large, and cold storage efficiency will fall.

また磁性蓄冷材粒子の機械的強度に影響を与える長さ10μm以上の微小欠陥を有する磁性蓄冷材粒子の割合は、全体の30%以下、好ましくは10%以下、さらに好ましくは10%以下にすることが実用上望ましい。   Further, the ratio of the magnetic regenerator material particles having a micro defect having a length of 10 μm or more that affects the mechanical strength of the magnetic regenerator material particles is 30% or less, preferably 10% or less, more preferably 10% or less. It is desirable in practice.

上述したような磁性蓄冷材粒子の製造方法は、特に限定されるものではなく、種々の汎用の合金粒子製造方法を適用することができる。例えば、遠心噴霧法,ガスアトマイズ法,回転電極法などに準拠して所定組成を有する溶湯を分散すると同時に急冷凝固せしめる方法(溶湯急冷法)を適用することができる。また、各種の機械的粉砕法も適用することができる。   The manufacturing method of magnetic regenerator particles as described above is not particularly limited, and various general-purpose alloy particle manufacturing methods can be applied. For example, a method (melting and quenching method) in which a molten metal having a predetermined composition is dispersed and rapidly solidified at the same time in accordance with a centrifugal spraying method, a gas atomizing method, a rotating electrode method, or the like can be applied. Various mechanical grinding methods can also be applied.

特に反強磁性体から成る磁性蓄冷材粒子を形成した場合には、超電導システム用冷凍機の蓄冷材として使用した場合においても、超電導磁石からの漏れ磁場の影響を受けることが少なくなるという効果が得られる。   In particular, when magnetic regenerator particles made of an antiferromagnetic material are formed, even when used as a regenerator material for a refrigerator for a superconducting system, there is an effect that it is less affected by the leakage magnetic field from the superconducting magnet. can get.

上記のように調製した磁性蓄冷材粒子を充填する筒状金属は、焼結した蓄冷材粒子と一体化して蓄冷材に高い加工精度を付与するとともに、焼結した蓄冷材粒子を保護し、高い剛性を付与して蓄冷材全体の耐久性を高める作用を発揮する。筒状金属の構成材としては、特に限定されるものではなく、蓄冷材粒子よりも300℃以上高い融点を有し、かつ焼結温度における変形が少ないステンレス鋼,タングステン(W),モリブデン(Mo),およびそれらの合金材などが使用される。特に、安価で加工性に優れ、かつ極低温域での熱伝導度が比較的に低く、蓄冷効果が大きいステンレス鋼を使用することが好ましい。   The cylindrical metal filled with the magnetic regenerator particles prepared as described above is integrated with the sintered regenerator particles to provide high processing accuracy to the regenerator material, and protects the sintered regenerator particles and is high It exerts the effect of increasing the durability of the entire cold storage material by imparting rigidity. The constituent material of the cylindrical metal is not particularly limited, and stainless steel, tungsten (W), molybdenum (Mo) having a melting point higher than that of the regenerator particles by 300 ° C. or more and less deformation at the sintering temperature. ), And alloy materials thereof. In particular, it is preferable to use stainless steel that is inexpensive, excellent in workability, has a relatively low thermal conductivity in a cryogenic region, and has a large cold storage effect.

本発明の蓄冷材は、例えば以下のような方法で製造される。すなわち、上記の筒状金属の内部に所定量の磁性蓄冷材粒子を充填した後に、その上下開口部に、例えば石英ガラスのような、磁性蓄冷材と反応しない材料から成る蓋を装着し、この状態で加熱焼結処理を実施することにより製造される。なお、焼結時における磁性蓄冷材の酸化を防止するために、焼結操作は真空中,不活性ガス雰囲気,または還元ガス雰囲気中で実施することが好ましい。   The regenerator material of the present invention is manufactured, for example, by the following method. That is, after filling the cylindrical metal with a predetermined amount of magnetic regenerator material particles, a lid made of a material that does not react with the magnetic regenerator material, such as quartz glass, is attached to the upper and lower openings. It is manufactured by performing a heat sintering process in a state. In order to prevent oxidation of the magnetic regenerator material during sintering, the sintering operation is preferably performed in a vacuum, an inert gas atmosphere, or a reducing gas atmosphere.

また、焼結した磁性蓄冷材粒子の外周部と筒状金属との接合強度を高め、蓄冷材全体の耐久性を高めるために、磁性蓄冷材粒子が接触する筒状金属の内壁の少なくとも一部の表面粗さを最大高さ(Ry)基準で30μm以上にすることが効果的である。この表面粗さは50μm以上が好ましく、さらには100μm以上がより好ましい。   In addition, in order to increase the bonding strength between the outer peripheral portion of the sintered magnetic regenerator material particles and the cylindrical metal, and to increase the durability of the entire regenerator material, at least a part of the inner wall of the cylindrical metal that the magnetic regenerator material particles contact It is effective to set the surface roughness to 30 μm or more on the basis of the maximum height (Ry). The surface roughness is preferably 50 μm or more, and more preferably 100 μm or more.

なお、上記表面粗さを付与する代りに、例えば図3〜図5に示すように筒状金属5a,5b,5cの内壁にそれぞれ環状溝7a、環状突起7b、凹凸8を形成したり、ねじ切り加工することにより凹凸を形成したり、不規則な荒れ面を形成してもよい。さらに、図6に示すように筒状金属5dの断面積が軸方向に拡大または縮小するように内壁にテーパ面9を形成することにより、焼結した磁性蓄冷材4の軸方向への移動を拘束することができ、いずれも蓄冷材全体の剛性を高めることが可能になる。   Instead of providing the surface roughness, for example, as shown in FIGS. 3 to 5, an annular groove 7 a, an annular protrusion 7 b, and irregularities 8 are formed on the inner walls of the cylindrical metals 5 a, 5 b, 5 c, respectively, or threaded By processing, irregularities may be formed, or irregular rough surfaces may be formed. Furthermore, as shown in FIG. 6, by forming a tapered surface 9 on the inner wall so that the cross-sectional area of the cylindrical metal 5 d expands or contracts in the axial direction, the sintered magnetic regenerator material 4 is moved in the axial direction. They can be restrained, and both can increase the rigidity of the entire cold storage material.

さらに焼結した磁性蓄冷材粒子と筒状金属との接合強度をさらに高める手段として、図2に示すように磁性蓄冷材粒子4の焼結体の外周部と筒状金属5の内壁との間にろう材層6を一体に形成してもよい。このろう材層6は、例えば以下の方法で形成される。すなわち、箔状またはペースト状のろう材を筒状金属5の内壁面に配置または塗布した後に、磁性蓄冷材粒子を充填し焼結することにより形成される。使用するろう材は、特に限定されるものではないが、焼結温度に適応したろう材を用いる。   Further, as a means for further increasing the bonding strength between the sintered magnetic regenerator particles and the cylindrical metal, as shown in FIG. 2, between the outer peripheral portion of the sintered body of the magnetic regenerator particles 4 and the inner wall of the cylindrical metal 5. The brazing filler metal layer 6 may be formed integrally. This brazing material layer 6 is formed by the following method, for example. That is, it is formed by filling or sintering magnetic regenerator particles after placing or applying a foil-like or paste-like brazing material on the inner wall surface of the cylindrical metal 5. The brazing material to be used is not particularly limited, but a brazing material suitable for the sintering temperature is used.

また、粒子状の磁性蓄冷材の表面を、Pb,In,Sn,Ga,Znなどの磁性蓄冷材よりも低い融点を有する低融点金属またはその合金で被覆した後に、筒状金属内に充填し、これらの低融点金属を介して磁性蓄冷材粒子同士を液相焼結させると同時に蓄冷材粒子と筒状金属とを焼結して一体化することも可能である。   The surface of the particulate magnetic regenerator material is covered with a low melting point metal having a melting point lower than that of the magnetic regenerator material such as Pb, In, Sn, Ga, Zn, or an alloy thereof, and then filled into the cylindrical metal. It is also possible to sinter the regenerator particles and the cylindrical metal and simultaneously integrate them by liquid-phase sintering the magnetic regenerator particles through these low melting point metals.

磁性蓄冷材の表面を被覆する低融点金属の厚さは、1〜50μmが好ましい。1μm未満では、低融点金属を介しての磁性蓄冷材粒子同士の接合強度が不十分となり好ましくない。一方、50μmを超えると、蓄冷材全体における低融点金属が占める体積比率が高くなり、蓄冷材全体の見かけの比熱が低下するため好ましくない。また、50μmを超えた場合には、低融点金属を介した液相焼結の際に、過剰な低融点金属が磁性蓄冷材粒子の間の空隙を塞ぎ、ヘリウムガスの流路抵抗を高め、ひいては蓄冷器の性能低下をもたらす。この低融点金属の厚さは、より好ましくは3〜40μmであり、さらに好ましくは5〜30μmである。   The thickness of the low melting point metal that covers the surface of the magnetic regenerator material is preferably 1 to 50 μm. If it is less than 1 μm, the bonding strength between the magnetic regenerator particles through the low melting point metal becomes insufficient, which is not preferable. On the other hand, if it exceeds 50 μm, the volume ratio of the low melting point metal in the entire regenerator material increases, and the apparent specific heat of the entire regenerator material decreases, which is not preferable. In addition, when it exceeds 50 μm, during the liquid phase sintering via the low melting point metal, the excessive low melting point metal closes the gap between the magnetic regenerator particles, increasing the flow resistance of helium gas, As a result, the performance of the regenerator is reduced. The thickness of the low melting point metal is more preferably 3 to 40 μm, and further preferably 5 to 30 μm.

上記のような低融点金属は焼結時に粒子同士および粒子と筒状金属との接合強度を高める接合剤として作用するため、蓄冷材全体の剛性および耐久性を高めることが可能になる。なお、上記各種低融点金属および合金の中では、低温領域の比熱が大きく蓄冷効率が高いPbが特に好ましい。   Since the low melting point metal as described above acts as a bonding agent that increases the bonding strength between particles and between the particles and the cylindrical metal during sintering, it is possible to increase the rigidity and durability of the entire regenerator material. Among the various low melting point metals and alloys, Pb having a large specific heat in the low temperature region and high cold storage efficiency is particularly preferable.

また、粒子状の磁性蓄冷材の表面をエポキシ樹脂などの接着剤で被覆した後に、筒状金属内に充填して、磁性蓄冷材粒子同士を接着剤で接合すると同時に蓄冷材粒子と筒状金属とを接着して一体化することも可能である。接着剤は特に限定されるものではないが、極低温で十分な接着強度を示すものとして、エポキシ樹脂が好ましい。   Also, after coating the surface of the particulate magnetic regenerator material with an adhesive such as an epoxy resin, it is filled into a cylindrical metal, and the magnetic regenerator material particles are bonded together with an adhesive, and at the same time, the regenerator particle and the cylindrical metal It is also possible to bond them together. The adhesive is not particularly limited, but an epoxy resin is preferable as an adhesive exhibiting sufficient adhesive strength at an extremely low temperature.

また、蓄冷材粒子の表面を改質し、接着性を改善するためカップリング剤を添加することもできる。その場合、カップリング剤は、蓄冷材粒子の重量に対し0.05〜2wt%添加するのが好ましい。   Also, a coupling agent can be added to improve the surface of the regenerator particles and improve the adhesion. In that case, it is preferable to add 0.05 to 2 wt% of the coupling agent with respect to the weight of the regenerator particles.

ここで、上記エポキシ樹脂については、蓄冷材粒子の表面に均質な樹脂の皮膜を形成し易い液状樹脂が好ましい。エポキシ樹脂の被覆量は、蓄冷材粒子の重量に対し0.1〜5wt%が好ましい。0.1wt%未満では、磁性蓄冷材粒子同士の接着強度が不十分となり好ましくない。一方、5wt%を超えると、過剰な接着剤が磁性蓄冷材粒子の間の空隙を塞ぎ、ヘリウムガスの流路抵抗を高め、ひいては蓄冷器の性能低下をもたらす。この接着剤の被覆量のより好ましい範囲は、0.5〜4wt%である。   Here, the epoxy resin is preferably a liquid resin that easily forms a uniform resin film on the surface of the regenerator particles. The coating amount of the epoxy resin is preferably 0.1 to 5 wt% with respect to the weight of the cold storage material particles. If it is less than 0.1 wt%, the adhesive strength between the magnetic regenerator particles becomes insufficient, which is not preferable. On the other hand, when it exceeds 5 wt%, the excessive adhesive plugs the gaps between the magnetic regenerator particles, thereby increasing the flow resistance of the helium gas, and consequently reducing the performance of the regenerator. A more preferable range of the coating amount of the adhesive is 0.5 to 4 wt%.

図1,2に示すように、磁性蓄冷材と一体化された筒状金属は蓄冷器の中に挿入されて使用されるが、筒状金属そのものを蓄冷器(蓄冷筒)にすることも可能である。   As shown in FIGS. 1 and 2, the cylindrical metal integrated with the magnetic regenerator material is inserted into the regenerator and used, but the cylindrical metal itself can be used as a regenerator (cold regenerator cylinder). It is.

そのまま蓄冷器として使用できるように予め筒状金属状に加工を施した後に磁性蓄冷材と一体化することも可能である。また、磁性蓄冷材と一体化した後に寸法仕上げ加工を施し、そのまま蓄冷器として使用することもできる。   It is also possible to integrate the magnetic regenerator material after processing it into a cylindrical metal shape so that it can be used as it is. Moreover, after integrating with a magnetic cool storage material, a dimension finishing process can be given and it can also be used as it is as a cool storage.

上記構成に係る蓄冷材によれば、磁性蓄冷材粒子を筒状金属の内部に充填した状態で焼結し、粒子相互および粒子と筒状金属とを一体化した固定構造としているため、蓄冷材粒子間の隙間が安定化し、さらに磁性蓄冷材と蓄冷器と間に隙間がなくなり、Heガスのリークを効果的に防止できる蓄冷器が実現できる。また、磁性蓄冷材粒子の焼結体が筒状金属によって保護されると共に補強されるため、蓄冷材全体としての剛性が大きく耐久性に優れた蓄冷材が得られる。そして、その蓄冷材を冷凍機の最終冷却段の蓄冷器内に充填することにより、低温度領域における冷凍能力が高く、かつ長期間に亘って安定した冷凍性能が維持できる冷凍機を提供することができる。   According to the regenerator material according to the above configuration, since the magnetic regenerator material particles are sintered in a state in which the particles are filled in the cylindrical metal, and the particles are integrated with each other and the particles and the cylindrical metal, the regenerator material A gap between the particles is stabilized, and a gap between the magnetic regenerator and the regenerator is eliminated, thereby realizing a regenerator that can effectively prevent He gas leakage. Moreover, since the sintered body of magnetic regenerator material particles is protected and reinforced by the cylindrical metal, a regenerator material having a large rigidity as the whole regenerator material and excellent in durability can be obtained. Then, by providing the regenerator material in the regenerator of the final cooling stage of the refrigerating machine, a refrigerating machine having a high refrigerating capacity in a low temperature region and capable of maintaining a stable refrigerating performance over a long period of time is provided. Can do.

また、焼結により磁性蓄冷材粒子同士を強固に固定することが可能であり、真球度が低い磁性粒子を利用することが可能になるとともに、磁性粒子の粒径範囲を広くすることができるので、原料の歩留りが大幅に改善され、工業的に安価な蓄冷器を提供することができる。   In addition, it is possible to firmly fix the magnetic regenerator particles by sintering, it is possible to use magnetic particles with low sphericity, and it is possible to widen the particle size range of the magnetic particles. Therefore, the raw material yield is greatly improved, and an industrially inexpensive regenerator can be provided.

そして、MRI装置、クライオポンプ、磁気浮上列車用超電導磁石、および磁界印加式単結晶引上げ装置は、いずれも冷凍機性能が各装置の性能を左右することから、上述したような冷凍機を用いた本発明のMRI装置、クライオポンプ、磁気浮上列車用超電導磁石、および磁界印加式単結晶引上げ装置は、いずれも長期間に亘って優れた性能を発揮させることができる。   The MRI apparatus, the cryopump, the superconducting magnet for the magnetic levitation train, and the magnetic field application type single crystal pulling apparatus all use the refrigerator as described above because the refrigerator performance affects the performance of each device. The MRI apparatus, cryopump, magnetic levitation train superconducting magnet, and magnetic field application type single crystal pulling apparatus of the present invention can all exhibit excellent performance over a long period of time.

本発明に係る蓄冷材の製造方法によれば、磁性蓄冷材粒子を筒状金属の内部に充填した状態で焼結し、粒子相互および粒子と筒状金属とを一体化した固定構造としているため、蓄冷材粒子間の隙間が安定化し、さらに磁性蓄冷材と蓄冷器と間に隙間がなくなり、Heガスのリークを効果的に防止できる蓄冷器が実現できる。また、磁性蓄冷材粒子の焼結体が筒状金属によって保護されると共に補強されるため、蓄冷材全体としての剛性が大きく耐久性に優れた蓄冷材が得られる。そして、その蓄冷材を冷凍機の最終冷却段の蓄冷器内に充填することにより、低温度領域における冷凍能力が高く、かつ長期間に亘って安定した冷凍性能が維持できる冷凍機を提供することができる。   According to the method for producing a regenerator material according to the present invention, the magnetic regenerator material particles are sintered in a state where the particles are filled in the inside of the cylindrical metal, and the fixed structure is obtained by integrating the particles with each other and the particles and the cylindrical metal. In addition, the gap between the regenerator particles can be stabilized, and the gap between the magnetic regenerator and the regenerator can be eliminated, thereby realizing a regenerator that can effectively prevent He gas leakage. Moreover, since the sintered body of magnetic regenerator material particles is protected and reinforced by the cylindrical metal, a regenerator material having a large rigidity as the whole regenerator material and excellent in durability can be obtained. Then, by providing the regenerator material in the regenerator of the final cooling stage of the refrigerating machine, a refrigerating machine having a high refrigerating capacity in a low temperature region and capable of maintaining a stable refrigerating performance over a long period of time is provided. Can do.

また、焼結により磁性蓄冷材粒子同士を強固に固定することが可能であり、真球度が低い磁性粒子を利用することが可能になるとともに、磁性粒子の粒径範囲を広くすることができるので、原料の歩留りが大幅に改善され、工業的に安価な蓄冷器を提供することができる。   In addition, it is possible to firmly fix the magnetic regenerator particles by sintering, it is possible to use magnetic particles with low sphericity, and it is possible to widen the particle size range of the magnetic particles. Therefore, the raw material yield is greatly improved, and an industrially inexpensive regenerator can be provided.

そして、MRI装置、クライオポンプ、磁気浮上列車用超電導磁石、および磁界印加式単結晶引上げ装置は、いずれも冷凍機性能が各装置の性能を左右することから、上述したような冷凍機を用いたMRI装置、クライオポンプ、磁気浮上列車用超電導磁石、および磁界印加式単結晶引上げ装置は、いずれも長期間に亘って優れた性能を発揮させることができる。   The MRI apparatus, the cryopump, the superconducting magnet for the magnetic levitation train, and the magnetic field application type single crystal pulling apparatus all use the refrigerator as described above because the refrigerator performance affects the performance of each device. The MRI apparatus, cryopump, magnetic levitation train superconducting magnet, and magnetic field application type single crystal pulling apparatus can all exhibit excellent performance over a long period of time.

次に本発明の実施形態について以下に示す実施例に基づいて具体的に説明する。   Next, embodiments of the present invention will be specifically described based on the following examples.

[実施例1]
HoおよびCu金属原料を配合し、高周波溶解法によってHoCuなる組成を有する母合金を調製した。この母合金を約1350Kで溶融し、得られた合金溶湯を、圧力が90KPaのAr雰囲気中において1×10rpmの速度で回転する円盤上に滴下して急冷凝固せしめることにより、磁性体粒子を作製した。得られた磁性体粒子からアスペクト比が1.2以下の粒子を形状分級した後に篩分し、粒径が105〜250μmの球状磁性体粒子から成る実施例1用の磁性蓄冷材粒子を調製した。得られた磁性蓄冷材粒子の真球度を画像解析で評価したところ、アスペクト比が0.9以上の粒子が87重量%であった。
[Example 1]
A mother alloy having a composition of HoCu 2 was prepared by blending Ho and Cu metal raw materials and using a high frequency melting method. The mother alloy is melted at about 1350 K, and the obtained alloy melt is dropped on a disk rotating at a speed of 1 × 10 4 rpm in an Ar atmosphere having a pressure of 90 KPa to rapidly cool and solidify the magnetic particles. Was made. From the obtained magnetic particles, particles having an aspect ratio of 1.2 or less were classified and then sieved to prepare magnetic regenerator particles for Example 1 consisting of spherical magnetic particles having a particle size of 105 to 250 μm. . When the sphericity of the obtained magnetic regenerator material particles was evaluated by image analysis, particles having an aspect ratio of 0.9 or more were 87% by weight.

次に、得られた磁性蓄冷材粒子を外径34mm×内径30mm×長さ150mmのステンレス鋼(SUS304)製の筒状金属内に充填し、真空中で温度860℃で3時間加熱焼結した。さらに加熱焼結処理によって生じた熱変形を機械加工により修正することにより、図1に示すように磁性蓄冷材4と筒状金属5とが一体化した実施例1に係る蓄冷材19を調製した。   Next, the obtained magnetic regenerator material particles were filled into a cylindrical metal made of stainless steel (SUS304) having an outer diameter of 34 mm, an inner diameter of 30 mm, and a length of 150 mm, and heated and sintered in a vacuum at a temperature of 860 ° C. for 3 hours. . Further, by correcting the thermal deformation caused by the heat sintering process by machining, a cold storage material 19 according to Example 1 in which the magnetic cold storage material 4 and the cylindrical metal 5 were integrated as shown in FIG. 1 was prepared. .

一方、上記のように調製した蓄冷材19の特性を評価するために、図7に示すような2段膨張式GM冷凍機を用意した。なお、図7に示す2段式のGM冷凍機10は、本発明で使用する冷凍機の一実施例を示すものである。図7に示す2段式のGM冷凍機10は、大径の第1シリンダ11と、この第1シリンダ11と同軸的に接続された小径の第2シリンダ12とが設置された真空容器13を有している。第1シリンダ11には第1蓄冷器14が往復動自在に配置されており、第2シリンダ12には第2蓄冷器15が往復動自在に配置されている。第1シリンダ11と第1蓄冷器14との間、および第2シリンダ12と第2蓄冷器15との間には、それぞれシールリング16,17が配置されている。   On the other hand, in order to evaluate the characteristics of the regenerator material 19 prepared as described above, a two-stage expansion GM refrigerator as shown in FIG. 7 was prepared. A two-stage GM refrigerator 10 shown in FIG. 7 shows an embodiment of the refrigerator used in the present invention. A two-stage GM refrigerator 10 shown in FIG. 7 includes a vacuum vessel 13 in which a large-diameter first cylinder 11 and a small-diameter second cylinder 12 connected coaxially to the first cylinder 11 are installed. Have. A first regenerator 14 is disposed in the first cylinder 11 so as to be able to reciprocate, and a second regenerator 15 is disposed in the second cylinder 12 so as to be capable of reciprocating. Seal rings 16 and 17 are disposed between the first cylinder 11 and the first regenerator 14, and between the second cylinder 12 and the second regenerator 15, respectively.

第1蓄冷器14には、Cuメッシュ等の第1蓄冷材18が収容されている。第2蓄冷器15の低音側には、本発明の極低温用蓄冷材が第2蓄冷材19として収容されている。第1蓄冷器14および第2蓄冷器15は、第1蓄冷材18や極低温用蓄冷材19の間隙等に設けられたHeガス等の作動媒質の通路をそれぞれ有している。   The first regenerator 14 accommodates a first regenerator material 18 such as Cu mesh. On the low sound side of the second regenerator 15, the cryogenic regenerator material of the present invention is accommodated as the second regenerator material 19. The first regenerator 14 and the second regenerator 15 each have a passage for a working medium such as He gas provided in a gap between the first regenerator 18 and the cryogenic regenerator 19.

第1蓄冷器14と第2蓄冷器15との間には、第1膨張室20が設けられている。また、第2蓄冷器15と第2シリンダ12の先端壁との間には、第2膨張室21が設けられている。そして、第1膨張室20の底部に第1冷却ステージ22が、また第2膨張室21の底部に第1冷却ステージ22より低温の第2冷却ステージ23が形成されている。   A first expansion chamber 20 is provided between the first regenerator 14 and the second regenerator 15. A second expansion chamber 21 is provided between the second regenerator 15 and the tip wall of the second cylinder 12. A first cooling stage 22 is formed at the bottom of the first expansion chamber 20, and a second cooling stage 23 having a temperature lower than that of the first cooling stage 22 is formed at the bottom of the second expansion chamber 21.

上述したような2段式のGM冷凍機10には、コンプレッサ24から高圧の作動媒質(例えばHeガス)が供給される。供給された作動媒質は、第1蓄冷器14に収容された第1蓄冷材18間を通過して第1膨張室20に到達し、さらに第2蓄冷器15に収容された極低温用蓄冷材(第2蓄冷材)19間を通過して第2膨張室21に到達する。この際に、作動媒質は各蓄冷材18,19に熱エネルギーを供給して冷却される。各蓄冷材18,19間を通過した作動媒質は、各膨張室20,21で膨張して寒冷を発生させ、各冷却ステージ22,23が冷却される。膨張した作動媒質は、各蓄冷材18,19間を反対方向に流れる。作動媒質は各蓄冷材18,19から熱エネルギーを受け取った後に排出される。こうした過程で復熱効果が良好になるに従って、作動媒質サイクルの熱効率が向上し、より一層低い温度が実現されるように構成されている。   A high-pressure working medium (for example, He gas) is supplied from the compressor 24 to the two-stage GM refrigerator 10 as described above. The supplied working medium passes between the first regenerators 18 accommodated in the first regenerator 14, reaches the first expansion chamber 20, and is further stored in the second regenerator 15. (Second cool storage material) 19 passes through and reaches the second expansion chamber 21. At this time, the working medium is cooled by supplying heat energy to the regenerator materials 18 and 19. The working medium that has passed between the regenerators 18 and 19 expands in the expansion chambers 20 and 21 to generate cold, and the cooling stages 22 and 23 are cooled. The expanded working medium flows in the opposite direction between the regenerator materials 18 and 19. The working medium is discharged after receiving thermal energy from each of the cold storage materials 18 and 19. As the recuperating effect is improved in such a process, the thermal efficiency of the working medium cycle is improved, and an even lower temperature is realized.

そして、前記のように調製した実施例1に係る蓄冷材を、上記2段膨張式GM冷凍機の2段目蓄冷器に充填して実施例1に係る冷凍機を組み立て冷凍試験を実施し、3000時間連続運転後における冷凍能力を測定した。   Then, the regenerator material according to Example 1 prepared as described above is filled in the second-stage regenerator of the above-described two-stage expansion GM refrigerator, the refrigerator according to Example 1 is assembled, and the refrigeration test is performed. The refrigeration capacity after 3000 hours of continuous operation was measured.

その結果、4.2Kにおける冷凍能力は521mWであった。また、3000時間の連続運転後における冷凍能力も518mWと安定した状態を示した。さらに連続運転後に蓄冷材19を第2蓄冷器15から取り出して観察したところ、磁性蓄冷材粒子4に割れなどの損傷や偏在は観察されなかった。   As a result, the refrigerating capacity at 4.2 K was 521 mW. The refrigerating capacity after 3000 hours of continuous operation was also stable at 518 mW. Furthermore, when the regenerator material 19 was taken out from the second regenerator 15 and observed after continuous operation, damage such as cracks and uneven distribution were not observed in the magnetic regenerator material particles 4.

なお本実施例における冷凍能力は、冷凍機運転時にヒータによって第2冷却段に熱負荷を作用させ、第2冷却段の温度上昇が4.2Kで停止したときの熱負荷で定義した。   The refrigeration capacity in this example was defined as a heat load when a heat load was applied to the second cooling stage by the heater during the operation of the refrigerator and the temperature increase of the second cooling stage stopped at 4.2K.

[実施例2]
高周波溶解法によりErNi母合金を作成し、この母合金を機械的に粉砕した後に、篩い分けにより粒径150〜250μmの磁性蓄冷材粒子を調製した。
[Example 2]
An Er 3 Ni master alloy was prepared by a high frequency melting method, and this mother alloy was mechanically pulverized, and then magnetic regenerator particles having a particle size of 150 to 250 μm were prepared by sieving.

次に、この蓄冷材粒子を、外径34mm×内径30mm×長さ150mmのステンレス鋼(SUS304)製筒状金属の1/2の長さに相当する高さまで充填し、真空中で温度760℃で3時間加熱焼結処理を施した。さらに、熱処理によって生じた熱変形を機械加工により修正した後に、残る1/2の長さに相当する部位にHoCuの球状粒子(粒径150〜250μm)を充填して実施例2に係る蓄冷材を調製した。 Next, the regenerator particles are filled to a height corresponding to half the length of a cylindrical metal made of stainless steel (SUS304) having an outer diameter of 34 mm, an inner diameter of 30 mm, and a length of 150 mm. Then, a heat sintering process was performed for 3 hours. Furthermore, after correcting the thermal deformation caused by the heat treatment by machining, HoCu 2 spherical particles (particle size: 150 to 250 μm) are filled in a portion corresponding to the remaining half length, and the cold storage according to the second embodiment A material was prepared.

この蓄冷材を実施例1と同様に2段膨張式GM冷凍機の第2段目蓄冷器15内に装填して、冷凍試験を実施した結果、4.2Kにおける冷凍能力として842mWと高い値が得られた。また、3000時間の連続運転後における冷凍能力も838mWと安定した性能が得られた。また、連続運転後に蓄冷材を取り出して観察したところ、磁性蓄冷材の損傷は観察されなかった。   The cold storage material was loaded into the second stage regenerator 15 of the two-stage expansion GM refrigerator as in Example 1 and the refrigeration test was performed. As a result, the refrigerating capacity at 4.2 K was a high value of 842 mW. Obtained. In addition, the refrigerating capacity after continuous operation for 3000 hours was 838 mW and stable performance was obtained. Moreover, when the cold storage material was taken out and observed after continuous operation, damage to the magnetic cold storage material was not observed.

[比較例1]
実施例1において調製したHoCu磁性蓄冷材粒子を、焼き縮みを考慮した内径30.5mmの石英ガラス製の型に高さ5mmに充填した状態で、実施例1と同一条件で加熱焼結処理を行い、円板状の磁性蓄冷材を30個作成した。これらの円板状の磁性蓄冷材を、2段膨張式GM冷凍機の第2段目蓄冷器内に多段に装填して、冷凍試験を実施した結果、4.2Kにおける冷凍能力は318mWと低い値であった。
[Comparative Example 1]
Heat sintering treatment under the same conditions as in Example 1 with the HoCu 2 magnetic regenerator particles prepared in Example 1 filled in a quartz glass mold with an inner diameter of 30.5 mm in consideration of shrinkage at a height of 5 mm And 30 disk-shaped magnetic regenerator materials were produced. As a result of carrying out a refrigeration test by loading these disk-shaped magnetic regenerator materials in the second stage regenerator of a two-stage expansion GM refrigerator, the refrigerating capacity at 4.2 K is as low as 318 mW. Value.

[比較例2]
実施例2において調製したErNi磁性蓄冷材粒子を焼結せずに、そのまま図7に示す2段膨張式GM冷凍機10の2段目蓄冷器15に充填して比較例2に係る冷凍機を組み立て冷凍試験を実施し、3000時間連続運転後における冷凍能力を測定した。
[Comparative Example 2]
The Er 3 Ni magnetic regenerator material particles prepared in Example 2 were filled in the second stage regenerator 15 of the two-stage expansion GM refrigerator 10 shown in FIG. 7 without sintering, and the refrigeration according to Comparative Example 2 was performed. The machine was assembled and a refrigeration test was conducted to measure the refrigeration capacity after continuous operation for 3000 hours.

その結果、4.2Kにおける冷凍能力の初期値は、840mWであったが、3000時間の連続運転後の冷凍能力は413mWに低下した。連続運転後の冷凍機を分解したところ、シールに微粉化した蓄冷材ErNiが付着しているのが認められた。 As a result, the initial value of the refrigeration capacity at 4.2 K was 840 mW, but the refrigeration capacity after 3000 hours of continuous operation decreased to 413 mW. When the refrigerator after the continuous operation was disassembled, it was observed that the refrigerated regenerator material Er 3 Ni adhered to the seal.

[実施例3]
実施例1において調製したHoCuの球状磁性蓄冷材粒子をバレルめっき処理することにより、粒子表面を厚さ約7μmのPbによって被覆した。この磁性蓄冷材粒子を実施例1と同様にSUS304製の筒状金属内に充填し、水素雰囲気中で温度370℃で2時間加熱焼結処理を実施し、さらに所定の寸法に機械加工して実施例3に係る蓄冷材とした。この蓄冷材を実施例1と同様に2段膨張式GM冷凍機の第2段目蓄冷器15に装填して冷凍試験を実施した。
[Example 3]
The HoCu 2 spherical magnetic regenerator particles prepared in Example 1 were barrel-plated to coat the particle surfaces with Pb having a thickness of about 7 μm. The magnetic regenerator material particles are filled into a SUS304 cylindrical metal in the same manner as in Example 1, and subjected to a heat sintering process at a temperature of 370 ° C. for 2 hours in a hydrogen atmosphere, and further machined to a predetermined size. A cold storage material according to Example 3 was obtained. This cold storage material was loaded into the second stage cold storage 15 of the two-stage expansion GM refrigerator similarly to Example 1, and the refrigeration test was carried out.

その結果、4.2Kにおける冷凍能力として516mWが得られた。また、3000時間の連続運転後における冷凍能力も507mWと安定した冷凍性能が得られた。さらに、連続運転後に蓄冷材を取り出して観察したが、磁性蓄冷材粒子の損傷は観察されなかった。   As a result, 516 mW was obtained as the refrigerating capacity at 4.2K. In addition, the refrigerating capacity after continuous operation for 3000 hours was 507 mW, and a stable refrigerating performance was obtained. Furthermore, although the cold storage material was taken out and observed after continuous operation, damage to the magnetic cold storage material particles was not observed.

[実施例4]
実施例1において使用したSUS304製筒状金属の内壁に、ねじ山の高さが0.2mm,ねじピッチが1mmのねじを形成した。そして実施例1において調製したHoCuの球状磁性蓄冷材粒子を上記筒状金属内に充填し、真空中で温度860℃で3時間加熱焼結処理を実施し、さらに所定の寸法に機械加工して実施例4に係る蓄冷材とした。この蓄冷材を実施例1と同様に2段膨張式GM冷凍機の第2段目蓄冷器15に装填して冷凍試験を実施した。
[Example 4]
A screw having a thread height of 0.2 mm and a screw pitch of 1 mm was formed on the inner wall of the cylindrical metal made of SUS304 used in Example 1. Then, the spherical magnetic regenerator material particles of HoCu 2 prepared in Example 1 are filled into the cylindrical metal, heat-sintered at a temperature of 860 ° C. for 3 hours in vacuum, and further machined to a predetermined size. Thus, a cold storage material according to Example 4 was obtained. This cold storage material was loaded into the second stage cold storage 15 of the two-stage expansion GM refrigerator similarly to Example 1, and the refrigeration test was carried out.

その結果、4.2Kにおける冷凍能力として505mWが得られた。また、3000時間の連続運転後における冷凍能力も501mWと安定した冷凍性能が得られた。さらに、連続運転後に蓄冷材を取り出して観察したが、磁性蓄冷材粒子の損傷は観察されなかった。   As a result, 505 mW was obtained as the refrigerating capacity at 4.2K. Moreover, the refrigerating capacity after continuous operation for 3000 hours was 501 mW, and a stable refrigerating performance was obtained. Furthermore, although the cold storage material was taken out and observed after continuous operation, damage to the magnetic cold storage material particles was not observed.

[実施例5]
実施例1において使用したSUS304製筒状金属の内壁に、厚さ30μmの銀ろう材箔(Cu28wt%−Ag72wt%)を貼り付けた。この筒状金属内に実施例1において調製したHoCuの球状磁性蓄冷材粒子を充填し、真空中で温度860℃で3時間加熱焼結処理を実施し、さらに所定の寸法に機械加工して実施例5に係る蓄冷材とした。この蓄冷材を実施例1と同様に2段膨張式GM冷凍機の第2段目蓄冷器15に装填して冷凍試験を実施した。
[Example 5]
A 30 μm-thick silver brazing foil (Cu 28 wt% -Ag 72 wt%) was attached to the inner wall of the SUS304 cylindrical metal used in Example 1. This cylindrical metal was filled with the spherical magnetic regenerator particles of HoCu 2 prepared in Example 1, and heat-sintered at a temperature of 860 ° C. for 3 hours in a vacuum, and further machined to a predetermined size. A cold storage material according to Example 5 was obtained. This cold storage material was loaded into the second stage cold storage 15 of the two-stage expansion GM refrigerator similarly to Example 1, and the refrigeration test was carried out.

その結果、4.2Kにおける冷凍能力として508mWが得られた。また、3000時間の連続運転後における冷凍能力も502mWと安定した冷凍性能が得られた。さらに、連続運転後に蓄冷材を取り出して観察したが、磁性蓄冷材粒子の損傷は観察されなかった。   As a result, 508 mW was obtained as the refrigerating capacity at 4.2K. In addition, the refrigerating capacity after continuous operation for 3000 hours was 502 mW and a stable refrigerating performance was obtained. Furthermore, although the cold storage material was taken out and observed after continuous operation, damage to the magnetic cold storage material particles was not observed.

[実施例6]
実施例1において調整したHoCuの球状磁性蓄冷材粒子に0.2wt%のチタネート系カップリング剤(味の素KK製プレンアクト)を添加し混合した。次に、エポキシ系樹脂(Stycast 1266)を蓄冷材粒子の2wt%添加し混合した。この磁性蓄冷材粒子を実施例1と同様にSUS304製の筒状金属内に充填し、室温で8hキュアした後、さらに95℃で2hキュアした。この蓄冷材を実施例1と同様に2段膨張式GM冷凍機の第2段目蓄冷器に装填し冷凍試験を実施した。
[Example 6]
0.2 wt% titanate coupling agent (Ajinomoto KK Preneact) was added to and mixed with the spherical magnetic regenerator material particles of HoCu 2 prepared in Example 1. Next, epoxy resin (Stycast 1266) was added and mixed with 2 wt% of the regenerator particles. The magnetic regenerator material particles were filled in a cylindrical metal made of SUS304 in the same manner as in Example 1, cured for 8 hours at room temperature, and further cured for 2 hours at 95 ° C. This cold storage material was loaded into the second stage regenerator of the two-stage expansion type GM refrigerator as in Example 1 to conduct a refrigeration test.

その結果、4.2Kにおける冷凍能力として507mWが得られた。また、3000時間の連続運転後における冷凍能力も502mWと安定した冷凍性能が得られた。さらに、連続運転後に蓄冷材を取り出して観察したが、蓄冷材粒子の損傷は観察されなかった。   As a result, 507 mW was obtained as the refrigerating capacity at 4.2K. In addition, the refrigerating capacity after continuous operation for 3000 hours was 502 mW and a stable refrigerating performance was obtained. Furthermore, although the cold storage material was taken out and observed after continuous operation, damage to the cold storage material particles was not observed.

上記実施例および比較例に示す結果から明らかなように、磁性蓄冷材粒子を筒状金属内に充填した状態で焼結したり、キュアして得た各実施例の蓄冷材を使用した冷凍機においては、比較例のものと比較して、いずれも低温領域における冷凍能力が大幅に改善されることが確認できた。さらに各実施例に係る蓄冷材を使用した冷凍機においては、蓄冷材の剛性、機械的強度、耐久性が高まるために劣化が少なく、長期間の連続運転後においても冷凍能力の低下が少なく、安定した冷凍能力を維持できることが判明した。   As is clear from the results shown in the above examples and comparative examples, the refrigerator using the regenerator material of each example obtained by sintering or curing the regenerator material particles filled in a cylindrical metal In each case, it was confirmed that the refrigerating capacity in the low temperature region was greatly improved as compared with the comparative example. Furthermore, in the refrigerator using the regenerator material according to each example, since the rigidity, mechanical strength, durability of the regenerator material is increased, there is little deterioration, and the decrease in the refrigerating capacity is small even after long-term continuous operation, It was found that a stable refrigeration capacity can be maintained.

次に、本発明に係る蓄冷式冷凍機を使用した超電導MRI装置、磁気浮上列車用超電導磁石、クライオポンプ、および磁界印加式単結晶引上げ装置の実施例について述べる。   Next, examples of a superconducting MRI apparatus using a regenerative refrigerator according to the present invention, a superconducting magnet for a magnetic levitation train, a cryopump, and a magnetic field application type single crystal pulling apparatus will be described.

図8は、本発明を適用した超電導MRI装置の概略構成を示す断面図である。図8に示す超電導MRI装置30は、人体に対して空間的に均一で時間的に安定な静磁界を印加する超電導静磁界コイル31、発生磁界の不均一性を補正する図示を省略した補正コイル、測定領域に磁界勾配を与える傾斜磁界コイル32、およびラジオ波送受信用プローブ33等により構成されている。そして、超電導静磁界コイル31の冷却用として、前述したような本発明に係る蓄冷式冷凍機34が用いられている。なお、図中35はクライオスタット、36は放射断熱シールドである。   FIG. 8 is a cross-sectional view showing a schematic configuration of a superconducting MRI apparatus to which the present invention is applied. A superconducting MRI apparatus 30 shown in FIG. 8 includes a superconducting static magnetic field coil 31 that applies a spatially uniform and temporally stable static magnetic field to a human body, and a correction coil that is not shown to correct nonuniformity of the generated magnetic field. A gradient magnetic field coil 32 that applies a magnetic field gradient to the measurement region, a radio wave transmission / reception probe 33, and the like. In addition, as described above, the regenerative refrigerator 34 according to the present invention is used for cooling the superconducting static magnetic field coil 31. In the figure, 35 is a cryostat, and 36 is a radiation heat shield.

本発明に係る蓄冷式冷凍機34を用いた超電導MRI装置30においては、超電導静磁界コイル31の動作温度を長期間に亘って安定に保証することができるため、空間的に均一で時間的に安定な静磁界を長期間に亘って得ることができる。したがって、超電導MRI装置30の性能を長期間に亘って安定して発揮させることが可能となる。   In the superconducting MRI apparatus 30 using the regenerative refrigerator 34 according to the present invention, the operating temperature of the superconducting static magnetic field coil 31 can be assured stably over a long period of time. A stable static magnetic field can be obtained over a long period of time. Therefore, the performance of the superconducting MRI apparatus 30 can be exhibited stably over a long period of time.

図9は、本発明に係る蓄冷式冷凍機を使用した磁気浮上列車用超電導磁石の要部概略構成を示す斜視図であり、磁気浮上列車用超電導マグネット40の部分を示している。図9に示す磁気浮上列車用超電導マグネット40は、超電導コイル41、この超電導コイル41を冷却するための液体ヘリウムタンク42、この液体ヘリウムタンクの揮散を防ぐ液体窒素タンク43および本発明に係る蓄冷式冷凍機44等により構成されている。なお、図中45は積層断熱材、46はパワーリード、47は永久電流スイッチである。   FIG. 9 is a perspective view showing a schematic configuration of a main part of a superconducting magnet for a magnetic levitation train using a regenerative refrigerator according to the present invention, and shows a portion of a superconducting magnet 40 for a magnetic levitation train. A superconducting magnet 40 for a magnetic levitation train shown in FIG. 9 includes a superconducting coil 41, a liquid helium tank 42 for cooling the superconducting coil 41, a liquid nitrogen tank 43 for preventing volatilization of the liquid helium tank, and a regenerative type according to the present invention. It is comprised by the refrigerator 44 grade | etc.,. In the figure, 45 is a laminated heat insulating material, 46 is a power lead, and 47 is a permanent current switch.

本発明に係る蓄冷式冷凍機44を用いた磁気浮上列車用超電導マグネット40においては、超電導コイル41の動作温度を長期間に亘って安定に保証することができるため、列車の磁気浮上および推進に必要な磁界を長期間に亘って安定して得ることができる。特に、磁気浮上列車用超電導マグネット40では加速度が作用するが、本発明に係る蓄冷式冷凍機44は加速度が作用した場合においても長期間に亘って優れた冷凍能力を維持できることから、磁界強度等の長期安定化に大きく貢献する。したがって、このような超電導マグネット40を用いた磁気浮上列車は、その信頼性を長期間に亘って発揮させることが可能となる。   In the superconducting magnet 40 for a magnetically levitated train using the regenerative refrigerator 44 according to the present invention, the operating temperature of the superconducting coil 41 can be assured stably over a long period of time. A necessary magnetic field can be stably obtained over a long period of time. In particular, the superconducting magnet 40 for a magnetic levitation train acts on acceleration, but the regenerative refrigerator 44 according to the present invention can maintain excellent refrigeration capacity over a long period of time even when acceleration acts, so that the magnetic field strength, etc. Greatly contribute to the long-term stabilization of Therefore, the magnetic levitation train using such a superconducting magnet 40 can exhibit its reliability over a long period of time.

図10は、本発明に係る蓄冷式冷凍機を使用したクライオポンプの概略構成を示す断面図である。図10に示すクライオポンプ50は、気体分子を凝縮または吸着するクライオパネル51、このクライオパネル51を所定の極低温に冷却する本発明に係る蓄冷式冷凍機52、これらの間に設けられたシールド53、吸気口に設けられたバッフル54、およびアルゴン、窒素、水素等の排気速度を変化させるリング55等により構成されている。   FIG. 10 is a cross-sectional view showing a schematic configuration of a cryopump using the regenerative refrigerator according to the present invention. A cryopump 50 shown in FIG. 10 includes a cryopanel 51 that condenses or adsorbs gas molecules, a regenerative refrigerator 52 according to the present invention that cools the cryopanel 51 to a predetermined cryogenic temperature, and a shield provided therebetween. 53, a baffle 54 provided at the intake port, and a ring 55 for changing the exhaust speed of argon, nitrogen, hydrogen or the like.

本発明に係る蓄冷式冷凍機52を用いたクライオポンプ50においては、クライオパネル51の動作温度を長期間に亘って安定に保証することができる。したがって、クライオポンプ50の性能を長期間に亘って安定して発揮させることが可能となる。   In the cryopump 50 using the regenerative refrigerator 52 according to the present invention, the operating temperature of the cryopanel 51 can be stably guaranteed over a long period of time. Therefore, the performance of the cryopump 50 can be exhibited stably over a long period of time.

図11は、本発明に係る蓄冷式冷凍機を使用した磁界印加式単結晶引上げ装置の概略構成を示す斜視図である。図11に示す磁界印加式単結晶引上げ装置60は、原料溶融用るつぼ、ヒータ、単結晶引上げ機構等を有する単結晶引上げ部61、原料融液に対して静磁界を印加する超電導コイル62、および単結晶引上げ部61の昇降機構63等により構成されている。そして、超電導コイル62の冷却用として、前述したような本発明に係る蓄冷式冷凍機64が用いられている。なお、図中65は電流リード、66は熱シールド板、67はヘリウム容器である。   FIG. 11 is a perspective view showing a schematic configuration of a magnetic field application type single crystal pulling apparatus using a regenerative refrigerator according to the present invention. A magnetic field application type single crystal pulling device 60 shown in FIG. 11 includes a raw material melting crucible, a heater, a single crystal pulling unit 61 having a single crystal pulling mechanism, a superconducting coil 62 for applying a static magnetic field to the raw material melt, and It is constituted by an elevating mechanism 63 of the single crystal pulling unit 61 or the like. Then, as described above, the regenerative refrigerator 64 according to the present invention is used for cooling the superconducting coil 62. In the figure, 65 is a current lead, 66 is a heat shield plate, and 67 is a helium vessel.

本発明に係る蓄冷式冷凍機64を用いた磁界印加式単結晶引上げ装置60においては、超電導コイル62の動作温度を長期間に亘って安定に保証することができるため、単結晶の原料融液の対流を抑える良好な磁界を長期間に亘って得ることができる。したがって、磁界印加式単結晶引上げ装置60の性能を長期間に亘って安定して発揮させることが可能となる。   In the magnetic field application type single crystal pulling apparatus 60 using the regenerative refrigerator 64 according to the present invention, the operating temperature of the superconducting coil 62 can be stably guaranteed over a long period of time. A good magnetic field that suppresses the convection can be obtained over a long period of time. Therefore, the performance of the magnetic field application type single crystal pulling apparatus 60 can be exhibited stably over a long period of time.

本発明に係る蓄冷材の製造方法で形成された蓄冷材の一実施例を示す断面図。Sectional drawing which shows one Example of the cool storage material formed with the manufacturing method of the cool storage material which concerns on this invention. 本発明に係る蓄冷材の製造方法で形成された蓄冷材の他の実施例を示す断面図。Sectional drawing which shows the other Example of the cool storage material formed with the manufacturing method of the cool storage material which concerns on this invention. 本発明に係る蓄冷材の製造方法で形成された蓄冷材の他の実施例を示す断面図。Sectional drawing which shows the other Example of the cool storage material formed with the manufacturing method of the cool storage material which concerns on this invention. 本発明に係る蓄冷材の製造方法で形成された蓄冷材の他の実施例を示す断面図。Sectional drawing which shows the other Example of the cool storage material formed with the manufacturing method of the cool storage material which concerns on this invention. 本発明に係る蓄冷材の製造方法で形成された蓄冷材の他の実施例を示す断面図。Sectional drawing which shows the other Example of the cool storage material formed with the manufacturing method of the cool storage material which concerns on this invention. 本発明に係る蓄冷材の製造方法で形成された蓄冷材の他の実施例を示す断面図。Sectional drawing which shows the other Example of the cool storage material formed with the manufacturing method of the cool storage material which concerns on this invention. 本発明で使用する蓄冷式冷凍機(GM冷凍機)の要部構成を示す断面図。Sectional drawing which shows the principal part structure of the cool storage type refrigerator (GM refrigerator) used by this invention. 本発明で使用する超電導MRI装置の概略構成を示す断面図。Sectional drawing which shows schematic structure of the superconducting MRI apparatus used by this invention. 本発明で使用する超電導磁石(磁気浮上列車用)の要部概略構成を示す斜視図。The perspective view which shows the principal part schematic structure of the superconducting magnet (for magnetic levitation train) used by this invention. 本発明で使用するクライオポンプの概略構成を示す断面図。Sectional drawing which shows schematic structure of the cryopump used by this invention. 本発明で使用する磁界印加式単結晶引上げ装置の要部概略構成を示す斜視図。The perspective view which shows the principal part schematic structure of the magnetic field application type single crystal pulling apparatus used by this invention. 従来の磁性蓄冷材粒子を充填した蓄冷器の断面図。Sectional drawing of the regenerator filled with the conventional magnetic regenerator material particle.

符号の説明Explanation of symbols

1 蓄冷器
2 磁性蓄冷材
3 隙間
4 磁性蓄冷材
5,5a 筒状金属(SUS)
6 ろう材層
7a 環状溝
7b 環状突起
8 凹凸
9 テーパ面
10 GM冷凍機(蓄冷式冷凍機)
11 第1シリンダ
12 第2シリンダ
13 真空容器
14 第1蓄冷器
15 第2蓄冷器
16,17 シールリング
18 第1蓄熱材
19,19a,19b,19c,19d,19e 第2蓄熱材(極低温用蓄冷材)
20 第1膨張室
21 第2膨張室
22 第1冷却ステージ
23 第2冷却ステージ
24 コンプレッサ
30 超電導MRI装置
31 超電導静磁界コイル
32 傾斜磁界コイル
33 ラジオ波送受信用プローブ
34 蓄冷式冷凍機
35 クライオスタット
36 放射断熱シールド
40 超電導磁石(マグネット)
41 超電導コイル
42 液体ヘリウムタンク
43 液体窒素タンク
44 蓄冷式冷凍機
45 積層断熱材
46 パワーリード
47 永久電流スイッチ
50 クライオポンプ
51 クライオパネル
52 蓄冷式冷凍機
53 シールド
54 バッフル
55 リング
60 磁界印加式単結晶引上げ装置
61 単結晶引上げ部
62 超電導コイル
63 昇降機構
64 蓄冷式冷凍機
65 電流リード
66 熱シールド板
67 ヘリウム容器
DESCRIPTION OF SYMBOLS 1 Regenerator 2 Magnetic regenerator material 3 Crevice 4 Magnetic regenerator material 5, 5a Cylindrical metal (SUS)
6 Brazing material layer 7a Annular groove 7b Annular projection 8 Unevenness 9 Tapered surface 10 GM refrigerator (cool storage type refrigerator)
11 First cylinder 12 Second cylinder 13 Vacuum vessel 14 First regenerator 15 Second regenerator 16, 17 Seal ring 18 First heat storage material 19, 19a, 19b, 19c, 19d, 19e Second heat storage material (for cryogenic use) Cold storage material)
20 First expansion chamber 21 Second expansion chamber 22 First cooling stage 23 Second cooling stage 24 Compressor 30 Superconducting MRI apparatus 31 Superconducting static magnetic field coil 32 Gradient magnetic field coil 33 Radio wave transmitting / receiving probe 34 Cold storage refrigerator 35 Cryostat 36 Radiation Insulation shield 40 Superconducting magnet (magnet)
41 Superconducting coil 42 Liquid helium tank 43 Liquid nitrogen tank 44 Regenerative refrigerator 45 Laminated insulation 46 Power lead 47 Permanent current switch 50 Cryopump 51 Cryopanel 52 Regenerative refrigerator 53 Shield 54 Baffle 55 Ring 60 Magnetic field applied single crystal Pulling device 61 Single crystal pulling unit 62 Superconducting coil 63 Lifting mechanism 64 Cold storage refrigerator 65 Current lead 66 Heat shield plate 67 Helium container

Claims (7)

筒状金属の内部に充填された粒子状の磁性蓄冷材を焼結し、相互に結合させるとともに、筒状金属と一体化させる蓄冷材の製造方法において、上記磁性蓄冷材粒子が接触する筒状金属の内壁の少なくとも一部の表面粗さを最大高さ(Ry)基準で30μm以上とし、上記筒状金属をステンレス鋼により構成する一方、上記粒子状の磁性蓄冷材における粒径が10μm以上5mm以下である磁性蓄冷材粒子の割合が70%重量以上となるように調整し、上記筒状金属に充填された粒子状磁性蓄冷材の焼結を真空中,不活性ガス雰囲気,または還元ガス雰囲気中で実施することを特徴とする蓄冷材の製造方法。 In the method for producing a regenerator material, in which a particulate magnetic regenerator material filled in a cylindrical metal is sintered and bonded to each other and integrated with the tubular metal, the cylindrical regenerator material particles are in contact with each other The surface roughness of at least a part of the inner wall of the metal is 30 μm or more on the basis of the maximum height (Ry), and the cylindrical metal is made of stainless steel, while the particle size in the particulate magnetic regenerator is 10 μm or more. The ratio of magnetic regenerator material particles of 5 mm or less is adjusted to be 70% weight or more, and sintering of the particulate magnetic regenerator material filled in the cylindrical metal is performed in vacuum, in an inert gas atmosphere, or a reducing gas. The manufacturing method of the cool storage material characterized by implementing in an atmosphere . 請求項1記載の蓄冷材の製造方法において、前記粒子状の磁性蓄冷材の表面に蓄冷材よりも低い融点を有する低融点金属またはその合金を1〜50μmの厚さで被覆し、液相焼結させることを特徴とする蓄冷材の製造方法。 2. The method for producing a regenerator material according to claim 1, wherein a surface of the particulate magnetic regenerator material is coated with a low melting point metal having a melting point lower than that of the regenerator material or an alloy thereof at a thickness of 1 to 50 [mu] m, and liquid phase firing is performed. The manufacturing method of the cool storage material characterized by making it tie. 請求項1記載の蓄冷材の製造方法において、前記粒子状の磁性蓄冷材を被覆する低融点金属としてPb,In,Sn,GaおよびZnから選択される少なくとも1種の金属を使用することを特徴とする蓄冷材の製造方法。 2. The method for manufacturing a regenerator material according to claim 1, wherein at least one metal selected from Pb, In, Sn, Ga and Zn is used as a low melting point metal for covering the particulate magnetic regenerator material. The manufacturing method of the cool storage material. 請求項1記載の蓄冷材の製造方法において、前記筒状金属の内壁に環状溝または環状突起を形成することを特徴とする蓄冷材の製造方法。 The manufacturing method of the cool storage material of Claim 1 WHEREIN: An annular groove or an annular protrusion is formed in the inner wall of the said cylindrical metal, The manufacturing method of the cool storage material characterized by the above-mentioned. 請求項1記載の蓄冷材の製造方法において、前記筒状金属の内壁に凹凸を形成したことを特徴とする蓄冷材の製造方法。 The manufacturing method of the cool storage material of Claim 1 WHEREIN: The unevenness | corrugation was formed in the inner wall of the said cylindrical metal. 請求項1記載の蓄冷材の製造方法において、前記筒状金属の断面積が軸方向に拡大または縮小するように内壁をテーパ状に形成すると共に前記筒状金属が軸方向の端部以外に最大内径を有することを特徴とする蓄冷材の製造方法。 2. The method of manufacturing a regenerator material according to claim 1, wherein an inner wall is formed in a tapered shape so that a cross-sectional area of the cylindrical metal expands or contracts in the axial direction, and the cylindrical metal has a maximum other than the end portion in the axial direction. The manufacturing method of the cool storage material characterized by having an internal diameter. 請求項1記載の蓄冷材の製造方法において、前記筒状金属の内壁に箔状またはペースト状のろう材を配置または塗布した後に、上記筒状金属の内部に粒子状の磁性蓄冷材を充填し、焼結することを特徴とする蓄冷材の製造方法。 2. The method of manufacturing a regenerator material according to claim 1, wherein a foil-like or paste-like brazing material is disposed or applied to the inner wall of the cylindrical metal, and then the inside of the cylindrical metal is filled with a particulate magnetic regenerator material. A method for producing a regenerator material, characterized by sintering.
JP2006327268A 2006-12-04 2006-12-04 Manufacturing method of regenerator material Expired - Lifetime JP4237791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006327268A JP4237791B2 (en) 2006-12-04 2006-12-04 Manufacturing method of regenerator material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006327268A JP4237791B2 (en) 2006-12-04 2006-12-04 Manufacturing method of regenerator material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP06908498A Division JP3980158B2 (en) 1998-03-18 1998-03-18 Cold storage material and cold storage type refrigerator

Publications (3)

Publication Number Publication Date
JP2007132655A JP2007132655A (en) 2007-05-31
JP2007132655A5 JP2007132655A5 (en) 2007-07-12
JP4237791B2 true JP4237791B2 (en) 2009-03-11

Family

ID=38154458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006327268A Expired - Lifetime JP4237791B2 (en) 2006-12-04 2006-12-04 Manufacturing method of regenerator material

Country Status (1)

Country Link
JP (1) JP4237791B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019232919A1 (en) * 2018-06-04 2019-12-12 中船重工鹏力(南京)超低温技术有限公司 Cold storage material and cold storage type cryogenic refrigerator using same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703699B2 (en) 2008-09-04 2011-06-15 株式会社東芝 Magnetic material for magnetic refrigeration, magnetic refrigeration device and magnetic refrigeration system
WO2014057657A1 (en) * 2012-10-09 2014-04-17 株式会社 東芝 Rare earth storage medium particles, rare earth storage medium particle group, and cold head using same, superconducting magnet, inspection device, and cryopump
JP6490152B2 (en) * 2013-06-20 2019-03-27 住友重機械工業株式会社 Cold storage material and cold storage type refrigerator
JP6165618B2 (en) * 2013-06-20 2017-07-19 住友重機械工業株式会社 Cold storage material and cold storage type refrigerator
JP6305193B2 (en) 2013-09-17 2018-04-04 住友重機械工業株式会社 Regenerative refrigerator, one-stage regenerator, and two-stage regenerator
JP6648884B2 (en) * 2015-08-21 2020-02-14 国立研究開発法人物質・材料研究機構 Magnetic refrigeration material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019232919A1 (en) * 2018-06-04 2019-12-12 中船重工鹏力(南京)超低温技术有限公司 Cold storage material and cold storage type cryogenic refrigerator using same
EP3805666A4 (en) * 2018-06-04 2022-02-23 Csic Pride (Nanjing) Cryogenic Technology Co., Ltd. Cold storage material and cold storage type cryogenic refrigerator using same
US11906228B2 (en) 2018-06-04 2024-02-20 Csic Pride (Nanjing) Cryogenic Technology Co., Ltd. Cold storage material and cold storage type cryogenic refrigerator using same

Also Published As

Publication number Publication date
JP2007132655A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP4237791B2 (en) Manufacturing method of regenerator material
JP4551509B2 (en) Cold storage material and cold storage type refrigerator
JP4331251B2 (en) Cryogenic storage material manufacturing method for cryogenic temperature and heat shield material manufacturing method using the same
EP1854859B1 (en) Cold storage material, cold storage device and very-low-temperature cold storage refrigerator
US5593517A (en) Regenerating material and refrigerator using the same
US6467277B2 (en) Cold accumulating material, method of manufacturing the same and refrigerator using the material
JP2001336845A (en) Cold accumulator and regenerative refrigerating machine using it
JP2013100509A (en) Method for producing cold-storage material for extremely low temperature
EP3916068B1 (en) Refrigerator comprising rare earth cold accumulating material particles
JP3980158B2 (en) Cold storage material and cold storage type refrigerator
US6197127B1 (en) Cryogenic refrigerant and refrigerator using the same
JP4322321B2 (en) Cold storage material for cryogenic temperature, refrigerator and heat shield material using it
JP5468380B2 (en) Cold storage material and manufacturing method thereof
JPH11325628A (en) Cold storage material and cold storage type refrigerating machine
WO1999020956A1 (en) Cold-accumulating material and cold-accumulating refrigerator
JP3015571B2 (en) Cryogenic regenerator material and cryogenic regenerator and refrigerator using the same
JP2011137632A (en) Cold storage medium, cold accumulator, and cryogenic cold storage type refrigerating machine
JP2004099822A (en) Cold storage material and regenerative refrigerator using the same
JP2007057230A (en) Method of manufacturing cold accumulating material for extremely low temperature and method of manufacturing heat shield material using the same
JP4564161B2 (en) refrigerator
JP3561023B2 (en) Cryogenic cool storage material and cryogenic cool storage device using the same
JP2004143341A (en) Cold storage material and cold storage type refrigerator using the same
JP3751646B2 (en) Cold storage material and refrigerator using the same
JPH06240241A (en) Cold-reserving agent for cryogenic temperature and cold-reserving apparatus for cryogenic temperature using the same
CN115574481A (en) Cold storage material, refrigerator, superconducting coil built-in device, and method for manufacturing cold storage material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

EXPY Cancellation because of completion of term